
(Early) Memory
Corruption Attacks

CS-576 Systems Security
Instructor: Georgios Portokalidis

Fall 2018

Fall 2018 Stevens Institute of Technology 1

Memory Corruption

“Memory corruption occurs in a computer program when
the contents of a memory location are unintentionally
modified due to programming errors; this is termed
violating memory safety.

When the corrupted memory contents are used later in that
program, it leads either to program crash or to strange and
bizarre program behavior. “

--wikipedia

Fall 2018 Stevens Institute of Technology 2

Programs Are Deterministic

Program

Fall 2018 Stevens Institute of Technology

Input A Output A

Input B Output B

Input C Output C

The program implements the
functionality intended by the

developer

3

Programs Are Deterministic

Program

Fall 2018 Stevens Institute of Technology

Input A Output A

Input B Output B

Input C Output C

Unexpected or
untested input

triggering
vulnerability
in program

Input D

Program functionality severely altered

Original programà arbitrary program based on input

Program

Output D
Malicious or

garbage input

4

Incorrect handling of
untested or incorrect input is

one the main causes of
software vulnerabilities

Fall 2018 Stevens Institute of Technology 5

Remote Vs. local

Local attacks
§ If the user input can be only provided by a local user

Remote attack
§ If the user input can be only provided over the network

Fall 2018 Stevens Institute of Technology 6

Local Attacks

User

Program

Program

Program

Program

Program

All programs run
with the privileges
of the running user

(Effective UID)

Fall 2018 Stevens Institute of Technology 7

Local Attacks

Program

Input produced by
another user

Fall 2018 Stevens Institute of Technology

Program

Arbitrary program
executes with the rights
of the user executing it

8

Privileged Resources

User

Administrator

KERNEL

User
accessible
resources

Privileged
resources

Program

Program

Fall 2018 Stevens Institute of Technology 9

SETUID Programs

Programs that run with the privileges of their owner, not
the executing user

User User
accessible
resources

Privileged
resources

SETUID
Program

Fall 2018 Stevens Institute of Technology 10

Privilege Escalation Attacks

Input produced by
another user

Fall 2018 Stevens Institute of Technology

The arbitrary program
executes with elevated

privileges

SETUID
Program

Privileged
resources

11

Remote Attacks

www.stevens.edu

Host: www
OS: Debian
HTTP Server: nginx

Fall 2018 Stevens Institute of Technology

Bad Input

An arbitrary program is
run at a remote host

13

Remote Attacks

www.stevens.edu

Host: www
OS: Debian
HTTP Server: nginxd

Fall 2018 Stevens Institute of Technology

Bad Input

An arbitrary program is
run at a remote host

Running as root
With high privileges

14

Common Vulnerabilities
Overflows: Writing beyond the end of a buffer

Underflows: Writing beyond the beginning of a buffer

Use-after-free: Using memory after it has been freed

Uninitialized memory: Using pointer before initialization

Null pointer dereferences: Using NULL pointers

Type confusion: Assume a variable/object has the wrong type

HW errors: Hammering memory to cause bit flips to non-owned
memory

Fall 2018 Stevens Institute of Technology 16

Fall 2018 Stevens Institute of Technology 17

Buffer Overflows

Fall 2018 Stevens Institute of Technology 18

Buffer Overflows

Writing outside the boundaries of a buffer
Common programmer errors that lead to it …

§ Insufficient input checks/wrong assumptions about input
§ Unchecked buffer size
§ Integer overflows

Fall 2018 Stevens Institute of Technology 19

Stack Overflows

Fall 2018 Stevens Institute of Technology 20

Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

Fall 2018 Stevens Institute of Technology 22

Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A
 C K

High address/stack bottom

Low address/stack top

RETADDR

buf

buf

buf

buf

Fall 2018 Stevens Institute of Technology 23

Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A
 C K

High address/stack bottom

Low address/stack top

RETADDR

buf

buf

buf

buf

./mytest AAAAA

Fall 2018 Stevens Institute of Technology 24

Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A
 C K

High address/stack bottom

Low address/stack top

RETADDR

????

????

A\0??

AAAA

./mytest AAAAA

Fall 2018 Stevens Institute of Technology 25

Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

Low address/stack top

AAAA

AAAA

AAAA

AAAA

AAAA

./mytest AAAAAAAAAAAAAAAAAAA

\0???
High
address/stack
bottom

Fall 2018 Stevens Institute of Technology 26

Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

Low address/stack top

AAAA

AAAA

AAAA

AAAA

AAAA

./mytest AAAAAAAAAAAAAAAAAAA

\0???
High
address/stack
bottom

Fall 2018 Stevens Institute of Technology 27

Control-Flow Hijacking

The saved return address is a code pointer stored in
memory

§ Controlling it grants control of a control-flow instruction
(e.g., ret)

Untrusted inputs that lead to corruption of a code pointer
lead to control-flow hijacking attacks

Fall 2018 Stevens Institute of Technology 28

Other Code Pointers

Return
address

return; ret

Function
address

typedef void (*cmpf_t)(int, int);
void compare(int array[], int len, int num, cmpf_t f)
{

int i;
for (i < 0; i < len; i++)

if (array[i] < num)
f(i, array[i]);

}
call *(rax)

Jump
table

switch (option) {
case 0:

Code …
case 1:

Code ...
...
}

jmp *(rax)

Fall 2018 Stevens Institute of Technology 29

Where to Point Execution

S T A C K0xdeadbeef

AAAA
AAAA
AAAA
AAAA

\0???

0xdeadbeef:

SHELLCODE
malicious machine code

Malicious injected code is also code
shellcode, because the first instances
where used to spawn a shell

Fall 2018 Stevens Institute of Technology 30

Injecting Shellcode

S T A C Kbuf + 0x14

AAAA
AAAA
AAAA
AAAA

\0???

SH
EL

LC
OD

E

Fall 2018 Stevens Institute of Technology 31

Code Injection

Code injection (CI) - Injecting machine code into a
vulnerable program’s memory

Code injections attacks inject code and use control-flow
hijacking to execute that code

Fall 2018 Stevens Institute of Technology 32

Shellcode Limitations

S T A
 C Kbuf + 0x14

AAAA

AAAA

AAAA

AAAA

\0???

SH
EL

LC
O

D
E

Injected shellcode cannot include a
null byte because of strcpy()

Shellcode needs to be carefully crafted to avoid
disallowed bytes

Other methods of copying data may not have the
same limitation: memcpy(), gets(), read(), fread(),
custom copy routines, etc.

Fall 2018 Stevens Institute of Technology 33

Stack Overflow Using read()

static void getURL(void)
{

char buf[64];

read(STDIN_FILENO, buf, 128);
get_webpage(buf);

}

Low address/stack top

High
address/stack
bottom

S T A
 C K

AAAA

AAAA

AAAA

AAAA

AAAA

????

…
…

AAAA

AAAA

No limitation on bytes read.

Fall 2018 Stevens Institute of Technology 34

Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A
 C K

High address/stack bottom

Low address/stack top

RETADDR

oldEBP

buf

buf

buf

buf

Fall 2018 Stevens Institute of Technology 35

Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A
 C K

High address/stack bottom

Low address/stack top

\0TADDR

AAAA

AAAA

AAAA

AAAA

AAAA./mytest AAAAAAAAAAAAAAAAAAA

Fall 2018 Stevens Institute of Technology 36

Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A
 C K

High address/stack bottom

Low address/stack top

\0TADDR

AAAA

AAAA

AAAA

AAAA

AAAA

80484e1: c9 leave
80484e2: c3 ret

./mytest AAAAAAAAAAAAAAAAAAA

Fall 2018 Stevens Institute of Technology 37

Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top

\0TADDR

AAAA

AAAA

AAAA

AAAA

AAAA

80484e1: c9 leave
80484e2: c3 ret

./mytest AAAAAAAAAAAAAAAAAAA

Function exit (LEAVE)

movl %ebp, %esp
pop %ebp

Fall 2018 Stevens Institute of Technology 38

Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High
address/stack
bottom

Low address/stack top

AAAA

ffffca3c

AAAA

AAAA

AAAA

AAAA

80484e1: c9 leave
80484e2: c3 ret

./mytest AAAAAAAAAAAAAAA\x3c\xca\xff\xffAAAA

Function exit (LEAVE)

movl %ebp, %esp
pop %ebp

\0???

Fall 2018 Stevens Institute of Technology 39

