
(Early) Memory 
Corruption Attacks

CS-576 Systems Security
Instructor: Georgios Portokalidis

Fall 2018

Fall 2018 Stevens Institute of Technology 1



Memory Corruption

“Memory corruption occurs in a computer program when 
the contents of a memory location are unintentionally 
modified due to programming errors; this is termed 
violating memory safety. 

When the corrupted memory contents are used later in that 
program, it leads either to program crash or to strange and 
bizarre program behavior. “

--wikipedia
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Programs Are Deterministic

Program
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Input A Output A

Input B Output B

Input C Output C

The program implements the 
functionality intended by the 

developer
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Programs Are Deterministic

Program
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Input A Output A

Input B Output B

Input C Output C

Unexpected or 
untested input 

triggering 
vulnerability 
in program

Input D

Program functionality severely altered

Original programà arbitrary program based on input

Program

Output D
Malicious or 

garbage input
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Incorrect handling of 
untested or incorrect input is 

one the main causes of 
software vulnerabilities
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Remote Vs. local

Local attacks
§ If the user input can be only provided by a local user

Remote attack
§ If the user input can be only provided over the network
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Local Attacks

User

Program

Program

Program

Program

Program

All programs run 
with the privileges 
of the running user 

(Effective UID)
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Local Attacks 

Program

Input produced by 
another user
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Program

Arbitrary program 
executes with the rights 
of the user executing it
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Privileged Resources

User

Administrator

KERNEL

User 
accessible 
resources

Privileged 
resources

Program

Program
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SETUID Programs

Programs that run with the privileges of their owner, not 
the executing user

User User 
accessible 
resources

Privileged 
resources

SETUID 
Program
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Privilege Escalation Attacks

Input produced by 
another user
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The arbitrary program 
executes with elevated 

privileges

SETUID 
Program

Privileged 
resources
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Remote Attacks 

www.stevens.edu

Host: www
OS: Debian
HTTP Server: nginx
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Bad Input

An arbitrary program is 
run at a remote host
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Remote Attacks 

www.stevens.edu

Host: www
OS: Debian
HTTP Server: nginxd
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Bad Input

An arbitrary program is 
run at a remote host

Running as root
With high privileges
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Common Vulnerabilities
Overflows: Writing beyond the end of a buffer 

Underflows: Writing beyond the beginning of a buffer

Use-after-free: Using memory after it has been freed

Uninitialized memory: Using pointer before initialization

Null pointer dereferences: Using NULL pointers

Type confusion: Assume a variable/object has the wrong type

HW errors: Hammering memory to cause bit flips to non-owned 
memory
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Buffer Overflows
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Buffer Overflows

Writing outside the boundaries of a buffer
Common programmer errors that lead to it …

§ Insufficient input checks/wrong assumptions about input
§ Unchecked buffer size
§ Integer overflows
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Stack Overflows
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Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}
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Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A
 C K

High address/stack bottom

Low address/stack top 

RETADDR

buf

buf

buf

buf
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Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A
 C K

High address/stack bottom

Low address/stack top 

RETADDR

buf

buf

buf

buf

./mytest AAAAA
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Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A
 C K

High address/stack bottom

Low address/stack top 

RETADDR

????

????

A\0??

AAAA

./mytest AAAAA
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Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

Low address/stack top 

AAAA

AAAA

AAAA

AAAA

AAAA

./mytest AAAAAAAAAAAAAAAAAAA

\0???
High 
address/stack 
bottom
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Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

Low address/stack top 

AAAA

AAAA

AAAA

AAAA

AAAA

./mytest AAAAAAAAAAAAAAAAAAA

\0???
High 
address/stack 
bottom
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Control-Flow Hijacking

The saved return address is a code pointer stored in 
memory

§ Controlling it grants control of a control-flow instruction 
(e.g., ret)

Untrusted inputs that lead to corruption of a code pointer 
lead to control-flow hijacking attacks
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Other Code Pointers

Return 
address

return; ret

Function 
address

typedef void (*cmpf_t)(int, int);
void compare(int array[], int len, int num, cmpf_t f)
{

int i;
for (i < 0; i < len; i++)

if (array[i] < num)
f(i, array[i]);

}
call *(rax)

Jump
table

switch (option) {
case 0:

Code …
case 1:

Code ...
...
}

jmp *(rax)
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Where to Point Execution

S T A C K0xdeadbeef

AAAA
AAAA
AAAA
AAAA

\0???

0xdeadbeef:

SHELLCODE
malicious machine code

Malicious injected code is also code 
shellcode, because the first instances 
where used to spawn a shell 
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Injecting Shellcode

S T A C Kbuf + 0x14 

AAAA
AAAA
AAAA
AAAA

\0???

SH
EL

LC
OD

E
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Code Injection

Code injection (CI) - Injecting machine code into a 
vulnerable program’s memory

Code injections attacks inject code and use control-flow 
hijacking to execute that code
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Shellcode Limitations

S T A
 C Kbuf + 0x14 

AAAA

AAAA

AAAA

AAAA

\0???

SH
EL

LC
O

D
E

Injected shellcode cannot include a 
null byte because of strcpy() 

Shellcode needs to be carefully crafted to avoid 
disallowed bytes

Other methods of copying data may not have the 
same limitation: memcpy(), gets(), read(), fread(), 
custom copy routines, etc.
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Stack Overflow Using read()

static void getURL(void)
{

char buf[64];

read(STDIN_FILENO, buf, 128);
get_webpage(buf);

}

Low address/stack top 

High 
address/stack 
bottom

S T A
 C K

AAAA

AAAA

AAAA

AAAA

AAAA

????

…
…

AAAA

AAAA

No limitation on bytes read.
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Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A
 C K

High address/stack bottom

Low address/stack top 

RETADDR

oldEBP

buf

buf

buf

buf
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Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A
 C K

High address/stack bottom

Low address/stack top 

\0TADDR

AAAA

AAAA

AAAA

AAAA

AAAA./mytest AAAAAAAAAAAAAAAAAAA
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Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A
 C K

High address/stack bottom

Low address/stack top 

\0TADDR

AAAA

AAAA

AAAA

AAAA

AAAA

80484e1: c9 leave
80484e2: c3 ret

./mytest AAAAAAAAAAAAAAAAAAA
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Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top 

\0TADDR

AAAA

AAAA

AAAA

AAAA

AAAA

80484e1: c9 leave
80484e2: c3 ret

./mytest AAAAAAAAAAAAAAAAAAA

Function exit (LEAVE)

movl %ebp, %esp
pop     %ebp
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Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High 
address/stack 
bottom

Low address/stack top 

AAAA

ffffca3c

AAAA

AAAA

AAAA

AAAA

80484e1: c9 leave
80484e2: c3 ret

./mytest AAAAAAAAAAAAAAA\x3c\xca\xff\xffAAAA

Function exit (LEAVE)

movl %ebp, %esp
pop     %ebp

\0???
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