
(Early) Memory
Corruption Attacks

(cont’d)

CS-576 Systems Security

Instructor: Georgios Portokalidis

Fall 2018

Fall 2018 Stevens Institute of Technology 1

Recap

Stack overflows corrupt memory on the stack allowing to
overwrite/control

▪ Return addresses (control-flow hijacking)

▪ Other data saved in the stack

Global and heap buffer overflows corrupt neighboring
memory allowing to overwrite/control

▪ Other data saved in the stack

Controlling the return address can lead to code injection
and arbitrary code execution

Controlling program data can lead to
unexpected/undesired behavior

Fall 2018 Stevens Institute of Technology 2

More Attacks

Heap overflows as arbitrary writes

Format string exploits

Fall 2018 Stevens Institute of Technology 3

More Attacks

Heap overflows as arbitrary writes

Format string exploits

Fall 2018 Stevens Institute of Technology 4

Understanding the Heap

The layout of buffers in memory depends on the
implementation off the allocator (i.e., malloc)

Fall 2018 Stevens Institute of Technology 5

userinput outputfile

char *userinput = malloc(20);
char *outputfile = malloc(20);

malloc() Implementations

dlmalloc – General purpose allocator

ptmalloc2 – glibc

jemalloc – FreeBSD and Firefox

tcmalloc – Google

libumem – Solaris

…

Fall 2018 Stevens Institute of Technology 6

glibc malloc()

https://sploitfun.wordpress.com/2015/02/10/understand
ing-glibc-malloc/

Heap memory is obtained from the kernel using the brk()
or mmap() system calls

▪ Provides plenty of “raw” space

The allocator splits memory into arenas
▪ Each thread gets its own arena
▪ Each arena has its own metadata

Memory within the arena is split into chunks and given to
program through various allocation functions (e.g.,
malloc())

▪ Chunks are organized in bins, usually through double linked-
lists

Fall 2018 Stevens Institute of Technology 7

https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/

Buffer/Metadata Interleaving

userinput outputfile

Memory management metadata

Fall 2018 Stevens Institute of Technology 8

Corrupted Metadata

Use of the corrupted meta data and may lead to an
arbitrary write, corrupting a code pointer or security
critical data

userinput outputfile

Corrupted meta data

Fall 2018 Stevens Institute of Technology 9

Heap Arena Structure

Arena

Free chunksAllocated chunksmalloc chunks
(headers)

No two free chunks can be adjacent.

Fall 2018 Stevens Institute of Technology 10

Heap Arena Structure

Arena

Free chunksAllocated chunksmalloc chunks
(headers)

No two free chunks can be adjacent.

Adjacent free chunks are merged together

Fall 2018 Stevens Institute of Technology 11

free(●)

U
p

d
at

ed

Bitmap

• P - This bit is set when
previous chunk is
allocated

• M - This bit is set when
chunk is mmap’d

• N - This bit is set when
this chunk belongs to a
thread arena.

Fall 2018 Stevens Institute of Technology 12

Fall 2018 Stevens Institute of Technology 13

Corrupted metadata

Fall 2018 Stevens Institute of Technology 14

Corrupted metadata

Fall 2018 Stevens Institute of Technology 15

Linked-list Manipulation to
Arbitrary Write

Remove n

n->next->prev = n->prev;

n->prev->next = n->next;

Corrupted pointers attacker controlled next
and prev pointers due to the overwritten n

Fall 2018 Stevens Institute of Technology 16

Linked-list Manipulation to
Arbitrary Write

Remove n

n->next->prev = n->prev;

n->prev->next = n->next;

*(n->next + prev_offset) = n->next

*(n->prev + next_offset) = n->next

Fall 2018 Stevens Institute of Technology 17

Example 1

int main(int argc, char **argv)
{

int i;
char *buf1;

buf1 = malloc(64);
for (i = 0; i < 200; i++)

buf1[i] = 'A';
return 0;

}

int main(int argc, char **argv)
{

int i;
char *buf1;

buf1 = malloc(64);
for (i = 0; i < 200; i++)

buf1[i] = 'A';
free(buf1);
return 0;

}

Fall 2018 Stevens Institute of Technology 18

Example 2

int main(int argc, char **argv)
{

int i;
char *buf1, *buf2;

buf1 = malloc(64);
buf2 = malloc(64);
for (i = 0; i < 200; i++)

buf2[i] = buf1[i] = 'A';
free(buf2);
free(buf1);
return 0;

}

Fall 2018 Stevens Institute of Technology 19

Example 2

int main(int argc, char **argv)
{

int i;
char *buf1, *buf2;

buf1 = malloc(64);
buf2 = malloc(64);
for (i = 0; i < 200; i++)

buf2[i] = buf1[i] = 'A';
free(buf2);
free(buf1);
return 0;

}

Program received signal SIGSEGV,
Segmentation fault.
_int_free (av=0x7ffff7dd6620 <main_arena>,
p=0x601050, have_lock=0)

at malloc.c:3966

0x00007ffff7aaa155 <+293>: pop %r13
0x00007ffff7aaa157 <+295>: pop %r14
0x00007ffff7aaa159 <+297>: pop %r15
…
0x00007ffff7aaa185 <+341>: cmp %rax,%rbx
0x00007ffff7aaa188 <+344>: je 0x7ffff7aaa9bf <_int_free+2447>
0x00007ffff7aaa18e <+350>: testb $0x2,0x4(%r12)
0x00007ffff7aaa194 <+356>: je 0x7ffff7aaaa4e <_int_free+2590>

=> 0x00007ffff7aaa19a <+362>: mov 0x8(%r13),%rax

(gdb) x $r13
0x4141414141a15190

Fall 2018 Stevens Institute of Technology 20

Examples 3

int main(int argc, char **argv)
{

int i;
char *buf1, *buf2, *buf15;

buf1 = malloc(64);
buf15 = malloc(200);
buf2 = malloc(64);
for (i = 0; i < 200; i++)

buf15[i] = buf2[i] = buf1[i] = 'A';
free(buf2);
free(buf1);
return 0;

}

Fall 2018 Stevens Institute of Technology 21

Freeing the same buffer
twice can also lead to
metadata corruption

▪ May be harder to
exploit

Double-Free Bugs

int main(int argc, char **argv)
{

int i;
char *buf1, *buf2;

buf1 = malloc(200);
buf2 = malloc(200);
for (i = 0; i < 200; i++)

buf2[i] = buf1[i] = 'A';
free(buf2);
free(buf2);
return 0;

}

Fall 2018 Stevens Institute of Technology 22

Heap Overflows In Practice

Exploiting the allocator depends on
▪ The allocator’s implementation

▪ The sequence of allocator calls in the program

The attacker may need to “guide” the program to perform
a long sequence of allocations and deallocations to align
the objects in the heap

Fall 2018 Stevens Institute of Technology 23

More Attacks

Heap overflows as arbitrary writes

Format string exploits

Fall 2018 Stevens Institute of Technology 24

Format String Bugs

Occurs when untrusted input is used as format string

Exploits how variadic functions and the printf-family of
functions specifically work

int printf(const char * restrict format, ...);

Fall 2018 Stevens Institute of Technology 25

Argument Types and Number
Based on Format String

printf(“%ld %h %c %g %s”, long_integer, short, character,
double, string);

Arguments are pushed to the stack!

printf reads stack arguments based on the format string

Stack char * double char short long int

Fall 2018 Stevens Institute of Technology

High addresses

RSP

26

Not Enough Arguments

printf(“%ld %h %c %g %s”);

What happens when there is a mismatch between format
string and actual arguments?

Stack

Fall 2018 Stevens Institute of Technology

High addresses

RSP

27

Not Enough Arguments

printf(“%ld %h %c %g %s”);

What happens when there is a mismatch between format
string and actual arguments?

Memory (stack) data are leaked

Stack long int

Fall 2018 Stevens Institute of Technology

High addresses

RSP

28

Not Enough Arguments

printf(“%ld %h %c %g %s”);

What happens when there is a mismatch between format
string and actual arguments?

Memory (stack) data are leaked

Stackshort long int

Fall 2018 Stevens Institute of Technology

High addresses

RSP

29

Not Enough Arguments

printf(“%ld %h %c %g %s”);

What happens when there is a mismatch between format
string and actual arguments?

Memory (stack) data are leaked

Stackchar short long int

Fall 2018 Stevens Institute of Technology

High addresses

RSP

30

Direct Parameter Access

“%3$x” → Access the 3rd argument

Fall 2018 Stevens Institute of Technology

Stack

High addresses

RSP

31

Corrupting Memory Using printf

%n can be used to store the number of written characters
into an integer pointer

int n;

long li = 100;

printf(“%ld\n%n”, li, &n);

Fall 2018 Stevens Institute of Technology 32

Corrupting Memory Using printf

%n can be used to store the number of written characters
into an integer pointer

int n;

long li = 100;

printf(“%ld\n%n”, li, &n);

n = 4

Fall 2018 Stevens Institute of Technology 33

Corrupting Memory Using printf

printf(“%ld%$3n”, li);

Fall 2018 Stevens Institute of Technology

Stack

High addresses

RSP

len(li) li

34

More printf()

Length modifier (+ zero padding)

long li = 23;

printf(“%0128ld\n”, li);

It is easy to write a large number of characters!

000
000
00000000000023

Fall 2018 Stevens Institute of Technology 35

printf As An Arbitrary Write

printf(“%0128ld%$3n”, li);

Fall 2018 Stevens Institute of Technology

Stack

High addresses

RSP

128 li

36

