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Abstract
Address Sanitizer (ASan) is a powerful memory error detec-
tor. It can detect various errors ranging from spatial issues
like out-of-bound accesses to temporal issues like use-after-
free. However, ASan has the major drawback of high runtime
overhead. With every functionality enabled, ASan incurs an
overhead of more than 1x.

This paper first presents a study to dissect the operations of
ASan and inspects the primary sources of its runtime overhead.
The study unveils (or confirms) that the high overhead is
mainly caused by the extensive sanitizer checks on memory
accesses. Inspired by the study, the paper proposes ASan--
, a tool assembling a group of optimizations to reduce (or
“debloat”) sanitizer checks and improve ASan’s efficiency.
Unlike existing tools that remove sanitizer checks with harm
to the capability, scalability, or usability of ASan, ASan-- fully
maintains those decent properties of ASan.

Our evaluation shows that ASan-- presents high promise. It
reduces the overhead of ASan by 41.7% on SPEC CPU2006
and by 35.7% on Chromium. If only considering the overhead
incurred by sanitizer checks, the reduction rates increase to
51.6% on SPEC CPU2006 and 69.6% on Chromium. In the
context of fuzzing, ASan-- increases the execution speed of
AFL by over 40% and the branch coverage by 5%. Combined
with orthogonal, fuzzing-tailored optimizations, ASan-- can
speed up AFL by 60% and increase the branch coverage by
9%. Running in Chromium to support our daily work for four
weeks, ASan-- did not present major usability issues or sig-
nificant slowdown and it detected all the bugs we reproduced
from previous reports.

1 Introduction

Programs developed in low-level languages, such as C and
C++, often contain an abundance of memory error bugs. When
exploited, the bugs can lead to severe security issues like data
breach and hijacked execution. To help detect memory errors,
various runtime tools [10, 14, 27, 36, 37, 42, 44, 47, 48, 50, 53]
have been created. These tools vary in many aspects such
as scope and capability. In recent years, address sanitizer
(ASan) [42] stands out from the rest, thanks to its superior
capability (detection of a wide spectrum of spatial errors and
temporal errors), scalability (ability to support industry-grade
programs like operating system kernels and web browsers),
and usability (nearly zero configuration and seamless inte-
gration into mainstream compilers).

*Pang is a PhD student at Nanjing University. Pang contributed to this
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Technically, ASan allocates shadow memory to track the
status (e.g., addressable or not) of the application memory.
When the application issues an operation to a memory loca-
tion, ASan checks the shadow byte mapped to the location and
reports any embedded errors. The use of shadow memory and
runtime checks leads to ASan’s two major drawbacks: high
memory overhead and runtime overhead. The drawbacks lock
many potentials of ASan, such as whole system sanitization.

Past research has extended many efforts towards addressing
ASan’s drawbacks. In particular, hardware-assisted address
sanitizer (HWASan) [25] utilizes Address Tagging [1], an
AArch64 hardware feature, to reduce the use of shadow mem-
ory, decreasing the memory overhead of ASan from 1.5x-3x
to 10%-35% [43]. However, the runtime overhead of ASan
remains largely unsolved. Even HWASan still incurs similar
overhead to ASan. Past research commonly blames sanitizer
checks inserted by ASan for its high overhead. However,
ASan has many runtime activities besides sanitizer checks,
such as the preparation of metadata and logging. There has
not been a systematic understanding of the overhead intro-
duced by different activities. That means we are not even
aware of how much overhead the sanitizer checks truly bring.
Study In this paper, we dissect ASan’s runtime activities
into five groups: sanitizer checks, library function intercep-
tion, poisoning and redzone (i.e., metadata management),
logging, and heap management. Overhead brought by each
group of activities to ASan is individually measured on SPEC
CPU2006. Details of the study are presented in §3.1.

Our study confirms that sanitizer checks are the dominant
source of overhead. It causes about 80.8% of the overhead
(86.5% out of 107.8%). The study also unveils other sources
of the overhead. In particular, the customized heap manage-
ment of ASan incurs an overhead of 9.6%, which is less
known before. More details can be found in Figure 3.
Literature Inspired by the study, this paper proposes to re-
duce ASan’s overhead by reducing sanitizer checks. There are
many similar attempts [16,29,46,49,55] in the past. However,
the techniques they proposed harm ASan’s descent properties
(capability, scalability, usability). GWP-ASan [16] randomly
picks a sub-set of heap objects to add guard pages and ignores
the others. ASAP [49] removes sanitizer checks to satisfy a
performance budget. Its criterion is to remove sanitizer checks
on “hot” code that is more often executed, offering no safety
assurance of the removing operations. Similar to ASAP, Par-
tiSan [29] follows a performance-driven metric to remove
sanitizer checks without ensuring safety. GWP-ASan, ASAP,
and PartiSan all degrade the capability of ASan. Alternatively,
SANRAZOR [55] combines static patterns and dynamic pat-
terns to identify and remove redundant sanitizer (i.e., checks



whose safety property is covered by others). SANRAZOR is
more safety-driven but still cannot ensure the removed checks
are indeed redundant because the patterns used are not sound.
Also, SANRAZOR needs user inputs for profiling. In short,
SANRAZOR harms both the capability and usability of ASan.
Optimization In this paper, we assemble a group of op-
timizations to reduce ASan checks. All the optimizations
are purely static. They only involve sound, lightweight, and
configuration-free analysis, which maintains the capability,
scalability, and usability of ASan.

• Optimization 1 identifies stack/global accesses that can be
proven in-bound and removes their sanitizer checks. The
optimization has been explored by many tools [13,18,19,38,
39,46]. However, these tools often rely on heavy static anal-
ysis, which may not scale. We use an approach involving
only control flow traverse and basic constant propagation to
pinpoint the desired memory accesses (§4.1).

• Optimization 2 finds sanitizer checks that are dominated
(or post-dominated) and meanwhile covered by another
check. Such checks are redundant and removed. Previous
research [42] has briefly discussed this optimization but did
not provide full solutions. We develop an algorithm that
combines domination analysis and basic, flow-insensitive
alias analysis to achieve this optimization (§4.2).

• Optimization 3 determines memory accesses that are neigh-
bors in space and merge their checks into one. We propose,
design, and implement the optimization (§4.3).

• Optimization 4 focuses on memory accesses in loops. It lo-
cates memory accesses with an invariant address and moves
the sanitizer checks outside the loop. It also locates memory
accesses that use a constantly increasing/decreasing address
and groups the sanitizer checks across iterations into one.
We propose, design, and implement the optimization (§4.4).

Evaluation We have integrated the optimizations into
LLVM and created a tool called ASan--. We evaluate ASan--
from multiple dimensions. First, we run ASan-- on the full
Juliet Test Suite [40] and 34 vulnerabilities from the Linux
Flaw project [34]. ASan-- achieves an identical error detec-
tion rate to ASan. Second, we build SPEC CPU2006 and
Chromium with ASan--. ASan-- imposes a moderate increase
to the compilation time and reduces the binary size by 20%.
Binaries built for the programs can support all the benchmark
tests. The first and second evaluations show that ASan-- in-
herits the capability, scalability, and usability of ASan. Third,
we compare the performance of ASan-- and ASan on both
SPEC CPU2006 and Chromium. The evaluation shows that
ASan-- can reduce the overhead of ASan by 41.7% on SPEC
CPU2006 and by 35.7% on Chromium. If only consider-
ing the overhead incurred by sanitizer checks, the reduction
rates increase to 51.6% on SPEC CPU2006 and 69.6% on
Chromium. Fourth, we apply ASan-- in the application of
fuzzing. ASan-- can increase the execution speed of AFL by
over 40% and the branch coverage by 5%. Combined with

fuzzing-tailored optimization techniques, ASan-- can speed
up AFL by 60% and increase the branch coverage by 9%.
Finally, we run Chromium built with ASan-- to support our
daily work for four weeks. We did not experience major us-
ability issues or significant slowdown, and ASan-- detected
all the bugs we reproduced from previous reports.
Contribution We make the following main contributions.

• We present a study to dissect ASan’s runtime activities and
unveil the sources of overhead. The study confirms existing
understandings but also brings new findings.

• We design and implement a group of optimizations to reduce
sanitizer checks of ASan. To our knowledge, two of the
optimizations are brought up by us for the first time.

• We implement the optimizations and integrate them into
LLVM. Source code is publicly available at https://
github.com/junxzm1990/ASAN--.git.

• We conduct an extensive evaluation on our optimizations.
The results show that our optimizations can significantly
reduce the overhead of ASan without compromising its
properties. The results also show that our optimizations can
benefit the applications of ASan.

2 Technical Background

This section covers the technical background of ASan, based
on the implementation in LLVM [42].

2.1 Shadow Memory
ASan uses a shadow memory model illustrated in Figure 1
to facilitate efficient runtime checks. It spares one-eighth
of the virtual address space as the shadow memory where
each byte records the status, addressable or not, of eight bytes
used by the application. Given a memory byte at address
Addr, ASan places its shadow byte at (Addr»3)+Offset,
where Offset is a constant determined at the compiling time.
To ensure the region for shadow memory is always avail-
able, Offset needs to be chosen such that the memory area
[Offset, Offset+Max_Addr/8] is not occupied before the
shadow memory is allocated.

The value of a shadow byte encodes the addressable sta-
tus of the corresponding eight application bytes. 0 means
all the eight bytes are addressable, while a value K ranging
from 1 to 7 means only the first K bytes are addressable. A
negative value indicates all eight bytes are not addressable,
and different negative values unveil different types of non-
addressable memory (out-of-bound heap, out-of-bound stack,
out-of-bound global, freed memory, etc.).

2.2 Redzone
ASan places a redzone before and after each data object,
as shown in Figure 2. The redzones are poisoned. Namely,

https://github.com/junxzm1990/ASAN--.git
https://github.com/junxzm1990/ASAN--.git
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Figure 1: Shadow memory of ASan in a 64-bit application.

their shadow bytes mark them non-addressable. The object,
in contrast, is unpoisoned. The creation and poisoning of
redzones slightly differ when the object is in different regions.

Heap ASan replaces the standard heap management func-
tions (e.g., malloc, calloc, free, etc.) with customized ver-
sions. Once a heap buffer is allocated, ASan places a redzone
both before and after the buffer. Size of the redzone, a power
of two, increases with the buffer size and can range from 16
to 2,048. By default, the end of the buffer is 8-byte aligned. If
a gap of fewer than 8 bytes exists between the aligned end and
the actual end, ASan poisons the gap via partial poisoning.
For efficiency, ASan allocates multiple buffers of the same
size as a group, positioning them next to each other. The
left redzone of one buffer works as the right redzone of the
previous buffer. This way ASan only needs to allocate one
redzone (the left redzone) for buffers allocated from such a
group. Once a buffer is freed, ASan poisons the entire buffer
and places it into quarantine of a certain size, for the sake of
detecting use-after-free.

Stack Before and after each array on the stack, ASan inserts
two neighboring arrays to work as the left redzone and the
right redzone, respectively. The left redzone has 32 bytes, and
the right redzone has 32 bytes plus to up to 31 bytes to align
the original array. Both redzones are poisoned when the host
function is entered at execution time.

Global ASan replaces each global object with a new one
that contains a trailing redzone. The size of the redzone is
32 or one-fourth of the size of the object, whichever is larger.
The size of the object plus the redzone is rounded up to a
multiple of 32 bytes and partial poisoning is used if the end
of the object is not 8-byte aligned. All the redzones for global
objects are poisoned at the initialization of the process.

2.3 Runtime Checks
ASan instruments every memory access, load or store, with a
check on its shadow memory. Depending on the size of the
memory access, the check works differently. For an 8-byte
memory access, the check loads its shadow byte and inspects
whether the shadow byte is zero:

1 ShadowAddr = (Addr >> 3) + Offset;
2 if (∗ShadowAddr != 0)
3 ReportAndCrash(Addr);

Redzone 1 Object 1 Redzone 2 Object 2 Redzone 3 Object 3Heap

2^U bytes

Redzone 1 (a new array)Stack
32 bytes

Object Pad              Redzone 2 (a new array)

Round up to 32*X byte

8-byte aligned

2^W byte aligned

32 bytes

8-byte aligned

Partial poisoning

Original ObjectGlobal Trailing Redzone

8-byte alignedPartial poisoning

Round up to 32*Y byte32-byte aligned

32-byte aligned

2^V byte aligned

Figure 2: ASan redzones on heap, stack, and global. U, V,
W, X, Y represent positive integers.

For a N-byte (N = 1, 2, or 4) memory access, the check exam-
ines whether its shadow byte indicates that the first N bytes
are addressable:

1 ShadowAddr = (Addr >> 3) + Offset;
2 V = ∗ShadowAddr;
3 if (V != 0 && ((Addr & 7) + N > V))
4 ReportAndCrash(Addr);

Both checks only need one memory read and a few arithmetic/-
comparison instructions, presenting high efficiency. ASan
also intercepts C library functions that often cause memory
errors (e.g., memcpy). When such a function is entered, ASan
checks whether the source buffer and the destination buffer
are poisoned, using an optimized implementation.

3 Motivating Study

A major drawback of ASan is its high runtime overhead. As
reported in [42], the implementation of ASan in LLVM incurs
an average overhead of 73%. To gain insights into reducing
the overhead of ASan, we run a study to understand the origins
of the overhead.

3.1 Study Methodology
Following the setup of [42], our study focuses on ASan im-
plemented in LLVM and considers SPEC CPU2006 as the
benchmark. SPEC CPU2006 [6] is an industry-standardized,
CPU-intensive benchmark suite, consisting of 12 integer pro-
grams and 7 floating point programs. It comes with three
workloads called train, test, and reference. We use the refer-
ence workload in our study as it represents a real dataset and
activates long-duration execution.

The first step of our study measures the overhead of
ASan with default settings. LLVM (or Clang) fails to
compile omnetpp. Hence, we skip this program. Prob-
lems also occur on h264ref and perlbench because the
two programs trigger ASan errors given the reference in-
puts. To continue their execution at the errors, we compile
them with -fsanitize-recover=address and run them
after setting the ASAN_OPTIONS environment variable to
“halt_on_error=0”. The follow-up steps in turn make the
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Figure 3: Breakdown of runtime overhead of ASan. “ASAN” shows the overhead of stock ASan. From left to right, the other bars
show the overhead after we disable the corresponding activities, one after another. For instance, “Sanitizer_Chk” shows the
overhead without checks on individual memory accesses.

following modifications to ASan and separately measure the
overhead after each.
• Sanitizer Checks: disabling the sanitizer checks on mem-

ory accesses (both loads and stores).
• Interceptor: disabling the interception of standard C li-

braries (memcpy, memset, and memmove, etc.).
• Poisoning: skipping the poisoning of redzones.
• Logging: removing intermediate logging, in particular the

logging of the stack trace during malloc and free.
• Heap Management: revoking ASan’s heap management

to the one from the standard C library.
• Redzone: removing the remaining redzones and the related

operations.

3.2 Result Analysis
Figure 3 shows the average results of 30 repeated tests. Stock
ASan brings an overhead of 107.8%. This is higher than what
is reported in [42], but it is expected since the evaluation
in [42] disabled all the logging and removed the quarantine
for freed objects. Checks on individual memory accesses are
the primary source of ASan overhead, which is attributed to an
overhead of 86.5% (80.8% of all the overhead). This matches
the common understanding [49, 55] since memory accesses
are prevalent. A further breakdown unveils that the checks in
sequential code take about 55% of the 80.8% overhead, and
the checks in loops take the remaining. Each other activity
of ASan also brings overhead, leading to a total overhead
of 20.5%. A previously less-known finding is that ASan’s
heap management averages an overhead of 9.6%. On the
programs of perlbench, it incurs an overhead of over 39%.
The remaining activities are less significant, mostly leading
to an overhead of 2%-3%.

3.3 An Extension

Past research [24] has done a related study to understand the
time spent by ASan. The study brings a unique finding that
complements ours. They find that modern computers broadly
use a 64-bit address space, where ASan uses a 4TB heap
and needs a 16TB shadow memory, as shown in Figure 1.
When the application’s memory is scattered in the address
space, so will be the shadow memory in the 16TB space. This
can result in sparse page table entries (PTEs) and increased
page faults during page table management, bringing extra
memory management costs. By restricting the application
to run in a “smaller” address space, ASan can also use a
smaller shadow memory. Both help compact the page table
and reduce page faults, thus benefiting various ASan activities
(e.g., redzone poisoning and shadow memory checks) that
access the application memory and the shadow memory.

The original study in [24] focuses on smaller programs
under the context of fuzzing. We replicate the study on SPEC
CPU2006 in normal execution environments. As we will ex-
plain in §5.2, the public version of the tool presented in [24]
fails on many CPU2006 programs due to its strict restriction
of memory usage. Hence, we use an approximating approach.
The idea is to only allocate one shadow memory page and map
all the application memory to the same memory page. Tech-
nically, we replace (Addr » 3) + Shadowoffset with
(Addr » 36) + Shadowoffset when mapping Addr to its
shadow byte. We also set all the shadow bytes to zero when
poisoning redzones, preserving the operations but disabling
all the errors. This way, we simulate the execution with a 4KB
shadow memory. Table 6 in the Appendix shows the results
averaged on 30 runs. The results match the observation in [24].
Using a 4-KB shadow memory can reduce about 28.6% of



the page faults, bringing the overhead of ASan from 107%
down to 95.5%.

4 Debloating ASan

To reduce the overhead of ASan, one strategy is to shrink the
shadow memory [24]. It has demonstrated effectiveness but
still leaves behind high overhead (95.5% per our study). To
further cut down ASan overhead, an orthogonal, promising
strategy is to remove sanitizer checks [16, 46, 49, 55], since
they constitute the primary source of overhead.

When removing ASan checks, a desirable principle is to
maintain the decent characteristics of ASan, instead of sac-
rificing them for better efficiency. The principle can break
down into the following properties.

• Capability: ASan offers the capability of detecting most
cases of both spatial and temporal memory errors. Removal
of checks should not reduce the detecting capability. For-
mally, the removal of a check should only proceed after it is
proven safe to do so.

• Scalability: ASan can scale to support large-size programs
like Chromium and Firefox browsers, enabling high practi-
cality and broad adoption. Preferably, the removal of checks
should not degrade the scalability of ASan.

• Usability: ASan has been integrated into mainstream com-
pilers like LLVM and GCC. Enabling ASan simply requires
a compiler flag (e.g., -fsanitize=address on LLVM).
Hurting this high usability will hinder the adoption of ASan.

In this work, we assemble a set of techniques satisfying the
three properties to reduce (or “debloat”) ASan checks, with
a focus on the ASan in LLVM. Our contribution to different
techniques varies, which is indicated by the number of G.
Three G mean that we are the first ones proposing, designing,
and implementing the technique. In contrast, two G indicate
that others have informally mentioned the technique while
we deepen, design, and implement the technique. Finally, a
single G suggests that the technique has been explored, and
we implement the technique in LLVM or improve the existing
implementation. Our efforts on the single G techniques are
less scientific but are deemed necessary as they will enable
an understanding of the overall improvement by all the tech-
niques. In the rest of this section, we elaborate on the designs
of our techniques. Properties of the techniques are described
and validated in Append A, due to the limited space.

4.1 Removing Unsatisfiable Checks G

The first technique focuses on removing ASan checks on glob-
al/stack access. The key insight is to remove checks where
the error condition can never be satisfied. Below shows such
an example on the stack (code in red is inserted by ASan).

1 int foo(){
2 char buf[20];
3 unsigned int i = 10;
4 i++;//i = 11
5 ASan(buf+i);//ASan check 1; unsatisfiable
6 buf[i] = 0;
7 }

The access to buf, an array on the stack, has a constant
index of 11, which cannot overflow. Thus, no ASan check is
needed there. Formally, given an array buf of N bytes on the
stack or in the global, a K-byte access buf[offset] needs
no ASan check if on any execution path:

Condition-1: offset ≥ 0 && N - offset ≥ K

Past research has discussed similar issues several times and
has explored various solutions [13, 18, 19, 39, 46] to identify
stack/global accesses that meet the above condition. A system-
atic approach [52] is to symbolically interpret the execution
paths reaching a target access and verify whether every path
satisfies the condition. However, the approach may not scale
as it involves complex constraint solving.

Our Choice We opt to adopt a lightweight analysis shipped
with LLVM (disabled by default). The analysis focuses on
direct stack/global accesses whose target object is propagated
from an alloca instruction or a global object. Given a direct
stack/global access, the analysis backward traces whether the
index propagates from constants. Consider buf[i] at Line 6
in the above code as an example. It traces i backward from
Line 6 to Line 4 where it represents i@L6 as i@L4 + 1, fol-
lowed by another step jumping to Line 3 to further represent
i@L4 + 1 as 10 + 1. This way, it learns the constant value,
11, of i at Line 6 and can compare i with the array size. The
backward tracing stops wherever uncertainty appears (e.g., an
intermediate value is loaded from memory or a store happens
to an intermediate value) and returns an unknown result, thus
offering soundness.

We slightly extend the above analysis. When backward
tracing the index of an access, we concurrently collect com-
parisons that dominate the access and operate between the
index and a constant. Doing so enables us to accumulate loose
boundaries of the index and compare the index with the ob-
ject size even the index is not a constant. Our extension helps
identify removable accesses like the one below. Our extension
inherits the soundness from the basic version. Further, when-
ever there is a store on the index, we abandon the comparisons
affected by the store.

1 int foo(){
2 char buf[20];
3 unsigned int i = input();//i is not a constant
4 if(i < = 10) //the comparison will be captured
5 ASan(buf+i);//ASan check 1; still unsatisfiable
6 buf[i] = 0;
7 }



Algorithm 1: IDENTIFYING RECURRING ASAN CHECKS.

1 Procedure find_mem_group(Mgrp, m):
/* Find the group m belongs to */

2 for mi in Mgrp do
3 for m j in Mgrp[mi] do
4 if m == m j || must_alias(m,m j) then
5 return mi;
6 end
7 end
8 end
9 return NULL;

10 Algorithm
Input :A function F
Output :Recurring ASan checks ~Rc = {C1,C2...,Cn}

11 Initialization: ~Rc = /0; Mgrp = dict();
/* Mgrp is a dictionary where the key is a

unique memory location and the value is a
list of memory accesses to that location */

12 for each memory access mi in F do
13 m j = f ind_mem_group(Mgrp, mi);
14 if m j == NULL then
15 Mgrp[mi] = list();
16 m j = mi;
17 end
18 Mgrp[m j].add(mi);
19 end
20 for m in Mgrp do
21 for mi in Mgrp[m] do
22 for m j in Mgrp[m] do
23 if mi 6= m j && dominate(mi,m j) &&

sizeo f (mi)≥ sizeo f (m j) then
24 ~Rc.add(ASan(m j));
25 Mgrp[m].remove(m j)

26 end
27 end
28 end
29 for mi in Mgrp[m] do
30 for m j in Mgrp[m] do
31 if mi 6= m j && post_dominate(mi,m j)

&& sizeo f (mi)≥ sizeo f (m j) then
32 ~Rc.add(ASan(m j));
33 Mgrp[m].remove(m j)

34 end
35 end
36 end
37 end
38 return ~Rc;

4.2 Removing Recurring Checks GG

The second technique aims to remove recurring checks or
checks guaranteed to have been done. The code below is an
example of recurring checks.

1 int ∗p;
2 ASan(p); //ASan check 1

3 if(∗p == 0){
4 ASan(p); //ASan check 2 (a recurring check)
5 ∗p = 1;
6 }

In the example, ASan places two checks on the dereferences
at Line 1 and Line 3. However, the two dereferences access
the same location with the same size, meaning that the check
at Line 4 is a replica of that at Line 2 and thus, can be re-
moved. Past research [42] has demoed recurring checks but
did not provide full solutions. We first formalize recurring
checks. Given two ASan checks, denoted as ASan(ptr1)
and ASan(ptr2), on memory accesses *ptr1 and *ptr2.
ASan(ptr2) is a recurring check of ASan(ptr1) if:

Condition-2:
(ptr1 == ptr2 || alias(ptr1, ptr2)) &&
sizeof(*ptr1) ≥ sizeof(*ptr2) &&
(dominate(*ptr1,*ptr2) ||
post-dominate(*ptr1,*ptr2));

Following the above formalization, Algorithm 1 is designed
to identify recurring ASan checks in individual functions. The
first step aggregates memory accesses to the same location
into one group (Line 12-19). When determining whether
two memory accesses have the same location, aliases are also
considered but in a sound way. Specifically, we reuse the basic,
flow-insensitive alias analysis in LLVM and only accept the
must-alias results. The internal algorithm of LLVM ensures
that two memory objects with must-alias results always start
at exactly the same location [3], protecting the safety of our
optimization. The second step processes each memory group
separately. Given a group, the algorithm inspects each pair of
memory accesses therein and identifies recurring ASan checks
according to the above conditions (Line 20-37). In this step,
we reuse the analysis offered by LLVM to understand the
domination/post-domination relation [4]
Discussion: The soundness of Algorithm 1 can fail in certain
cases. For instance, *ptr1 dominates *ptr2 and satisfies
the above condition. Thus, the ASan check on ptr2 will be
removed. However, if the memory is freed between *ptr1
and *ptr2, *ptr2 will be use-after-free, and we will miss
it. We use a conservative approach to avoid such issues: we
skip the removing if any function call exists on any execution
path from *ptr1 to *ptr2. We do not do this if *ptr1 post-
dominate *ptr2 as *ptr1 shall always execute after *ptr2.

4.3 Optimizing Neighbor Checks GGG

This technique explores optimizing ASan checks on neigh-
boring memory accesses. Code below illustrates the ideas.

1 struct{
2 int a; int b; int c;
3 }test;
4 int foo(){
5 struct test ∗ptr1, ∗ptr2;
6 ASan(ptr1->a); //ASan check 1



7 ∗ptr1−>a = 1;
8 ASan(ptr1->b); //ASan check 2; can be merged into

ASan check 1
9 ∗ptr1−>b = 2;

10 ASan(ptr2->a); //ASan check 3
11 ∗ptr2−>a = 1;
12 ASan(ptr2->b); //ASan check 4; can be removed
13 ∗ptr2−>b = 2;
14 ASan(ptr2->c); //ASan check 5
15 ∗ptr2−>c = 3;
16 }

In the above code, ASan places a check on each access in
Line 7-15. The checks can be optimized in two ways.

First, ptr1->a and ptr1->b are neighbors in memory, and
they fall into an 8-byte region, mapping to at most two shadow
bytes.This enables merging the two checks on ptr1->a and
ptr1->b into a single check of the following form.

1 short ∗Shadow //2 bytes
2 Shadow = (ptr1−>a >> 3) + Offset;
3 if (∗Shadow != 0){//load and check shadow bytes for

both ptr1−>a and ptr1−>b in a single operation
4 //slow path
5 second_chk(ptr1−>a);
6 //check whether ptr1−>a is addressable
7 second_chk(ptr1−>b);
8 //check whether ptr1−>b is addressable
9 }

Since the majority of the accesses should be error-free, the
check will likely exit at line 3 instead of routing to the slow
path. Therefore, the efficiency of the check should approxi-
mate a single ASan check. We call the checks on ptr1->a
and ptr1->b mergeable neighbor checks.

Second, ptr2->b locates in the gap between ptr2->a and
ptr2->c, and the gap is 4 bytes in size. If ptr2->b is in a
redzone, then at least one of ptr2->a and ptr2->c must also
be in the redzone (maybe partially) since a redzone has at
least 16 bytes. As such, any error on ptr2->b will always be
captured by the checks on ptr2->a (Line 14) and ptr2->c
(Line 18). Thus, the check on ptr2->b (Line 16) can be
removed. We call such cases removable neighbor checks.

Merging Neighbor Checks Formally, given two memory
accesses *ptr1 and *ptr2, ASAN(ptr2) can be merged to
ASAN(ptr1) if

Given:
base1 = base(ptr1); base2 = base(ptr2);
/*base(p) gets the base address of the object that
p points to*/
offset1 = offset(ptr1); offset2 = offset(ptr2);
/*offset(p) gets the offset of p in the object*/
offset2 > offset1;
MaxBitRead = the maximal number of bits a single
memory-read can load;

Then Condition-3:
base1 == base2 &&

RoundUpTo(offset2 - offset1 + sizeof(*ptr2), 8)
<= MaxBitRead &&
(dominate(*ptr1,*ptr2) &&
post-dominate(*ptr2,*ptr1)) ||
(dominate(*ptr2, *ptr1) &&
post-dominate(*ptr1, *ptr2))

At the high level, the condition ensures that (i) ASan(ptr1)
and ASan(ptr2) either both happen or both not happen
and (ii) the shadow bytes for the region between the first
byte of *ptr1 and the last byte of *ptr2 can be loaded
in one memory-read. These ensure that ASan(ptr1) and
ASan(ptr2) can be merged to the above form, after adjust-
ing the type of Shadow based on the number of shadow bytes.

We use an intra-procedural analysis to locate mergeable
neighbor checks. Given function F, memory accesses therein
are grouped based on their base addresses and sorted by their
offsets. The challenge here is to identify the base address and
offset of a given access. In LLVM IR, a memory access is
either a load or a store, and the address can be extracted.
We backward trace the propagation of the address until a
getelementptr instruction [5], where the base address and
the offset can be separately obtained. In the backward tracing,
we only allow bitcast instructions because other instruc-
tions may change the address. A getelementptr instruction
often includes multiple-dimensional offsets, all following the
format of constants or variables. If all the offsets are constants,
we flatten them into a single one based on the scale of each
dimension. Otherwise, we mark the offset unknown.

Given a group of memory accesses with the same base ad-
dress (denoted ~M = {m1,m2...,mn}), all the mergeable pairs
are gathered and then reorganized as ~mi→{mi1,mi2...,mini}
(1≤ i≤ n), meaning that the checks on mi1,mi2...,mini can be
merged to the check on ~mi. Algorithm 2, a greedy algorithm,
is then used to pick pairs to merge. The algorithm, by itself,
is straightforward to understand, but its properties are worth
mentioning. First, the algorithm prioritizes the handling of ~mi
with a larger size, potentially helping identify more mergeable
pairs. Second, the algorithm supports recursive merging. For
instance, after mi is merged to m j, m j can be later merged to
mk, if mi can also be merged to mk.

For a pair of mergeable memory accesses (m1,m2), where
ASan(m2) can be merged to ASan(m1), a new check will
be created and inserted under the post-dominating access.
Both the original checks will be removed. All checks that are
previously merged to m2 will be migrated to the new check.

Removing Neighbor Checks Removable neighbor checks
can be formalized as follows. Given three memory accesses
*ptr1, *ptr2, and *ptr3, ASAN(ptr2) can be removed if
Given:
base1 = base(ptr1); base2 = base(ptr2);
base3 = base(ptr3;)
off1 = offset(ptr1); off2 = offset(ptr2);
off3 = offset(ptr3);



Algorithm 2: PICKING MERGEABLE NEIGHBOR CHECKS.
Input :A list of mergeable relations:

~Mr = { ~m1, ~m2, ... ~mn}
/* ~mi = {mi1,mi2...,mini} (1≤ i≤ n) represents the list

of memory accesses that can be merged to ~mi */
Output :A list of mergeable memory access pairs

~P = {(mi1,m j1),(mi2,m j2)...,(mik,m jk)}
1 Initialization: ~P = /0;
2 ~Mr = sorted( ~Mr);

/* sort by |~mi| (1≤ i≤ n) in descending order */
3 for each list ~mi in ~Mr do
4 for each member m in ~mi do
5 if ~Mr.merged_to_others(m) then

/* m has merged to another memory
access */

6 Continue;
/* avoid repeated merging */

7 end
8 ~tmp = ~Mr. f ind_merged_by(m);

/* find accesses that are merged to m */
9 if ~tmp 6⊂ ~mi then

10 Continue; /* not all accesses merged to
m can be merged to mi, skip */

11 end
12 ~P.add(mi, m);

/* merge m to mi */
13 end
14 end
15 return ~P;

off1 < off2 < off3;
size1 = sizeof(*ptr1); size2 = sizeof(*ptr2);
size3 = sizeof(*ptr3);
MinRdSz = the minimal size of a redzone;

Then Condition-4:
base1 == base2 == base3 && off3 - off1 < MinRdSz
&& off2 + size2 ≤ off3 + size3 &&
(dominate(*ptr1, *ptr2) ||
post-dominate(*ptr1, *ptr2)) &&
(dominate(*ptr3, *ptr2) ||
post-dominate(*ptr3, *ptr2))

In essence, the above condition guarantees two properties.
First, ptr2 being in a redzone implies ptr1 and/or ptr2 are
in the same redzone, fully or partially. Second, ASAN(ptr2)
being reached means both ASAN(ptr1) and ASAN(ptr3) are
reached. As such, if the condition holds, any errors on *ptr2
will be captured by ASAN(ptr1) or ASAN(ptr3). Thus, it is
safe to remove ASAN(ptr2).

We also use an intra-procedural analysis to collect remov-
able neighbor checks. Memory accesses in each function
are first grouped based on their base addresses. From each
group, tuples satisfying Condition-4 are then gathered. The

tuples follow the format of [(mi, m j), mk], meaning that
ASAN(mk) can be removed because it is covered by ASAN(mi)
and ASAN(m j). In the follow-up step, the analysis aggregates
the tuples and produces a removable list for each (mi, m j):

~(mi,m j) = {mi j1,mi j2...,mi jni j}. The final step is to go over
each list and collect removable memory accesses. Simply
including all the members in each list will cause mistakes.
Consider the example where ~(ma,mb) = {mc} and ~(mc,md) =
{me}. After handling ~(ma,mb), we remove mc. If we continue
with ~(mc,md) to remove me, mistakes will arise because mc
has been removed and cannot help cover me. To avoid such
mistakes, after including mi to the removable set, we abandon
all the lists matching ~(mi,∗) and ~(∗,mi). To maximize the
number of removable cases, we sort all the lists based on their
size in descending order and then handle each of them in turn.

4.4 Optimizing Checks in Loops GGG

ASan checks in loops are expensive. According to our study
in §3.2, checks in loops account for 45% of the overhead
introduced by all ASan checks. Modern compilers run many
optimizations to reduce operations in loops, which, however,
still cannot handle many optimizable ASan checks. The code
below shows two types of optimizable ASan checks in loops.

1 char ∗ptr1;
2 char ∗ptr2;
3 for(int index = 0; index < limit; index += 2){
4 ASan(ptr1+index);
5 /∗ASan check 1; can be merged∗/
6 ptr1[index] = getchar();
7 ASan(ptr2);
8 /∗ASan check 2; can be moved out of loop∗/
9 ∗ptr2 = getchar();

10 }

First, ptr2 is dereferenced (Line 9) and ASan-checked
(Line 7) in each loop iteration. However, ptr2 never changes.
Thus, one ASan check on ptr2 out of the loop is sufficient.
The compiler cannot optimize the memory access because it
is a write. We call checks like ASan(ptr2) invariant checks.

Second, ptr1 is accessed (Line 6) with an offset increased
by 2 in each iteration (Line 3). Thus, any two consecutive
accesses to ptr1 are 2-byte apart, and the checks on them
resemble the mergeable neighbor checks we discussed in §4.3
(Condition-3). Merging the checks together will reduce the
cost. Considering that the address of the access (e.g., index at
Line 6) monotonically increases/decreases, we call the check
on it (e.g., Line 6) a monotonic check.

Relocating Invariant Checks Formally, given a memory
access *ptr in a loop, ASan(ptr) is an invariant check if
Condition-5: ptr is a loop invariant

To identify invariant checks, we gather all the loops from a
function then process each loop in turn. Given a loop, each
memory access inside is visited to inspect whether the address



is a loop invariant. If so, we mark the ASan check as an
invariant check. LLVM offers a built-in interface to determine
loop invariant. It is, however, very preliminary. Only when
the address is a value created outside the loop, the interface
considers it a loop variant. This misses invariant addresses
(e.g., an address composed of two other invariant values). We
design a new algorithm, Algorithm 3, to more systematically
identify loop invariant. Due to the space limit, Algorithm 3
is presented in the Appendix. The algorithm backward traces
the generation of an address until outside of the loop. If all the
ingredients involved in generating the address are invariants,
the algorithm reports the address also as an invariant.

To optimize an invariant check, an intuitive idea is to move
the check after the exit of the loop. This works when the
invariant check dominates the loop exit. However, many in-
variant checks are guarded by conditional statements inside
a loop. Their execution is not guaranteed when the loop is
entered. Consider the code below as an example.

1 bool asan_ptr = false;
2 for(condition1){//outer loop
3 for(condition2){//inner loop
4 if(condition3){//guardian condition
5 asan_ptr = true;
6 //original ASan(ptr) is here
7 ∗ptr = getchar(); //ptr is an invariant
8 }
9 }

10 //simply putting ASan(ptr) here is erroneous
11 if(asan_ptr){
12 asan_ptr = false; //if not outermost loop
13 ASan(ptr);
14 }
15 }

At Line 7, ptr is a loop invariant and is dereferenced. An
ASan check on it originally exists at Line 6. The dereference
and the ASan-check are guarded by condition3 at Line 4.
Moving the ASan check to the exit of the loop (Line 10) can
cause mistakes. The dereference and the original ASan check
may not always execute when the loop (Line 3-9) is entered,
while the new check at Line 10 always does. That means we
may introduce checks that should not happen.

To optimize a conditional invariant check, we introduce a
supportive local variable to track whether the memory access
is ever executed. In the code above, asan_ptr is introduced
to trace the execution of Line 8. Asan_ptr is initialized as
false and is set to true at the memory access. At the loop
exit, asan_ptr being true will trigger the relocated ASan
check. Otherwise, the ASan check is skipped. Further, if the
memory access is not in an outermost loop, we reset the local
variable to false at the loop exit (Line 12-15 in the above
code) because, otherwise, the true status will carry over when
the loop is re-entered in the next iteration of the outer loop.
Discussion: The optimization of invariant checks can run into
another problem. The code from an invariant check to the loop
exit can free the memory. A check at the loop exit may, thus,
report false use-after-free. Our backward analysis of invariant

already considers the problem. If any value involved in the
generation of the address is passed to a function, the analysis
marks the address as a variant (see Algorithm 3).

Grouping Monotonic Checks Given a memory access
*ptr in a loop, ASan(ptr) is a monotonic check if
Condition-6: ptr in any two consecutive iterations
has a constant distance.

To identify monotonic checks, a systematic approach is
to use the scalar evolution (SCEV) [7], which is an anal-
ysis to represent variables with complicated behavior in a
more straightforward way. In particular, SCEV can repre-
sent monotonically increasing/decreasing loop variables as
add recurrences [11]. An add recurrence has the format of
{Init, +/-, Step} (Step is a constant), meaning that the
variable has an initial value of Init and increases by Step
in an iteration.

Consider ptr1[index] at Line 8 in the code presented at
the beginning of this subsection as an example. The original
ASan check, executed in each loop iteration, is:

1 V = ∗ ((ptr1 + index >> 3) + Offset);
2 if (V != 0 && ((ptr1 + index & 7) + 1 > V))
3 ReportAndCrash(Addr);

In our optimization, we first run SCEV to represent the
address as {Init, +/-, Step} (i.e., {ptr1, +, 2}) and
then confirm that Init (i.e., ptr1) is an invariant. Finally
we replace the ASan check in the loop with a new one of the
following format (the address is represented as Addr):

1 intN ∗Shadow; //hold shadow memory for MinRdSz
application bytes (MinRdSz represents the minimal
size of a redzone); N >= MinRdSz

2 if((Addr − Init) % MinRdSz < Step){
3 Shadow = (Addr >> 3) + Offset;
4 if (∗Shadow != 0) //check the shadow memory for

MinRdSz bytes
5 ASan(Addr);
6 }

At the loop exit, we further insert another piece of code. The
code inspects whether the final Addr differs from Init. If so,
it performs an ASan check on Addr.

The idea of our optimization is to check the shadow mem-
ory of a chunk of MinRdSz bytes at once, using only one
operation. If the shadow memory is all zero, we skip the
checks on follow-up access to the same chunk. Otherwise a
regular ASan check is performed. This way we group multiple
checks into one. The number of checks grouped depends on
Step (MinRdSz/Step checks will be grouped into one). By
default, the maximal Step we allow is MinRdSz/4.
Discussion: A memory access may cross the boundary of
a MinRdSz chunk, but its beginning address does not meet
the condition of Line 6. Thus, we will miss checking the
second half of the access. This is OK as the second half will
be checked in the next chunk thanks to the alignment in the
mapping to shadow memory.



Table 1: Detection capability of ASan and ASan-- on the
Juliet Test Suite. Good tests measure false positives. Bad tests
measure false negatives. ASan and ASan-- achieve identical
results shown in this table.

CWD (number) Good Test Bad Test
(Pass/Total) (Pass/Toal)

Stack-based Buffer Overflow (121) 2348/2348 2111/2348
Heap-based Buffer Overflow (122) 1677/1677 1595/1677
Buffer Under-write (124) 584/584 571/584
Buffer Over-read (126) 445/445 420/445
Buffer Under-read (127) 590/590 565/590
Total 5644/5644 5262/5644

5 Implementation and Evaluation

We have implemented the optimization techniques in a tool
called ASan--. ASan-- is built on top LLVM-4.0, with around
2.5K lines of C++ added. We have ported a preliminary ver-
sion of ASan-- to LLVM-12.0. ASan-- on both LLVM-4.0 and
LLVM-12.0 is publicly available at https://github.com/
junxzm1990/ASAN--.git. The use of ASan-- is identical to
ASan. The optimizations are enabled by default but can be
disabled through a customized environment variable. The rest
of this section presents our evaluation of ASan--, centering
around three questions:
• Can ASan-- maintain the capability, scalability, and usabil-

ity of ASan?
• Can ASan-- reduce the runtime overhead of ASan?
• Can ASan-- benefit the applications of ASan?

5.1 Capability, Scalability, and Usability
Capability To measure the detection capability of ASan--,
we run two experiments. In the first experiment, we run both
ASan-- and ASan on the memory errors from the Juliet Test
Suite (version 1.3) [40]. As shown in Table 1, ASan-- and
ASan achieve identical results on both good and bad tests. For
comparison, we further run SANRAZOR and ASAP on the
Juliet Test Suite. SANRAZOR failed to run because of an error
in the profiling component. The error has been confirmed by
the developers and is pending fix. ASAP runs with LLVM-3.7
which does not support continuous execution at ASan errors.
Thus, ASAP could not finish the test as Juliet triggers all the
bugs in a single execution. To address this issue, we extend
LLVM-3.7 to avoid halting at ASan errors. When running
ASAP, we use the good tests of Juliet for profiling and the
bad tests for evaluation. Further, we configure ASAP to use
ASan--’s overhead as the performance budget (i.e., setting the
cost level to 51.6%). At the end, we successfully run ASAP
on 1,524 Juliet bugs. ASAP detects 985 of them, missing
about 35% of the bugs. This shows that ASan-- detects more
bugs than ASAP when presenting similar performance.

In the second experiment, we collect vulnerabilities from
the Linux Flaw Project [34]. After visiting all the vulner-
abilities in the database, we reproduce 34 of them, includ-
ing 23 used in the evaluation of SANRAZOR [55]. Details

Table 2: Detection capability of ASan and ASan-- on vulner-
abilities from the Linux Flaw project. The first 23 cases are
also used in the measurement of SANRAZOR [55]. The cases
highlighted are missed by SANRAZOR in L1 and L2 modes.

Software CVE Type ASan ASan-- SANRAZOR

LAME CVE-2015-9101 heap-buffer-overflow X X X
LIBTIFF CVE-2016-10095 stack-buffer-overflow X X X
LIBTIFF CVE-2016-10270 heap-buffer-overflow X X X
LIBTIFF CVE-2016-10271 heap-buffer-overflow X X X
ZZIPLIB CVE-2017-5976 heap-use-after-free X X X
ZZIPLIB CVE-2017-5977 heap-use-after-free X X X
POTRACE CVE-2017-7263 heap-buffer-overflow X X X
AUTOTRACE 2017-9167∼9173 heap-buffer-overflow X X X
AUTOTRACE 2017-9164∼9166 heap-buffer-overflow X X X
LIBZIP CVE-2017-12858 heap-use-after-free X X �
G.MAGICK CVE-2017-12937 heap-use-after-free X X X
MP3GAIN CVE-2017-14406 null-pointer-dereference X X �
MP3GAIN CVE-2017-14407 stack-buffer-overflow X X X
MP3GAIN CVE-2017-14408 stack-buffer-overflow X X X
MP3GAIN CVE-2017-14409 global-buffer-overflow X X X

PROFTPD CVE-2006-6563 heap-buffer-overflow X X -
CTORRENT CVE-2009-1759 stack-overflow X X -
LIBTIFF CVE-2009-2285 heap-buffer-overflow X X -
LIBTIFF CVE-2010-2481 out-of-order X X -
LIBTIFF CVE-2010-2482 null-pointer-dereference X X -
LIBTIFF CVE-2013-4243 heap-buffer-overflow X X -
POPPLER CVE-2013-4473 stack-smashing X X -
POPPLER CVE-2013-4474 stack-buffer-overflow X X -
PYTHON CVE-2014-1912 heap-buffer-overflow X X -
LIBTIFF CVE-2015-8668 heap-buffer-overflow X X -
BINUTILS CVE-2018-9138 stack-overflow X X -

of the vulnerabilities are presented in Table 2. Both ASan--
and ASan can detect all the 34 vulnerabilities. In contrast,
SANRAZOR, removing ASan checks based on static/dynamic
patterns, misses two vulnerabilities (CVE-2017-12858 and
CVE-2017-14406). The experiment demonstrates the sound-
ness of ASan-- and also its advantages over SANRAZOR.

Scalability ASan-- introduces extra analyses to ASan. Al-
though the analyses are not complex, they may still affect the
scalability of ASan. To this end, we apply ASan-- to SPEC
CPU2006 and Chromium (58.0.3003.0). Chromium and many
programs in CPU2006 (e.g., perl and gcc) should be large
enough to stress test the scalability. ASan-- can successfully
compile and build CPU2006 and Chromium. The binaries can
pass all the benchmark tests (see §5.2). We have also been
using the Chromium built with ASan-- for four weeks and
have not encountered major issues (see §5.3).

We also measure the time cost of compilation. We believe
it is also scalability-related since extremely high compilation
time will make the tool impractical for large programs. Ta-
ble 7 shows the results. On average, ASan-- increases the
compilation time by 1x+, but the overall compilation time
should still be acceptable. Precisely, ASan-- can finish the
compilation of most programs in seconds or minutes. Even in
the case of Chromium, ASan-- only needs several hours. The
length of the time is tolerable in practice.

Usability ASan-- is implemented to share the same as-
sumption, same requirement, and same interfaces with ASan.
Usage-wise, it is identical to ASan. ASan-- also helps reduce
the binary size because it removes many checks. On average,
ASan-- can shrink the binary size by 20.4% (see Table 7 in
Appendix), which helps improve the usability of ASan, in
particular in contexts where the storage space is limited.

https://github.com/junxzm1990/ASAN--.git
https://github.com/junxzm1990/ASAN--.git
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Figure 4: Runtime overhead on CPU2006. “ASAN” shows the overhead of stock ASan. From left to right, the other bars show the
overhead after we enable the corresponding optimization in ASan--, one after another.

Table 3: Performance comparison with SANRAZOR. The
Average data in this table differs from Figure 3 and Figure 4
because only 11 programs from SPEC CPU2006 are included.

Benchmark Performance Overhead
ASan SanRazor_L0 SanRazor_L1 SanRazor_L2 ASan--

401.bzip2 81.90% 58.55% 45.06% 50.76% 49.39%
429.mcf 54.10% 35.11% 9.03% 2.67% 26.30%
445.gobmk 76.90% 62.81% 47.57% 30.65% 44.83%
456.hmmer 179.0% 133.8% 37.38% 39.52% 110.5%
458.sjeng 102.0% 105.3% 86.77% 97.74% 62.54%
462.libquantum 108.0% 48.31% 53.51% 58.96% 52.05%
433.milc 89.10% 44.97% 30.19% 43.25% 49.72%
444.namd 86.10% 41.92% 34.19% 26.00% 39.22%
453.povray 101.0% 64.81% 54.94% 50.62% 45.95%
470.lbm 62.40% 31.23% 6.62% 18.61% 33.08%
482.sphinx3 103.0% 80.57% 43.59% 50.19% 68.21%
Average 94.86% 64.31% 40.81% 42.63% 52.89%

5.2 Runtime Overhead
SPEC CPU2006 We run both ASan-- and ASan on SPEC
CPU2006, using the reference workload as testing data. In
the experiment, both SANRAZOR [54] and FuZZan [24] are
included as baselines. Following the paper presenting SAN-
RAZOR [55], we perform the profiling for SANRAZOR using
the training workload and measure its performance using the
reference workload. Currently, the public version of SAN-
RAZOR only supports 11 programs of CPU2006, as listed in
Table 3. FuZZan offers different heap sizes (1G, 4G, 8G, and
16G). For each program, we start with the minimal heap and
increase it until the test can succeed. In total, FuZZan can run
10 programs of CPU2006, as shown in Table 9. All the tests
are repeated 30 times, and average results are collected.

Figure 4 compares the overhead of ASan and ASan--. On
average, ASan-- reduces the overhead of ASan from 107.8%
to 63.3%, producing a reduction rate of 41.7%. Only con-
sidering the overhead of ASan checks, the reduction rate is
51.6%. Figure 4 also unveils that every of our optimizations
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Figure 5: Runtime overhead on Chromium. The bars follow
the same setting as Figure 4.

contributes. The amount of overhead reduced by most opti-
mizations is over 5%. In particular, removing recurring checks
reduces an overhead of 16.7%. We further measure the num-
ber of ASan checks reduced by ASan--. The results, shown in
Table 8, are consistent with ASan--’s impacts on the overhead.
Averagely, ASan-- removes 38.7% of the ASan checks and
every optimization brings a meaningful contribution.

Table 3 presents the comparison between ASan-- and SAN-
RAZOR. Both ASan-- and SANRAZOR can bring the overhead
down. When SANRAZOR runs in L1 and L2 modes, it more
aggressively removes ASan checks. Thus, it incurs less over-
head (40.81% and 42.63%) than ASan-- (52.89%). However,
the two modes can miss detecting memory errors, such as the
two reported in Table 2. In contrast, when SANRAZOR runs in
the more conservative L0 mode, it removes fewer checks and
brings an overhead higher than ASan-- (64.31% v.s. 52.89%),
although it still cannot offer the soundness of ASan--.

Table 9 in the Appendix shows the improvement of FuZZan
to ASan. Regardless of which program and what heap size we
test, FuZZan does not bring evident improvement to ASan. In
summary, ASan-- and FuZZan provide similar bug detection
but ASan-- is more scalable and runs faster.



Table 4: Results of fuzzing evaluation. All the numbers are increase rates using ASan as the baseline.

Benchmark
Branch Coverage Increase Total Execution Increase

FuZZan ASan-- FuZZan +ASan-- FuZZan ASan-- FuZZan +ASan--
AFL_Seeds FuZZan_Seeds AFL_Seeds FuZZan_Seeds AFL_Seeds FuZZan_Seeds AFL_Seeds FuZZan_Seeds AFL_Seeds FuZZan_Seeds AFL_Seeds FuZZan_Seeds

OBJDUMP 3.94% 4.33% 3.41% 2.14% 11.30% 10.1% 27.5% 18.6% 25.1% 14.4% 40.3% 37.9%
SIZE 2.81% 3.05% 3.56% 7.42% 9.89% 10.3% 54.2% 48.5% 60.7% 61.9% 79.9% 79.7%
C++FILT 4.24% 3.49% 3.94% 2.15% 8.12% 9.07% 45.9% 39.6% 34.9% 33.2% 71.0% 61.1%
NM 3.67% 2.79% 5.91% 5.69% 6.79% 7.21% 74.6% 52.2% 62.2% 61.4% 86.4% 78.9%
TCPDUMP 17.4% 20.7% 5.82% 5.69% 7.96% 8.37% 63.1% 83.4% 35.8% 34.8% 42.2% 54.2%
PNGFIX 6.01% 3.18% 6.58% 7.48% 10.30% 11.2% 67.5% 55.1% 58.5% 60.5% 75.1% 77.4%
FILE 5.62% 8.56% 5.90% 5.34% 8.60% 11.9% 18.7% 22.4% 17.1% 12.1% 20.9% 25.7%
Average 6.24% 6.58% 5.02% 5.13% 8.99% 9.73% 50.2% 45.7% 42.1% 39.8% 59.4% 59.3%

An Extension: Considering that SPEC CPU2006 was years
old, we repeated the evaluation of ASan-- on the new version
of CPU2017 [2]. CPU2017 includes two modes, SPECrate
and SPECspeed, to separately measure time-based perfor-
mance and throughput performance. Due to issues of com-
piler compatibility, we could only run 10 SPECrate programs
and 5 SPECspeed programs SPECspeed. The results, summa-
rized in Table 11 in the Appendix, show that ASan-- similarly
benefits CPU2017. The reduction rates of overhead are 40.6%
and 39.1% respectively on SPECrate and SPECspeed.

Chromium In this experiment, we measure the perfor-
mance of Chromium under ASan and ASan--. Six popu-
lar web-browser benchmarks are used, including both Time-
based ones (Sunspider [9], Kraken [33], Lite Brite [32])
and Score-based ones (Octane [21], Basemark [12], WebX-
PRT [41]). We repeat the experiment 30 times and report the
average results in Figure 5. Other tools were omitted as they
could not run Chromium. On average, ASan-- reduces the
overhead of ASan from 117.8% to 75.8%, presenting a reduc-
tion rate of 35.7%. If only counting the overhead of ASan
checks, the reduction rate is 69.6%. Considering the scale of
Chromium, such reduction rates are meaningful in general.

5.3 Applications

Fuzzing One of the most popular applications of ASan is
to help bug detection in fuzzing. Our evaluation of this ap-
plication focuses on how much ASan-- can improve the effi-
ciency of ASan-enhanced fuzzing. We also include FuZZan
(https://github.com/HexHive/FuZZan) as a baseline. To
properly compare with FuZZan, we consider AFL-2.52b as
the fuzzing tool and reuse the configurations presented in [24]
(see Table 10 in the Appendix). For consistency, we run all the
tests on Amazon EC2 instances with Intel XeonE5 Broadwell
16 cores, 64GB RAM, and Ubuntu 18.04 LTS. To avoid in-
terference, different tests are run separately for 24 hours. All
the tests are repeated 10 times with average results gathered.
We also perform the evaluation twice, separately using seeds
shipped with AFL and seeds shipped with FuZZan.

Table 4 shows the evaluation results. On average, ASan--
increases the execution speed of AFL by 42.1% and 39.8%, on
AFL’s seeds and FuZZan’s seeds, respectively. The increase
of execution speed leads to a growth rate of 5.0% and 5.1% in
branch coverage. In comparison to FuZZan, ASan-- presents
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Figure 6: Increase of branch coverage brought by ASan-- with
ASan as the baseline. 1/2/4 instance represents fuzzing with
one sanitized instance and 0/1/3 non-sanitized instances.
a comparable, but slightly smaller, improvement. Execution
speed wise, FuZZan brings an increase of 50.2% and 45.7%,
given AFL’s seeds and FuZZan’s seeds. Branch coverage
wise, FuZZan brings a growth of 6.24% and 6.58%, depending
on the seeds. The results are understandable, because FuZZan
is tailored for fuzzing while ASan-- is more general.

As we pointed out in §3, ASan-- and FuZZan use orthog-
onal techniques. By intuition, combining techniques of both
tools can produce better improvement. We, thus, migrate FuZ-
Zan’s approach of reducing memory into ASan--. We limit the
heap size to 16GB and relocate the heap plus stack [26] to be
below the shadow memory. This way, we shrink the address
space to 19GB (16GB heap + 1GB stack + 2GB BSS/DATA/-
TEXT) and shadow memory to 19/8GB. Similar to FuZZan,
we also disable the logging and relocate the poisoning of
global data to run before AFL’s fork server. As shown in
Table 4, combining ASan-- and FuZZan outperforms both
tools alone. It increases the execution speed of AFL by 59.4%
and 59.3% on AFL’s seeds and FuZZan’s seeds. This leads
to 8.99% and 9.73% more branch coverage. An outlier is
tcpdump, where FuZZan runs the fastest. The primary reason
is FuZZan also uses a red-black-tree based check to replace
ASan check in certain cases, bringing extra optimization.

Our evaluation above runs only one fuzzing instance. In
practice, we often need to run multiple instances in paral-
lel and the community suggests using only one sanitized
instance [8]. By intuition, the improvement of ASan-- will
decrease with the number of non-sanitized instances. Accord-
ingly, we perform an extra experiment where we increase the
number of non-sanitized instances from 0 to 1 and 3, using
AFL’s seeds. Figure 6 shows the results. Not surprisingly, the
improvement of ASan-- reduces when more non-sanitized in-

https://github.com/HexHive/FuZZan


stances run. Nonetheless, ASan-- consistently benefits ASan.

Selective Deployment In general, ASan-- can still be con-
sidered unsuitable for deployed software because of its re-
maining runtime overhead and high memory cost. However,
modern computers usually provide high computation power
and large memory. Thus, it makes sense to selectively run
ASan-- on critical deployed software (e.g., web browsers).
Accordingly, we have been using the Chromium browser
compiled with ASan-- for four weeks in our daily work. None
of us experienced usability issues or significant slowdown.

To test ASan--’s capability of bug detection in the de-
ployed environment, we collected 89 memory bugs from
bugs.chromium.org and the CVE database. Replaying the
bugs in the Chromium (same version as ours) pre-built with
ASan by Google, we reproduced 4 bugs as listed in Table 5.
Running the bugs in our Chromium, ASan-- detected all of
them. We also tested the bugs with SANRAZOR and ASAP.
However, both tools could not run Chromium. Alternatively,
we performed static reasoning and observed that SANRAZOR
and ASAP may miss 1 and 3 of the bugs (see Appendix C).

6 Related Work

6.1 Memory Error Detection

Spatial Error Detectors StackGuard [48] and P-SSP [50]
insert random values before the return address and detect
whether the random value is overwritten before the func-
tion returns. They introduce nearly zero runtime overhead
but could only detect stack buffer overflows. Safe-C [10],
CCured [37], SoftBound [36], Low-fat Pointers [27], and Gre-
gory Jet al. [17] encode pointers with boundary information.
At runtime, the information is used to check if memory ac-
cesses are within the boundaries. They can detect various spa-
tial errors, but they have many problems (e.g., high runtime
overhead and ABI incompatibility) that hinder their adoption.
Temporal Error Detectors DangNull [28], FreeSen-
try [53], and DangSan [47] keep track of pointers of allo-
cated objects and invalidate pointers once the object is freed.
CETS [35] maintains a unique identifier with each object and
assigns a corresponding key to its pointers. When the object is
freed, the lock is reset. Any access after free can be detected
by checking if the key encoded in the pointer matches the lock
of the object. Undangle [14] taints pointers at the malloc site
and propagates the pointers dynamically. It detects temporal
errors by checking if the source of a pointer has been freed.
These methods usually have high runtime overhead.
Sanitizers ASan [42] and memory sanitizer (MSan) [44]
use shadow memory to record the sanity of application mem-
ory. They further place checks on memory accesses to inspect
the shadow bytes and detect errors at runtime. ASan can de-
tect both spatial ones and temporal ones. MSan complements
ASan to detect uninitialized memory read. Compared to other

memory error detectors, ASan and MSan offer better detec-
tion, higher efficiency, and broader generality.

6.2 Address Sanitizer Optimization
Reducing Address Space Techniques in the line reduce
the address space used by the application and the shadow
memory. This reduces cost of memory management and the
overall overhead. A technique is FuZZan [24]. As we have
discussed FuZZan, we omit the details here. According to
our study in 3, using the approach of FuZZan helps reduce
runtime overhead but still cannot handle 90%+ of it.

Reducing Sanitizer Checks Techniques in this category
adopt various strategies to reduce sanitizer checks. ASAP [49],
PartiSan [29], and Bunshin [51] enforce sanitizer checks to a
subset of the code. ASAP profiles the program to identify “hot”
code that is more often executed. It removes checks in the
hot code and retains the remaining. As such, fewer, cheaper
checks are inserted. PartiSan creates different versions of the
same code segment, making some versions more sanitized
and the others less. At runtime, PartiSan adjusts the versions
per the performance budget. Both ASAP and PartiSan are
performance-driven, thus missing memory errors. In contrast,
Bunshin runs multiple variants of the same software. It dis-
tributes the sanitizer checks into different variants. Bunshin
does not lose checks, but it incurs several times more resource
consumption. Similar to ASAP, SANRAZOR [55] also profiles
the program, but the goal is to identify and remove redundant
checks. In principle, SANRAZOR offers higher safety than
ASAP but still no guarantee.

7 Conclusion

This paper first presents a study on dissecting the overhead of
ASan, bringing knowledge about the primary sources of its
overhead. Inspired by the study, the paper develops ASan--,
a tool assembling a set of four optimizations to reduce the
runtime overhead of ASan. Unlike existing techniques that
negatively hurt the capability, scalability, or usability of ASan,
ASan--’s techniques well maintain these decent properties.
Our evaluation shows high utility of ASan--. It can reduce
about 40% and 36% of the overhead introduced by ASan into
SPEC CPU2006 and Chromium. Applying to fuzzing, ASan--
can meaningfully increase the execution speed and benefit the
branch coverage. Deployed in Chromium for daily activities,
ASan-- can detect bugs discovered by the community.
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A Properties of Optimizations and Validation

This section aims to describe the properties of our optimiza-
tions regarding false positives and false negatives, followed
by a validation of the properties. For simplicity, we will sepa-
rately discuss spatial errors and temporal errors.

A.1 Removing Unsatisfiable Checks

This optimization only removes ASan checks. Hence, it will
not introduce false positives. In the following, we focus on
the discussion of false negatives.

Spatial Errors Our optimization ensures that the access
falls into the legitimate range of the target object, thus avoid-
ing false negatives.

Proof by Contradiction: Given a data object buf of N
bytes on the stack or in the global, we assume the ASan
check on a K-byte access buf[offset] is removed but the
access goes out of bound. That means at least one path exists
where offset < 0 || offset+K > N. This conflicts with
Condition-1 presented in §4.1, and, thus, is infeasible.

Temporal Errors Global objects are always alive. As such,
it has no temporal errors. Stack objects can have use-after-
return and use-of-out-scope issues. However, we only target
direct stack access, where allocation of the object can be
identified by LLVM. If the access is either use-after-return
or use-of-out-scope, LLVM will throw a compilation error.
Thus, false negatives are impossible.
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A.2 Removing Recurring Checks
This optimization also only removes ASan checks, so there are
no false positives. Therefore, we again focus on the discussion
of false negatives.

Spatial Errors When removing ASan checks on *ptr1, we
ensure there is another access, *ptr2, to the same memory
location, and *ptr2 exists in any path visiting *ptr1. This
guarantees that any spatial error happening to *ptr1 will
also happen to *ptr2. Thus, the error will be captured by the
check on *ptr2.

Proof by Contradiction: There are two situations of
false negatives. First, *ptr1 incurs a spatial error but *ptr2
does not. That means *ptr1 is in a redzone but *ptr2 is not.
This conflicts with that *ptr1 and *ptr2 are in the same
memory location. Second, *ptr1 is executed but *ptr2 is
not. This conflicts with that *ptr2 exists in any path visiting
*ptr1. In summary, false negatives are impossible.

Temporal Errors False negatives of temporal errors can
only happen when the lifetime of the target memory changes.
Specifically, given that *ptr1 dominates *ptr2 and the check
on *ptr2 is removed, false negative of use-after-free can hap-
pen when the memory is freed between *ptr1 and *ptr2.
This can happen in two scenarios. First, the memory is freed
by the code between *ptr1 and *ptr2 through a heap deal-
location interface. This is impossible because we will avoid
removing the check in such a case (recall §4.2). Second, the
memory is freed by another concurrent thread. This is possi-
ble, but it shall be a race condition issue instead of memory
error, which in principle goes out of ASan’s scope. We also
want to note that, when *ptr1 post-dominates *ptr2 and the
check on *ptr2 is removed, no action is needed. The reason
is that *ptr1 always runs later than *ptr2 and, hence, the
use-after-free will be safely captured.

A.3 Merging Neighbor Checks
To simplify our discussion, we assume that the checks on
*ptr1 and *ptr2 are merged into one by our optimization.

Spatial Errors False positives can never happen because
whenever the merged check indicates an error, the original
ASan checks will be performed again. Next we validate that
false negatives cannot happen neither.

Proof by Contradiction: False negatives can happen
only when *ptr1 and/or *ptr2 fall into a redzone but our
merged check does not capture it. Formally, assuming that
*ptr1 *ptr2 respectively fall into the memory ranges of
[addr_1l, addr_1h] and [addr_2l, addr_2h]. False
negatives mean our merged check does not cover the range
of [addr_1l, addr_2h] (assuming addr_1 < addr_2h).
This will conflict with Condition-3 in §4.3. Condition-3
ensures that our check covers the range [addr_1l,

addr_1l + MaxBitRead] and MaxBitRead > addr_2h -
addr_1l. False negatives are, thus, excluded.

Temporal Errors False positives are impossible. Our opti-
mization ensures that *ptr1 and *ptr2 access the same data
object, and modern heap allocator mandates that an data ob-
ject cannot be partially freed. Thus, whenever use-after-free is
detected, that certainly happens to *ptr1 and/or *ptr2. False
negatives can only happen when the object is freed between
*ptr1 and *ptr2. But this is OK since we always insert the
merged check at the post-dominating access. The free will be
safely captured.

A.4 Removing Neighbor Checks

This optimization again only removes ASan checks, so no
false positives will be introduced. Below we discuss the case
of false negatives. For simplicity, we assume *ptr2 falls
into the range between *ptr1 and *ptr3 and the check on
*ptr2 is removed. Further, we assume (i) *ptr1, *ptr2, and
*ptr3 fall into the memory ranges of [addr_1l, addr_1h],
[addr_2l, addr_2h], and [addr_3l, addr_3h] and (ii)
the location of *ptr1, *ptr2, and *ptr3 ranges from low
memory address to high memory address.

Spatial Errors False negatives are impossible.

Proof by Contradiction: False negatives can only
happen when *ptr2 is in a redzone but both *ptr1 and
*ptr3 are not. That means (addr_2l - addr_1h) +
(addr_2h - addr_2l) + (addr_3l - addr_2h) >=
MinRdSz. This will conflict with Condition-4.

Temporal Errors False negatives of temporal errors are
similar to the optimization of removing recurring checks. To
rule out false negatives, we can reuse the approach applied
to removing recurring checks. We avoid doing so because
*ptr1 and/or *ptr3 post-dominate *ptr2 in nearly every
case and thus, use-after-free is typically captured.

A.5 Relocating Invariant Checks

Spatial Errors Since the address of invariant checks never
changes, no false negative or false positive will be introduced.
Temporal Errors This optimization relocates a check to
be executed later than the original one. Thus, no false neg-
atives will be introduced because a freed object will not be
reallocated. False positives can only happen when the object
is freed in the code between the original access and the loop
exit. This is possible, but our algorithm to identify invariant
address (Algorithm 3) has considered such cases. If the target
is possibly freed inside the loop, we will skill relocating the
ASan check. Note that, similar to removing recurring checks,
this optimization may report false temporal errors caused by
de-allocation in another thread.



Table 5: Memory errors replayed with the deployed Chromium. Both ASan and ASan-- can detect all of them.
Module Type ASan ASan-- Issue (with PoC) Note
PDFium heap-buffer-underflow X X https://bugs.chromium.org/p/chromium/issues/detail?id=1116869 Compiling with pdf_use_skia=true
PDFium heap-buffer-overflow X X https://bugs.chromium.org/p/chromium/issues/detail?id=1099446 Compiling with pdf_use_skia=true
FreeType heap-buffer-overflow X X https://bugs.chromium.org/p/chromium/issues/detail?id=1139963 Linking lib_freetype_harfbuzz
GPU heap-buffer-overflow X X https://bugs.chromium.org/p/chromium/issues/detail?id=848914 Running with —disable-gpu option

A.6 Grouping Monotonic Checks
This optimization only reduces checks, so it will not introduce
false positives. We discuss false negatives in the following.

Spatial Errors Given a chunk of memory ranging from
addr_l to addr_h (addr_h - addr_l < MinRdSz), our
optimization only checks the beginning bytes. False negatives
may happen when the beginning bytes fall out of a redzone
but the remaining bytes fall in. This is possible but will not
bring false negatives. In general, there are two situations. First,
the loop continues iterating and enters the next chunk. In this
case, the beginning bytes of the new chunk will overlap with
the redzone and the error will be detected. Second, the loop
exits without entering the next chunk. In this case, the last
access will touch the redzone and our check at the exit of the
loop will detect the redzone.

Temporal Errors If the object is free when the loop iterate
over the same chunk, false negative can happen. But it can
only happen when the chunk is the last chunk, because other-
wise the free will be detected when the next chunk is accessed.
Similar to spatial errors, such cases shall be captured by our
check at the exit of the loop.

B Other Applications of Optimizations

Our optimizations are designed to improve ASan as it draws
more attention. However, they can also be applied to both
Undefined Behavior Sanitizer (UBSan) [31] and Memory
Sanitizer (MSan) [44]. Specifically, removing unsatisfiable
checks and relocating invariant checks can be directly applied
to UBSan. In fact, removing unsatisfiable checks has been
applied on UBSan before and presented promising results [15,
30]. Removing recurring checks is also applicable, and it can
be even further extended by defining recurring checks on non-
memory objects (e.g., integers). Other optimizations may not
be applied as UBSan uses no shadow memory.

All our optimizations, except removing neighbor checks,
are applicable to MSan. Removing neighbor checks cannot
be applied because MSan uses no redzones. When applied to
MSan, our optimizations need the following customization:
• Removing unsatisfiable checks: In the context of MSan,

the unsatisfiable condition should be redefined as that a
memory read is dominated by a write to the same location.

• Removing recurring checks: This optimization is directly
applicable. One thing worth noting is that when *ptr2 post-
dominates *ptr1, we need to make sure there is no write

to the same location between *ptr1 and *ptr2, before we
remove the check on *ptr1.

• Merging/removing neighbor checks: The two optimiza-
tions are also applicable. When merging the checks on
*ptr1 and *ptr2 (assuming *ptr1 dominates *ptr2), we
will place the merged check on *ptr1 under the require-
ment that no write can happen to *ptr2 after *ptr1. When
removing neighbor checks, we also need to ensure no write
happens between the removed one and dominating others.

• Optimization loop checks: The two optimizations for
loops are in principle applicable. But for safety, we will
have to make sure the target memory location is not initial-
ized inside the loop. Statically guaranteeing this can lead to
skipping of too many cases, and thus, the optimizations can
present limited effectiveness.

C Discussion of Chromium Bugs

This section discusses unsound tools, ASAP and SANRAZOR,
can detect the Chromium bugs and identify the reasons if not.

Issue 116869 (SANRAZOR X; ASAP 7): The bug, shown
in the code below, happens because the index m_clipIndex
gets excessively decreased to become negative (line 4) and
thus, the access to m_commands at line 5 goes out of bound.
Since no memory access shares the same data dependency as
m_commands[m_clipIndex], SANRAZOR will not remove
the check and can detect the bug. In contrast, ASAP will
consider m_commands[m_clipIndex], which happens in a
loop, as hot code. If the while loop is executed in profiling
with a low overhead budget, ASAP may remove its sanitizer
check, and in result, miss detecting the bug.

1 void AdjustClip(int limit) {
2 while (m_clipIndex > limit) {
3 do {
4 −−m_clipIndex;
5 } while (m_commands[m_clipIndex] !=

Clip::kSave); // m_clipIndex < 0 and thus
m_commands[m_clipIndex] underflows

6 m_pDriver−>SkiaCanvas()−>restore();
7 }
8 }

Issue 1099446 (SANRAZORX; ASAPX): This bugs hap-
pens due to unsafe use of memcpy at line 5. The number of
bytes operated is larger than size of the source buffer. Both
SANRAZOR and ASAP should be able to detect this bug as
they do not optimize the use of library functions.

https://bugs.chromium.org/p/chromium/issues/detail?id=1116869
https://bugs.chromium.org/p/chromium/issues/detail?id=1099446
https://bugs.chromium.org/p/chromium/issues/detail?id=1139963
https://bugs.chromium.org/p/chromium/issues/detail?id=848914


1 sk_sp<SkData> SkData::PrivateNewWithCopy(...) {
2 ...
3 if (srcOrNull) {
4 // heap−buffer−overflow here; The size of

"srcOrNull" is 68 bytes, but "length" is 256
5 memcpy(data−>writable_data(), srcOrNull, length);
6 }
7 return data;
8 }

Issue 1139963 (SANRAZOR 7; ASAP 7): This bug is
caused by an integer truncation. At line 4 and line 6,
imgWidth and imgHeight are truncated from 32 bits to 16
bits. The truncated values are then used to calculate the size of
a bitmap at line 9. However, the bitmap is still accessed using
a 32-bit index at line 20. When imgWidth and/or imgHeight
is larger than 65535 (216−1), the allocated buffer cannot fit
the bitmap and thus, overflow can happen at line 22.

According to SANRAZOR’s definition, dp at line 16 and
dp32 at line 20 share similar data dependency as they “flow”
from the same source. Further, SANRAZOR deems line 17
as a “user-check”. As such, SANRAZOR considers that ASan
check on *dp32 at 20 is a redundancy of line 17 and will
remove it. This way SANRAZOR shall miss the memory error.
Similar to Issue 116869, *dp32 at 22 happens in a loop, and
ASAP may miss it when a low overhead budget is given.

1
2 FT_LOCAL_DEF(FT_Error) Load_SBit_Png(...){
3 ...
4 metrics−>width = (FT_UShort)imgWidth;
5 //truncate 32−bit to 16−bit
6 metrics−>height = (FT_UShort)imgHeight;
7 //truncate 32−bit to 16−bit
8 map−>pitch = (int)( map−>width ∗ 4 );
9 FT_ULong size = map−>rows ∗ (FT_ULong)map−>pitch;

10 error = ft_glyphslot_alloc_bitmap( slot, size );
11 // allocate a buffer; when width / height is over

65535, the buffer cannot fit the bitmap
12 ...
13 }
14 void png_combine_row(png_const_structrp png_ptr,

png_bytep dp, int display){
15 ...
16 if (dp && sp && ... ){
17 png_uint_32p dp32 = dp, sp32 = sp;
18 do{
19 do{
20 ∗dp32++ = ∗sp32++;//dp32 points to the

buffer and overflows
21 ...
22 }while (c > 0);
23 }while(bytes_to_copy <= row_width)
24 }

Issue 848914 (SANRAZOR X; ASAP 7): Code below
demonstrates the bug. In this issue, id_states_ is a C++
standard vector. When an id object is created, it will be in-
serted to id_states_ and the index of the object will be
saved in ids. However, when objects are popped out from
id_states_, the index saved to ids is not updated. As a

consequence, heap overflow can happen when id_states_
is accessed using the old index (id_states_[id - 1] at
line 5). This case is similar to Issue 116869. SANRAZOR will
not remove the check and can detect the overflow. However, if
the loop is executed in profiling with a low overhead budget,
ASAP may remove the check and miss detecting the bug.

1 bool FreeIds(...) override {
2 ...
3 for (GLsizei ii = 0; ii < n; ++ii) {
4 GLuint id = ids[ii];
5 if (id != 0) id_states_[id − 1] = kIdPendingFree;
6 }
7 ...
8 }

D Supplementary Algorithms and Data
Table 6: Page fault and runtime overhead before and after we
shrink the shadow memory of ASan.

Benchmark # of Page Faults (K) Runtime Overhead
Before After Before After

400.perlbench 187,718 138,214 273% 230%
401.bzip2 1,159 933 81.9% 67.9%
403.gcc 136,262 91,466 101% 60.1%
429.mcf 626 465 54.1% 44.3%
445.gobmk 432 390 76.9% 63.8%
456.hmmer 373 333 179% 176%
458.sjeng 89 78 102% 87.7%
462.libquantum 555 413 108% 102%
464.h264ref 390 315 117% 89.4%
473.astar 607 526 70.8% 62.6%
483.xalancbmk 648 593 130% 99.7%
433.milc 29,400 21,380 89.1% 83.7%
444.namd 50 46 86.1% 82.3%
447.dealII 1,694 1,424 138% 135%
450.soplex 12,863 9,294 103% 95.1%
453.povray 124 117 101% 82.5%
470.lbm 117 138 62.4% 57.4%
482.sphinx3 12,863 9,293 103% 99.4%

Average 21,442 15,301 107% 95.5%

Table 7: Comparison of compilation time and binary size

Benchmark Compilation Time (Sec) Binary Size (MB)
ASan ASan-- Overhead ASan ASan-- Reduced

400.perlbench 65.2 397 6.1x 8.7 7.9 9.20%
401.bzip2 12.1 21.5 1.8x 2.7 2.0 25.9%
403.gcc 25.2 85.7 3.4x 22 18 18.2%
429.mcf 7.03 11.1 1.5x 2.4 2.1 12.5%
445.gobmk 20.3 32.5 1.6x 13 11 15.4%
456.hmmer 18.8 35.7 1.9x 3.8 3.3 13.2%
458.sjeng 7.14 10.7 1.5x 2.3 1.8 21.7%
462.libquantum 7.12 14.1 1.9x 2.5 1.7 32.0%
464.h264ref 31.4 113 3.6x 6.2 5.4 12.9%
473.astar 10.8 15.3 1.4x 2.7 1.9 29.6%
483.xalancbmk 50.3 412 8.2x 52 48 7.69%
433.milc 12.1 21.9 1.8x 2.9 2.3 20.7%
444.namd 17.3 57.1 3.3x 3.8 3.4 10.5%
447.dealII 44.7 125 2.8x 47 39 17.0%
450.soplex 6.81 19.7 2.9x 7.2 6.8 5.56%
453.povray 9.81 45.1 4.6x 8.8 8.1 7.95%
470.lbm 4.57 7.76 1.7x 2.4 1.6 33.3%
482.sphinx3 6.17 9.34 1.5x 3.3 2.8 15.2%

Average 19.8 79.7 2.8x 10.7 9.2 17.1%

Chromium 3.46h 7.28h 2.1x 352 280 20.4%



Table 8: The amount of ASan checks after the adoption of
ASan--. Baseline is ASan with the default setting. From left to
right, the columns show the amount of ASan checks left after
enabling different optimizations in ASan--, one after another.

Benchmark Ratio of ASan Checks
Unsat_Chk Rec_Chk Merge_Chk Rem_Neighbor Loop_Inv Loop_Grp

400.perlbench 86.64% 64.74% 61.39% 58.71% 55.53% 53.83%
401.bzip2 88.29% 73.48% 71.38% 71.19% 70.02% 68.90%
403.gcc 85.99% 67.85% 60.49% 56.74% 54.86% 52.93%
429.mcf 82.02% 63.79% 60.53% 57.58% 51.74% 51.51%
445.gobmk 92.54% 80.72% 72.85% 68.32% 65.39% 60.25%
456.hmmer 92.69% 79.14% 75.11% 73.38% 66.42% 63.54%
458.sjeng 88.07% 78.44% 77.18% 76.21% 74.80% 74.02%
462.libquantum 64.82% 58.29% 57.84% 56.33% 55.96% 55.44%
464.h264ref 87.59% 78.17% 69.71% 64.46% 58.76% 56.36%
473.astar 92.76% 74.38% 73.84% 73.31% 71.63% 71.09%
483.xalancbmk 92.04% 75.62% 69.79% 63.59% 60.01% 56.94%
433.milc 89.91% 77.48% 75.42% 73.61% 72.24% 70.95%
444.namd 90.55% 78.19% 76.31% 71.01% 66.21% 63.90%
447.dealII 85.87% 68.36% 64.26% 57.65% 48.57% 39.89%
450.soplex 92.83% 80.47% 77.55% 76.21% 70.50% 66.60%
453.povray 84.93% 68.72% 63.41% 57.13% 52.37% 47.14%
470.lbm 93.19% 86.54% 80.48% 79.36% 77.35% 75.92%
482.sphinx3 92.90% 82.07% 79.69% 78.75% 76.91% 73.96%

Average 87.98% 74.25% 70.40% 67.42% 63.85% 61.29%

Table 9: Performance improvement brought by FuZZan to
ASan on SPEC CPU2006. Cells with “–” indicate no results.

Benchmark Performance Increase
1G 4G 8G 16G

401.bzip2 – – 0.96% 0.19%
429.mcf – – 2.44% 1.63%
456.hmmer – – – 1.78%
458.sjeng – 0.33% -0.66% 0.50%
462.libquantum – – 3.86% 4.18%
433.milc – – 0.68% 0.45%
444.namd 1.89% 1.26% 1.89% 1.26%
453.povray – – 2.62% 4.12%
470.lbm – – – 2.05%
482.sphinx3 – – – 0.71%

Table 10: Setup of fuzzing evaluation.
Programs Settings

Name Version Driver Source Options
BINUTILS 2.31 OBJDUMP [20] -a @@
BINUTILS 2.31 SIZE [20] @@
BINUTILS 2.31 C++FILT [20] -n
BINUTILS 2.31 NM [20] @@
LIBPCAP 5.0.0 TCPDUMP [45] -n -e -r @@
LIBPNG 1.6.38 PNGFIX [22] @@
FILE 1.62 FILE [23] -m magic.mgc @@

Table 11: Runtime overhead on SPEC CPU2017. **_r repre-
sents SPECrate and **_s represents SPECspeed.

Benchmark Performance Overhead
ASAN Unsat_Chk Rec_Chk Merge_Chk Rem_Neighbor Loop_Inv Loop_Grp No_Sanitizer_Chk

505.mcf_r 62.78% 57.28% 49.84% 45.31% 40.78% 38.83% 35.60% 10.68%
508.namd_r 143.8% 128.9% 112.8% 98.93% 90.37% 82.89% 73.80% 48.66%
510.parest_r 144.8% 135.2% 111.4% 101.1% 91.73% 76.27% 72.13% 25.86%
511.povray_r 262.0% 245.3% 229.2% 209.1% 199.4% 187.2% 180.8% 102.7%
519.lbm_r 71.12% 67.38% 61.50% 55.61% 52.41% 48.13% 42.25% 13.36%
520.omnetpp_r 130.6% 123.1% 120.7% 118.5% 117.2% 111.2% 106.4% 64.51%
531.deepsjeng_r 98.81% 89.68% 79.76% 67.06% 63.10% 55.95% 46.83% 20.23%
538.imagick_r 143.3% 134.9% 124.6% 113.5% 100.1% 86.70% 76.85% 39.65%
541.leela_r 85.37% 80.98% 78.29% 76.10% 67.07% 65.12% 59.51% 21.46%
544.nab_r 77.78% 73.12% 65.59% 58.06% 48.75% 37.28% 31.18% 16.84%

Average_r 122.05% 113.59% 103.38% 94.34% 87.08% 78.97% 72.55% 36.40%

605.mcf_s 63.88% 58.66% 44.33% 39.85% 34.03% 28.81% 25.60% 15.07%
619.lbm_s 68.19% 61.97% 53.47% 47.67% 41.87% 34.92% 28.19% 10.26%
620.omnetpp_s 145.3% 140.9% 137.9% 134.1% 127.6% 123.5% 118.8% 66.67%
631.deepsjeng_s 112.0% 103.3% 92.33% 86.33% 76.33% 66.00% 60.00% 31.00%
641.leela_s 120.7% 112.8% 103.7% 92.84% 88.89% 82.72% 78.02% 29.63%

Average_s 102.03% 95.56% 86.36% 80.17% 73.74% 67.19% 62.13% 30.53%

Algorithm 3: IDENTIFYING INVARIANT IN LOOP

1 Procedure backward_slicing_inLoop(A , L , V ):
2 if ¬ L.contains(A) ‖ V .find(A) then
3 return;
4 end
5 V .push_back(A);
6 if TypeInst P = dyn_cast<TypeInst>(A) then
7 for each op in P .getOperands() do
8 backward_slicing_inLoop(op, L , V );
9 end

10 end
11 return;
12 Procedure check_addr_type(A ,V ,P):
13 if P . f ind(A) then
14 return NON_INV ;

/* A has been visited, so it is recursively
involved. Consider it as a variant for
safety. */

15 end
16 for each user in A .users() do
17 if isa<CallInst>(user) ||

isa<Li f eTimeEndIntrinsic>(user) then
18 return NON_INV ;

/* the memory may have been freed */
19 end
20 if isa<StoreInst>(user) then
21 return NON_INV ;

/* the value may have been modified */
22 end
23 end
24 if ¬V . f ind(A) then
25 return INV ;

/* value comes from outside of loop, so
mark it an invariant */

26 end
27 P .push_back(A);
28 if TypeInst K = dyn_cast<TypeInst>(A) then
29 for each op in K .getOperands() do
30 opTy = check_addr_type(op,V ,P );
31 if opTy == NON_INV then
32 return NON_INV ;
33 end
34 end
35 end
36 return INV ;
37 Algorithm

Input :Address A , Loop L
Output :INV or NON_INV

38 Initialize: P = vector();
39 backward_slicing_inLoop(A , L , V );
40 return check_addr_type(A ,V ,P );
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