
Early Defenses
and

More Attacks

CS-576 Systems Security

Instructor: Georgios Portokalidis

Fall 2018

Topics

Stack overflow defenses
▪ Stackguard & Stackshield
▪ Boundary checking

Heap corruption defenses

Code-injection defenses and bypasses
▪ Non executable stack (and heap)
▪ Early code-reuse attacks/return-to-libc
▪ ASCII armored space

ASLR and bypasses

Fall 2018 Stevens Institute of Technology 2

Topics

Stack overflow defenses
▪ Stackguard & Stackshield
▪ Boundary checking

Heap corruption defenses

Code-injection defenses and bypasses
▪ Non executable stack (and heap)
▪ Early code-reuse attacks/return-to-libc
▪ ASCII armored space

ASLR and bypasses

Fall 2018 Stevens Institute of Technology 3

StackGuard

Insert special values, called canaries,
between local variables and function
return address

Canary values are inserted on function
entry

Canaries are verified before a function
returns

▪ Program stops if the canary has changed

Fall 2018 Stevens Institute of Technology

retaddr

canary

local var

local var

4

Stack Overflow With Canary

int mytest(char *str)

{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);

}

S T A
 C

 K

High address/stack bottom

Low address/stack top

RETADDR

buf

buf

buf

buf

./mytest AAAAA

Fall 2018 Stevens Institute of Technology

canary

5

Stack Overflow with Canary

int mytest(char *str)

{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);

}

S T A
 C

 K

Low address/stack top

AAAA

AAAA

AAAA

AAAA

AAAA

./mytest AAAAAAAAAAAAAAAAAAAAAAA

\0???
High
address/stack
bottom

Fall 2018 Stevens Institute of Technology

AAAA

6

Canary Types

Random canary: (used in Visual Studio, gcc, etc.)

▪ Choose random string at program startup

▪ Insert canary string into every stack frame

▪ Verify canary before returning from function

▪ To corrupt random canary, attacker must learn current
random string

Terminator canary:
Canary = 0 (null), newline, linefeed, EOF

▪ String functions will not copy beyond terminator

▪ Hence, attacker cannot use string functions to corrupt stack.

Fall 2018 Stevens Institute of Technology 7

Fall 2018 Stevens Institute of Technology

Example: C code

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("len: %ld\n", strlen(buf));
return strlen(buf);

}

8

Fall 2018 Stevens Institute of Technology

Example: Compiled Code

0000000000400606 <mytest>:
400606: 55 push %rbp
400607: 48 89 e5 mov %rsp,%rbp
40060a: 48 83 ec 30 sub $0x30,%rsp
40060e: 48 89 7d d8 mov %rdi,-0x28(%rbp)
400612: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
400619: 00 00
40061b: 48 89 45 f8 mov %rax,-0x8(%rbp)
...
40065e: 48 8b 4d f8 mov -0x8(%rbp),%rcx
400662: 64 48 33 0c 25 28 00 xor %fs:0x28,%rcx
400669: 00 00
40066b: 74 05 je 400672 <mytest+0x6c>
40066d: e8 5e fe ff ff callq 4004d0 <__stack_chk_fail@plt>
400672: c9 leaveq
400673: c3 retq

Store canary

Verify canary

9

The order of local variables
may be important

Fall 2018 Stevens Institute of Technology

Alignment of Stack Buffers and
Canaries

retaddr

canary

buffer

local var

local var

saved ebp

10

The order of local variables
may be important

Buffer overflows could
allow important local
variables to be controlled

Fall 2018 Stevens Institute of Technology

Alignment of Stack Buffers and
Canaries

retaddr

canary

buffer

local var

local var

saved ebp

11

Place canary between
buffer and saved
ebp/return address

The compiler may not
always be able to align stack
variables “ideally”

Fall 2018 Stevens Institute of Technology

Alignment of Stack Buffers and
Canaries

retaddr

canary

buffer

local var

local var

saved ebp

12

StackShield

Address obfuscation instead of
canary

Encrypt return address on stack
by XORing with random string

Decrypt just before returning
from function

Attacker needs decryption key
to set return address to desired
value.

S T A
 C

 K

High address/stack bottom

Low address/stack top

RETADDR

buf

buf

buf

buf

key

Fall 2018 Stevens Institute of Technology 13

Example: StackShield

S T A
 C

 K

High address/stack bottom

Low address/stack top

RETADDR

buf

buf

buf

buf

int mytest(char *str)

{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);

}

!@#^% key

Fall 2018 Stevens Institute of Technology 14

Example: StackShield

S T A
 C

 K

High address/stack bottom

Low address/stack top

RETADDR

buf

buf

buf

buf

int mytest(char *str)

{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);

}

!@#^% key

Fall 2018 Stevens Institute of Technology 15

Problems

Canaries can be omitted in small functions or non-string
buffers

Canaries/keys can be leaked

Bugs may leave canaries untouched

Fall 2018 Stevens Institute of Technology 16

Problems

Canaries can be omitted in small functions or non-string
buffers

Canaries/keys can be leaked

Bugs may leave canaries untouched

Fall 2018 Stevens Institute of Technology 17

From GCC’s documentation

-fstack-protector
Emit extra code to check for buffer overflows, such as stack smashing
attacks. This is done by adding a guard variable to functions with
vulnerable objects. This includes functions that call alloca, and
functions with buffers larger than 8 bytes. The guards are initialized
when a function is entered and then checked when the function
exits. If a guard check fails, an error message is printed and the
program exits

Can be disabled with -fno-stack-protector flag

Topics

Stack overflow defenses
▪ Stackguard & Stackshield
▪ Boundary checking

Heap corruption defenses

Code-injection defenses and bypasses
▪ Non executable stack (and heap)
▪ Early code-reuse attacks/return-to-libc
▪ ASCII armored space

ASLR and bypasses

Fall 2018 Stevens Institute of Technology 18

Run time checking: Libsafe

Dynamically loaded library

Intercepts calls to strcpy (dest, src)

▪ Validates sufficient space in current stack frame:
|frame-pointer – dest| > strlen(src)

▪ If so, does strcpy()

▪ Otherwise, terminates application

destret-addrsfp
top
of
stack

src buf ret-addrsfp

libsafe main
Fall 2018 Stevens Institute of Technology 19

Topics

Stack overflow defenses
▪ Stackguard & Stackshield
▪ Boundary checking

Heap corruption defenses

Code-injection defenses and bypasses
▪ Non executable stack (and heap)
▪ Early code-reuse attacks/return-to-libc
▪ ASCII armored space

ASLR and bypasses

Fall 2018 Stevens Institute of Technology 20

Heap Arbitrary Writes

n->next->prev = n->prev;

n->prev->next = n->next;

Facts About DLinked Lists

n->prev->next == n

n->next->prev == n

If these are violated a
corruption has occurred!

Fall 2018 Stevens Institute of Technology

Heap Protections

21

Heap Arbitrary Writes

n->next->prev = n->prev;

n->prev->next = n->next;

Facts About DLinked Lists

n->prev->next == n

n->next->prev == n

If these are violated a
corruption has occurred!

Fall 2018 Stevens Institute of Technology

Heap Protections

22

* glibc detected * ./load: double free or corruption (!prev): 0x0000000000c6ed50 ***
* glibc detected * ./load: double free or corruption (!prev): 0x0000000000c6ed50 ***

* glibc detected * ./load: double free or corruption (!prev): 0x0000000000c6ed50 ***

Other Protections

Separating metadata from chunks

Adding canary type values

Fall 2018 Stevens Institute of Technology 23

Topics

Stack overflow defenses
▪ Stackguard & Stackshield
▪ Boundary checking

Heap corruption defenses

Code-injection defenses and bypasses
▪ Non executable stack (and heap)
▪ Early code-reuse attacks/return-to-libc
▪ ASCII armored space

ASLR and bypasses

Fall 2018 Stevens Institute of Technology 24

Fall 2018 Stevens Institute of Technology

Virtual Memory

Virtual memory Physical memory

25

The Memory Management Unit

Used in all modern servers, laptops, and smart phones

One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

Fall 2018 Stevens Institute of Technology 26

Fall 2018 Stevens Institute of Technology

Page Permissions

r
r

rw
rw
rw

r
r

rw

Virtual memory Physical memory

For many years the read
permission implied execute

as well

Heap

Libraries

Stack

27

Non-executable Memory (PaX)

PaX stands for PageEXec

Introduced in 2000

A Linux kernel patch protection emulating non-executable
memory

PaX refused code execution on writable pages

Fall 2018 Stevens Institute of Technology 28

Each page is associated
with a supervisor bit

▪ Access only allowed from
the kernel

PaX set that bit and kept
track of PaX-protected
pages

Page-fault handler
intercepted to check for
PaX-protected pages

Fall 2018 Stevens Institute of Technology

Emulating Non-Executable
Memory

r
r

rwS
rwS
rwS

r
r

rwS

Virtual memory

Heap

Libraries

Stack

29

Each page is associated
with a supervisor bit

▪ Access only allowed from
the kernel

PaX set that bit and kept
track of PaX-protected
pages

Page-fault handler
intercepted to check for
PaX-protected pages

Fall 2018 Stevens Institute of Technology

Emulating Non-Executable
Memory

r
r

rwS
rwS
rwS

r
r

rwS

Virtual memory

Heap

Libraries

Stack

Read

OK

Write
OK

Execute
Crash

30

NX-bit

Processor manufacturers introduced a new bit in page
permissions to prevents code injections

Coined No-eXecute or Execute Never

The NX-bit (No-eXecute) was introduced first by AMD to
resolve such issues in 2001

▪ Asserting NX, makes a readable page non-executable

▪ Frequently referred to as Data Execution Prevention (DEP) on
Windows

Marketed as antivirus technology

Fall 2018 Stevens Institute of Technology 31

Fall 2018 Stevens Institute of Technology 32

Adoption

A non-executable stack was not immediately adopted

The OS occasionally needed to place code in the stack
▪ For example, trampoline code for handling UNIX signals

Fall 2018 Stevens Institute of Technology 33

W^X Policy

Data-execution prevention lead to a more generic
security policy

The Write XOR Execute (W^X) policy mandates that in a
program there are no memory pages that are both
writable and executable

Fall 2018 Stevens Institute of Technology 34

Malicious code (shellcode) is injected into
attacker controlled, executable memory

The controlled instruction pointer is
directed to injected code

Fall 2018 Stevens Institute of Technology

No More Code Injection

S T A
 C

 Kbuf + 0x14

AAAA

AAAA

AAAA

AAAA

\0???

SH
EL

LC
O

D
E

35

Unless You Are a Browser…

Very popular software
▪ Probably installed on every client device

Large and complex software

Execute JavaScript

Fall 2018 Stevens Institute of Technology 36

Fall 2018 Stevens Institute of Technology

How Does JavaScript Run

Parser
Source
code

AST
Bytecode
generator

Bytecode Interpreter

Execution

37

Fall 2018 Stevens Institute of Technology

How Does JavaScript Run

Parser
Source
code

AST
Bytecode
generator

Bytecode

Interpreter

Execution

JIT compiler

Native
code

Code
Cache

JITed code

Execution
38

Fall 2018 Stevens Institute of Technology

How Does JavaScript Run

Parser
Source
code

AST JIT compiler
Code
Cache

Execution

• Google V8 designed specifically to execute at speed.
• Bytecode generation skipped
• Directly emit native code
• Overall JavaScript execution improved by 150%

Native
code

39

JITed code and code cache
have interesting properties
from the perspective of the
attacker

▪ Code is continuously
generated

▪ Code needs to be
executable

Violates the W^X policy

Fall 2018 Stevens Institute of Technology

Code Cache

Code
Cache

JITed code

Execution

40

JITed code and code cache
have interesting properties
from the perspective of the
attacker

▪ Code is continuously
generated

▪ Code needs to be
executable

Violates the W^X policy

Fall 2018 Stevens Institute of Technology

Code Cache

Code
Cache

JITed code

Execution

How can an
attacker place

shellcode in the
code cache?

41

From JS to Code Cache

JS code is JITed and placed in the code cache

Some JS engines do not separate data and code

Fall 2018 Stevens Institute of Technology

<html>
<body>
<script language='javascript'>

var myvar = unescape('%u\4F43%u\4552'); // CORE
myvar += unescape('%u\414C%u\214E'); // LAN!
alert("allocation done");

</script>
</body>
</html>

42

Topics

Stack overflow defenses
▪ Stackguard & Stackshield
▪ Boundary checking

Heap corruption defenses

Code-injection defenses and bypasses
▪ Non executable stack (and heap)
▪ Early code-reuse attacks/return-to-libc
▪ ASCII armored space

ASLR and bypasses

Fall 2018 Stevens Institute of Technology 43

Return-to Attacks

What can I do if I control the return address when I
cannot inject code?

Fall 2018 Stevens Institute of Technology 44

Return-to Attacks

What can I do if I control the return address when I
cannot inject code?

Return to an existing function (e.g., a libc function)

Fall 2018 Stevens Institute of Technology

Process

.text

Application
code

libc

C library
(defines system call wrappers,
memory management routines,
and other basic facilities)

other
lib

other
lib

45

Fall 2018 Stevens Institute of Technology

$ ldd /bin/ls
linux-vdso.so.1 (0x00007ffc83b62000)
libselinux.so.1 => /lib/x86_64-linux-gnu/libselinux.so.1 (0x00007f9edfdf1000)
libacl.so.1 => /lib/x86_64-linux-gnu/libacl.so.1 (0x00007f9edfbe8000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f9edf83d000)
libpcre.so.3 => /lib/x86_64-linux-gnu/libpcre.so.3 (0x00007f9edf5cf000)
libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f9edf3cb000)
/lib64/ld-linux-x86-64.so.2 (0x00007f9ee0016000)
libattr.so.1 => /lib/x86_64-linux-gnu/libattr.so.1 (0x00007f9edf1c6000)
libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f9edefa9000)

46

Return-to-libc (ret2libc) on 32-bits

Replace return address with the
address of an existing function

Example: system() executes an a
program in a new process

Fall 2018 Stevens Institute of Technology

S T A
 C

 K

&system

AAAA

AAAA

AAAA

AAAA

Lib
raries

system()

47

Shell Using ret2libc

Locate system libc call
▪ int system(const char *command);

Set return address to the address of system()

Prepare one argument for system()

Fall 2018 Stevens Institute of Technology

$ readelf -s /lib/i386-linux-gnu/libc-2.19.so |grep system
1442: 0003de80 56 FUNC WEAK DEFAULT 12 system@@GLIBC_2.0

48

Fall 2018 Stevens Institute of Technology

080483fb <main>:
80483fb: 8d 4c 24 04 lea 0x4(%esp),%ecx
80483ff: 83 e4 f0 and $0xfffffff0,%esp
8048402: ff 71 fc pushl -0x4(%ecx)
8048405: 55 push %ebp
8048406: 89 e5 mov %esp,%ebp
8048408: 51 push %ecx
8048409: 83 ec 04 sub $0x4,%esp
804840c: 83 ec 0c sub $0xc,%esp
804840f: 68 c0 84 04 08 push $0x80484c0
8048414: e8 b7 fe ff ff call 80482d0 <system@plt>
...

int main(void)
{

system("/bin/shell");
return 0;

}

49

Fall 2018 Stevens Institute of Technology

Preparing the Stack

Stack

804840f: 68 c0 84 04 08 push $0x80484c0
8048414: e8 b7 fe ff ff call 80482d0 <system@plt>

ESP

EIP

50

Fall 2018 Stevens Institute of Technology

Preparing the Stack

Stack *cmd

804840f: 68 c0 84 04 08 push $0x80484c0
8048414: e8 b7 fe ff ff call 80482d0 <system@plt>

ESP

EIP

51

Fall 2018 Stevens Institute of Technology

Preparing the Stack

Stack *cmd

804840f: 68 c0 84 04 08 push $0x80484c0
8048414: e8 b7 fe ff ff call 80482d0 <system@plt>

ESP

EIP 0003de80 <__libc_system>:
3de80: 53 push %ebx

ret

52

Fall 2018 Stevens Institute of Technology

Preparing the Stack

Stack *cmd

804840f: 68 c0 84 04 08 push $0x80484c0
8048414: e8 b7 fe ff ff call 80482d0 <system@plt>

ESP

EIP 0003de80 <__libc_system>:
3de80: 53 push %ebx

ret

The stack needs to look like this
when system() is entered

53

Preparing the Stack

Add a fake return address and a
pointer to the command we want
to execute on the stack

Fall 2018 Stevens Institute of Technology

S T A
 C

 K

&system

AAAA

AAAA

/sh\0

/bin

Lib
raries

system()

Fake return
address

*cmd

54

Return-to-libc on 64-bits

Arguments are passed using registers
▪ First 6 integer or pointer arguments are passed in registers

RDI, RSI, RDX, RCX, R8, and R9

RBP, RBX, and R12–R15 are callee saved

RAX used for function return

Fall 2018 Stevens Institute of Technology 55

Fall 2018 Stevens Institute of Technology

0000000000400506 <main>:
400506: 55 push %rbp
400507: 48 89 e5 mov %rsp,%rbp
40050a: bf a4 05 40 00 mov $0x4005a4,%edi
40050f: e8 cc fe ff ff callq 4003e0 <system@plt>

...

int main(void)
{

system("/bin/shell");
return 0;

}

How to load an argument to
a register (e.g., rdi)?

56

Code-reuse Attacks

Any code that already exists in the process can be
executed

For example, the following sequence

0x0000000000405255 : pop rdi ; ret

Such short instructions sequences are referred to as
gadgets

Fall 2018 Stevens Institute of Technology 57

Redirect control to gadget

Fall 2018 Stevens Institute of Technology

Return-to-libc on 64-bit

Stack

RSP

g1

g1 : pop rdi
g1+1 : ret

58

Redirect control to gadget

Load argument on register

Fall 2018 Stevens Institute of Technology

Return-to-libc on 64-bit

Stack

RSP

g1

g1 : pop rdi
g1+1 : ret

RIP

*cmd

59

Redirect control to gadget

Load argument on register

Redirect control to libc
function

Fall 2018 Stevens Institute of Technology

Return-to-libc on 64-bit

Stack

RSP

g1

g1 : pop rdi
g1+1 : retRIP

*cmd

f1 <__libc_system>:
f1 : push rbp

f1

60

Redirect control to gadget

Load argument on register

Redirect control to libc
function

Fall 2018 Stevens Institute of Technology

Return-to-libc on 64-bit

Stack

RSP

g1

g1 : pop rdi
g1+1 : ret

RIP

*cmd

f1 <__libc_system>:
f1 : push rbp

f1

61

Redirect control to gadget

Load argument on register

Redirect control to libc
function

Get shell!!

Fall 2018 Stevens Institute of Technology

Return-to-libc on 64-bit

Stack

RSP

g1

g1 : pop rdi
g1+1 : ret

*cmd

f1 <__libc_system>:
f1 : push rbp

f1

RIP

62

