
Sandboxing
CS-576 Systems Security

Instructor: Georgios Portokalidis
Fall 2018

Why?
Software has bugs
Defenses slip
Untrusted code

Compartmentalization
limits interference and
damage!

Fall 2018

Sandboxing Means Isolation

“a sandbox is a security mechanism for separating running programs”
-- wikipedia

Stevens Institute of Technology 2

Opportunities for Sandboxing:
Browsers

Fall 2018

Flash
plugin

Browser

JS
engine

Internet

.swf

.js

Untrusted
inputs

Stevens Institute of Technology 3

Fall 2018

Opportunities for Sandboxing:
Browsers

Flash
plugin

Browser

JS
engine

Internet

.swf

.js

Sandboxes

Untrusted
inputs

Stevens Institute of Technology 4

Fall 2018

Untrusted Code in Browsers

Flash
plugin

Browser

JS
engine

Internet

.html

.css
Rendering

engine

Untrusted
inputs

Stevens Institute of Technology 5

Fall 2018

Untrusted Code in Browsers

Flash
plugin

Browser

JS
engine

Internet

.html

.css
Rendering

engine

Untrusted
inputs

Sandbox?

Stevens Institute of Technology 6

Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code

generation, or through emulation
§ Security checks injected to enforce policy

Fall 2018 Stevens Institute of Technology 7

Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code

generation, or through emulation
§ Security checks injected to enforce policy

Fall 2018 Stevens Institute of Technology 8

Fall 2018

Lets Refresh What We Know
About OSes

Stevens Institute of Technology 9

Fall 2018

OS Access Control of HW

User land

Kernel

Application Application Application

Trusted Kernel

CPU MEMORY HW DEVICES
Hardware

Stevens Institute of Technology 10

Fall 2018

OS Access Control of HW

User land

Kernel

Application Application Application

Trusted Kernel

CPU MEMORY HW DEVICES
Hardware

User space has
restricted access to
CPU and memory

User space cannot
access HW devices

Stevens Institute of Technology 11

Fall 2018

OS Access Control of HW

User land

Kernel

Application Application Application

Trusted Kernel

CPU MEMORY HW DEVICES
Hardware

Stevens Institute of Technology 12

Fall 2018

OS Access Control of HW

User land

Kernel

Application Application Application

Trusted Kernel

CPU MEMORY HW DEVICES
Hardware

Privileged

Unprivileged

Stevens Institute of Technology 13

Fall 2018

Example of OS-Level Access
Control to HW

Stevens Institute of Technology 14

Process-level Isolation
Processes cannot directly access each other’s state

Fall 2018

User land

Kernel

USER1
Application

USER1
Application

USER1
Application

Trusted Kernel

Stevens Institute of Technology 15

Process-level Isolation
The kernel can setup inter-process communication

Fall 2018

User land

Kernel

USER1
Application

USER1
Application

USER1
Application

Trusted Kernel

IPC
setup

Stevens Institute of Technology 16

Process-level Isolation
The kernel can setup inter-process communication

Fall 2018

User land

Kernel

USER1
Application

USER1
Application

USER1
Application

Trusted Kernel

IPC
setup

IPC
channel

Stevens Institute of Technology 17

Process-level Isolation
Same for processes owned by different users

Fall 2018

User land

Kernel

USER1
Application

USER2
Application

USER3
Application

Trusted Kernel

IPC
setup

IPC
channel

Stevens Institute of Technology 18

The memory-management
unit (MMU) provides virtual
memory

Execution rings separate
user and kernel space

§ Indicated by bits in CPU
status register

Processes are isolated into
different virtual memory
address spaces

Fall 2018

Hardware-based Enforcement

USER1
Application

USER2
Application

Trusted Kernel

Ring 3

Ring 0
VMEM VMEM

Stevens Institute of Technology 19

Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code

generation, or through emulation
§ Security checks injected to enforce policy

Fall 2018 Stevens Institute of Technology 20

Building on Process Isolation
Run code in its own process space to isolate it from
browser process
Congratulations you have just executed untrusted code
from the Internet!

Fall 2018

Browser

Flash
plugin

Browser

Flash
plugin

Plugin container

IPC

Stevens Institute of Technology 21

Container must have limited privileges

Fall 2018

Building on Process Isolation

Browser

Flash
plugin

Plugin container

IPC

Stevens Institute of Technology 22

Chromium Sandboxing in Linux
Chromium runs plugins and the rendering engine for each
tab in a separate process
Rendering processes are sandboxed
Sandboxed processes are managed by a broker process
over IPC

Fall 2018

https://chromium.googlesource.com/chromium/src/+/master/docs/linux_sandboxing.md

Stevens Institute of Technology 23

https://chromium.googlesource.com/chromium/src/+/master/docs/linux_sandboxing.md

Fall 2018 Stevens Institute of Technology 24

Process Sandbox: SUID
A helper binary with the setuid bit set is used

The SUID bit causes the execution of the process as root
§ Enables access to privileged kernel APIs, such as namespaces

chroot() is used to change the process’ root directory
§ Take away file system access from the process

Process is placed in new PID namespace
§ Process cannot terminate or signal processes outside the namespace

Process is placed in new network namespace
§ Restrict network access of process

Finally drop super-user privileges

Fall 2018 Stevens Institute of Technology 25

Process Sandbox: User
Namespaces
User namespaces are an unprivileged API

Used as an alternative to SUID sandbox

A process is placed a new namespace

Isolates:
§ Filesystem
§ Network
§ PID
§ IPC

Fall 2018 Stevens Institute of Technology 26

User Namespaces
A newly launched process can be put in a new namespace

§ Through the clone() system call

Fall 2018

Reading material: https://lwn.net/Articles/531114/

Namespace Constant Isolates
Cgroup CLONE_NEWCGROUP Cgroup root directory
IPC CLONE_NEWIPC System V IPC, POSIX message queues
Network CLONE_NEWNET Network devices, stacks, ports, etc.
Mount CLONE_NEWNS Mount points
PID CLONE_NEWPID Process IDs
User CLONE_NEWUSER User and group IDs
UTS CLONE_NEWUTS Hostname and NIS domain name

Available namespaces

Stevens Institute of Technology 27

https://lwn.net/Articles/531114/

Process Sandbox: SECCOMP BPF
Filters the kernel APIs available to a process

Used together with previous sandboxes

Aims to protect the kernel from a malicious process

Available system calls are defined using Berkeley packet
filters

§ Filters are compiled to a program that enforces policy

Fall 2018 Stevens Institute of Technology 28

SECCOMP BPF Programs
Programs consist of instructions that can check the values
of various system calls and their arguments

§ Cannot dereference pointers
BPF can be hard to write and looks like assembly
Example:

§ a BPF load operation (BPF_LD), for a word (BPF_W), using the value in the
instruction as an offset into the data area (BPF_ABS)

§ a jump-if-equal instruction (BPF_JMP | BPF JEQ) that compares the value in the
instruction, which is known as "k", (BPF_K) to the value in the accumulator. So, if
the architecture is x86-64, this jump will skip the next instruction (the offset of
"1" for the jump true destination), otherwise it will execute it ("0" for jump false)

Fall 2018

BPF_STMT(BPF_LD | BPF_W | BPF_ABS, (offsetof(struct seccomp_data, arch)))

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K , AUDIT_ARCH_X86_64 , 1, 0)

Stevens Institute of Technology 29

SECCOMP BPF Programs
What you can do
Filter specific system calls

§ Or particular arguments to them
Define what action to take when an invalid call is made

What you can’t do
Dereference pointer arguments
Remove an installed filter

Fall 2018 Stevens Institute of Technology 30

Libsecomp
Offers a simpler API for writing filters

Fall 2018

int seccomp_rule_add(uint32_t action, int syscall, unsigned int arg_cnt, ...);

seccomp_rule_add(SCMP_ACT_ALLOW, SCMP_SYS(close), 0);

Stevens Institute of Technology 31

Fall 2018

#include <stdio.h> /* printf */
#include <unistd.h> /* dup2: just for test */
#include <seccomp.h> /* libseccomp */

int main() {
printf("step 1: unrestricted\n");

// Init the filter
scmp_filter_ctx ctx;
ctx = seccomp_init(SCMP_ACT_KILL); // default action: kill

// setup basic whitelist
seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(rt_sigreturn), 0);
seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(exit), 0);
seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(read), 0);
seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(write), 0);

// setup our rule
seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(dup2), 2,

SCMP_A0(SCMP_CMP_EQ, 1),
SCMP_A1(SCMP_CMP_EQ, 2));

// build and load the filter
seccomp_load(ctx);
printf("step 2: only 'write' and dup2(1, 2) syscalls\n");

// Redirect stderr to stdout
dup2(1, 2);
printf("step 3: stderr redirected to stdout\n");

// Duplicate stderr to arbitrary fd
dup2(2, 42);
printf("step 4: !! YOU SHOULD NOT SEE ME !!\n");

// Success (well, not so in this case...)
return 0;

}

Stevens Institute of Technology 32

Limitations of OS and VM-based
Sandboxing
Context switches between broker and sandboxed
processes can be expensive

Fall 2018 Stevens Institute of Technology 33

Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code

generation, or through emulation
§ Security checks injected to enforce policy

Fall 2018 Stevens Institute of Technology 34

Example: JS/Java
The language and the runtime environment/VM is
enforcing security

§ Memory safe languages
§ Memory corruption or leakage is not possible (at least in

theory)

Access control done at the API level, for example:
§ Which files can be loaded
§ Which frames are accessible through the DOM
§ Where can code be loaded from
§ The VM acts as a reference monitor

Fall 2018 Stevens Institute of Technology 35

Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code

generation, or through emulation
§ Security checks injected to enforce policy

Fall 2018 Stevens Institute of Technology 36

Sandboxing Unsafe Languages
Pointers can be used to potential read/write arbitrary
memory

Memory accesses need to be isolated first
§ Can rarely rely on HW to contain memory operations
§ Software checks are introduced in application code

Fall 2018 Stevens Institute of Technology 37

Software-fault Isolation
Run multiple programs in the same address space that
run in isolation

Each program runs in a different logical fault domain

Programs can access memory within their domain
§ Ensures memory secrecy and integrity

Code within a domain cannot call/jump to code in other
domains

§ Unless through secure interfaces

Fall 2018 Stevens Institute of Technology 38

Software-fault Isolation
Programs can only access memory within their domain

§ Ensures memory secrecy and integrity

Fall 2018

Write OK Write OK

Domain-1 Domain-2Write
disallowed

Stevens Institute of Technology 39

Software-fault Isolation
Programs can only access memory within their domain

§ Ensures memory secrecy and integrity

Code within a domain cannot call/jump to code in other
domains

§ Unless through secure interfaces

Fall 2018

Function call

Domain-1 Domain-2Transfer
disallowed

Function call

Stevens Institute of Technology 40

Software-fault Isolation
Programs can only access memory within their domain

§ Ensures memory secrecy and integrity

Code within a domain cannot call/jump to code in other
domains

§ Unless through secure interfaces

Modify programs during compilation or by rewriting to
enforce these properties

Fall 2018 Stevens Institute of Technology 41

Constraining Memory Accesses
Through boundary checking

Fall 2018

cmp 0x0300
if less Error
cmp 0x04AA
if greater Error
write x

0x0300

0x04AA

Stevens Institute of Technology 42

Constraining Memory Accesses
We can improve the boundary checks

§ By allocating domains in aligned memory ranges
§ Using bit masking to help with checking

Fall 2018

tmp := x & FF00
cmp tmp 0300
if not equal Error
write x

0x0300

0x03FF

Stevens Institute of Technology 43

Constraining Memory Accesses
Further improvements

§ Do not detect error
§ Constrain memory access to domain

Fall 2018

tmp : = x & 00FF
tmp : = tmp | 0300
write tmp

0x0300

0x03FF

Stevens Institute of Technology 44

Constraining Memory Accesses
Eliminating temporary registers is not always a good idea

Fall 2018

0x0300

0x03FF

…
x : = x & 00FF
x : = x | 0300
write x

Malicious code could
bypass masking

operations

Time Of Check
Time Of Use

(TOCTOU)

Stevens Institute of Technology 45

Constraining Memory Accesses
Can malicious code bypass checks with temporary
registers?

Fall 2018

tmp : = x & 00FF
tmp : = tmp | 0300
write tmp

0x0300

0x03FF

Stevens Institute of Technology 46

Constraining Memory Accesses
Can malicious code bypass checks with temporary
registers?

Fall 2018

tmp : = x & 00FF
tmp : = tmp | 0300
write tmp

0x0300

0x03FF

?
• tmp has not been initialized

and will probably cause the
program to crash.

• Can be forced to crash by
setting tmp to bad address
(e.g., 0xffffffff) after write

Stevens Institute of Technology 47

Constraining Control Flow
Sandboxes are mainly to used to constrain untrusted code
so obviously this is a general problem

Fall 2018

…
jmp ptr

?

Stevens Institute of Technology 49

Constraining Control Flow
Similar tricks can be applied

Fall 2018

…
jmp ptr

…
tptr : = ptr & 00FF
tptr : = tptr | 0300
jmp tptr

…
call ptr

…
tptr : = ptr & 00FF
tptr : = tptr | 0300
call tptr

…
ret ?

Stevens Institute of Technology 50

Constraining Control Flow
Naive approach

Fall 2018

ret

pop tptr
tptr : = tptr & 00FF
tptr : = tptr | 0300
jmp ptr

Stevens Institute of Technology 51

CISC Trouble
Constraining within the domain is not enough

§ Instructions may be hidden within instructions in CISC
programs

Fall 2018

ins ins ins ins ins ins

ins ins ins ins ins ins

ins ins ins ins ins ins

Stevens Institute of Technology 52

Pseudo Fixed-size Instructions
Align every “pseudo” instruction on a 32-byte boundary

§ 0x1F bits are always zero
Force pointer so it can only point to a pseudo instruction

Fall 2018

pop tptr
tptr : = tptr & 00E0
tptr : = tptr | 0300
jmp ptr

Stevens Institute of Technology 53

Benefits of SFI
No context switches

Faster if run-time checks are faster than context switching

Fall 2018 Stevens Institute of Technology 54

Google Native Client (NaCL)
A sandboxing technology for running a subset of Intel
x86, ARM, or MIPS native code in a sandbox

https://developer.chrome.com/native-client

NaCL programs are compiled with modified compiler

Supports subset of language

Produces sandboxed programs
Fall 2018 Stevens Institute of Technology 55

https://developer.chrome.com/native-client

Escaping Sandboxes
Exploitation of a sandboxed component grants limited
control

But sandboxes may have bugs

Multiple exploits in different components are usually
required

In 2012’s pwnium competition 14 bugs where needed to
take down chrome

§ http://blog.chromium.org/2012/05/tale-of-two-pwnies-part-
1.html

Fall 2018 Stevens Institute of Technology 56

http://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html

Fall 2018

Multiple Layers of Sandboxes

Sandboxed process

Sandboxed
component

Original process

Stevens Institute of Technology 57

Other Use Cases for Isolation
Process-level Isolation from the OS is frequently used to
realize the principle of least privilege in servers

Examples: SSH, Web servers

Fall 2018 Stevens Institute of Technology 58

Fall 2018

SSH

SSH
listening
process

SSH request
serving
process

Connections

Authenticate
SSH request

serving
process

SSH request
serving
process

fork()
Runs as root

How is access control done here?

Stevens Institute of Technology 59

Fall 2018

SSH

SSH
listening
process

SSH request
serving
process

Connections

Authenticate
SSH request

serving
process

SSH request
serving
process

fork()
Runs as root

setuid()/seteuid()

Process drop privileges and
run as the authenticated user

Stevens Institute of Technology 60

