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Why?
Software has bugs
Defenses slip
Untrusted code

Compartmentalization 
limits interference and 
damage!
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Sandboxing Means Isolation

“a sandbox is a security mechanism for separating running programs” 
-- wikipedia
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Opportunities for Sandboxing: 
Browsers
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Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code 

generation, or through emulation
§ Security checks injected to enforce policy
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Lets Refresh What We Know 
About OSes
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User space cannot 
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Example of OS-Level Access 
Control to HW
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Process-level Isolation
Processes cannot directly access each other’s state
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Process-level Isolation
The kernel can setup inter-process communication
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Process-level Isolation
Same for processes owned by different users
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The memory-management 
unit (MMU) provides virtual 
memory

Execution rings separate 
user and kernel space

§ Indicated by bits in CPU 
status register

Processes are isolated into 
different virtual memory 
address spaces
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Hardware-based Enforcement
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Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code 

generation, or through emulation
§ Security checks injected to enforce policy
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Building on Process Isolation
Run code in its own process space to isolate it from 
browser process
Congratulations you have just executed untrusted code 
from the Internet!
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Container must have limited privileges
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Chromium Sandboxing in Linux
Chromium runs plugins and the rendering engine for each 
tab in a separate process
Rendering processes are sandboxed
Sandboxed processes are managed by a broker process 
over IPC
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https://chromium.googlesource.com/chromium/src/+/master/docs/linux_sandboxing.md
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Process Sandbox: SUID
A helper binary with the setuid bit set is used 

The SUID bit causes the execution of the process as root
§ Enables access to privileged kernel APIs, such as namespaces

chroot() is used to change the process’ root directory
§ Take away file system access from the process

Process is placed in new PID namespace
§ Process cannot terminate or signal processes outside the namespace

Process is placed in new network namespace
§ Restrict network access of process

Finally drop super-user privileges
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Process Sandbox: User 
Namespaces
User namespaces are an unprivileged API

Used as an alternative to SUID sandbox

A process is placed a new namespace

Isolates:
§ Filesystem
§ Network
§ PID
§ IPC
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User Namespaces
A newly launched process can be put in a new namespace

§ Through the clone() system call
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Reading material: https://lwn.net/Articles/531114/

Namespace   Constant                         Isolates
Cgroup CLONE_NEWCGROUP   Cgroup root directory
IPC             CLONE_NEWIPC             System V IPC, POSIX message queues
Network   CLONE_NEWNET            Network devices, stacks, ports, etc.
Mount       CLONE_NEWNS             Mount points
PID             CLONE_NEWPID            Process IDs
User          CLONE_NEWUSER         User and group IDs
UTS            CLONE_NEWUTS           Hostname and NIS domain name

Available namespaces
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Process Sandbox: SECCOMP BPF
Filters the kernel APIs available to a process

Used together with previous sandboxes

Aims to protect the kernel from a malicious process

Available system calls are defined using Berkeley packet 
filters

§ Filters are compiled to a program that enforces policy
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SECCOMP BPF Programs
Programs consist of instructions that can check the values 
of various system calls and their arguments

§ Cannot dereference pointers
BPF can be hard to write and looks like assembly
Example:

§ a BPF load operation (BPF_LD), for a word (BPF_W), using the value in the 
instruction as an offset into the data area (BPF_ABS)

§ a jump-if-equal instruction (BPF_JMP | BPF JEQ) that compares the value in the 
instruction, which is known as "k", (BPF_K) to the value in the accumulator. So, if 
the architecture is x86-64, this jump will skip the next instruction (the offset of 
"1" for the jump true destination), otherwise it will execute it ("0" for jump false)

Fall 2018

BPF_STMT(BPF_LD | BPF_W | BPF_ABS, (offsetof(struct seccomp_data, arch)))

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K , AUDIT_ARCH_X86_64 , 1, 0)
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SECCOMP BPF Programs
What you can do
Filter specific system calls

§ Or particular arguments to them
Define what action to take when an invalid call is made

What you can’t do
Dereference pointer arguments
Remove an installed filter
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Libsecomp
Offers a simpler API for writing filters
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int seccomp_rule_add(uint32_t action, int syscall, unsigned int arg_cnt, ...);

seccomp_rule_add(SCMP_ACT_ALLOW, SCMP_SYS(close), 0); 
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#include <stdio.h>   /* printf */
#include <unistd.h>  /* dup2: just for test */
#include <seccomp.h> /* libseccomp */

int main() {
printf("step 1: unrestricted\n");

// Init the filter
scmp_filter_ctx ctx;
ctx = seccomp_init(SCMP_ACT_KILL); // default action: kill

// setup basic whitelist
seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(rt_sigreturn), 0);
seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(exit), 0);
seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(read), 0);
seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(write), 0);

// setup our rule
seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(dup2), 2, 

SCMP_A0(SCMP_CMP_EQ, 1),
SCMP_A1(SCMP_CMP_EQ, 2));

// build and load the filter
seccomp_load(ctx);
printf("step 2: only 'write' and dup2(1, 2) syscalls\n");

// Redirect stderr to stdout
dup2(1, 2);
printf("step 3: stderr redirected to stdout\n");

// Duplicate stderr to arbitrary fd
dup2(2, 42);
printf("step 4: !! YOU SHOULD NOT SEE ME !!\n");

// Success (well, not so in this case...)
return 0; 

}
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Limitations of OS and VM-based 
Sandboxing
Context switches between broker and sandboxed 
processes can be expensive

Fall 2018 Stevens Institute of Technology 33



Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code 

generation, or through emulation
§ Security checks injected to enforce policy
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Example: JS/Java
The language and the runtime environment/VM is 
enforcing security

§ Memory safe languages
§ Memory corruption or leakage is not possible (at least in 

theory)

Access control done at the API level, for example:
§ Which files can be loaded
§ Which frames are accessible through the DOM
§ Where can code be loaded from 
§ The VM acts as a reference monitor
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Sandboxing Unsafe Languages
Pointers can be used to potential read/write arbitrary 
memory

Memory accesses need to be isolated first
§ Can rarely rely on HW to contain memory operations
§ Software checks are introduced in application code  
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Software-fault Isolation
Run multiple programs in the same address space that 
run in isolation

Each program runs in a different logical fault domain

Programs can access memory within their domain
§ Ensures memory secrecy and integrity

Code within a domain cannot call/jump to code in other 
domains

§ Unless through secure interfaces
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Software-fault Isolation
Programs can only access memory within their domain

§ Ensures memory secrecy and integrity
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Write OK Write OK

Domain-1 Domain-2Write
disallowed
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Software-fault Isolation
Programs can only access memory within their domain

§ Ensures memory secrecy and integrity

Code within a domain cannot call/jump to code in other 
domains

§ Unless through secure interfaces
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Function call

Domain-1 Domain-2Transfer
disallowed

Function call
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Software-fault Isolation
Programs can only access memory within their domain

§ Ensures memory secrecy and integrity

Code within a domain cannot call/jump to code in other 
domains

§ Unless through secure interfaces

Modify programs during compilation or by rewriting to 
enforce these properties
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Constraining Memory Accesses
Through boundary checking
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cmp 0x0300
if less Error
cmp 0x04AA
if greater Error
write x

0x0300

0x04AA
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Constraining Memory Accesses
We can improve the boundary checks

§ By allocating domains in aligned memory ranges
§ Using bit masking to help with checking
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tmp := x & FF00
cmp tmp 0300
if not equal Error
write x

0x0300

0x03FF
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Constraining Memory Accesses
Further improvements

§ Do not detect error
§ Constrain memory access to domain
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tmp : = x & 00FF
tmp : = tmp | 0300
write tmp

0x0300

0x03FF
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Constraining Memory Accesses
Eliminating temporary registers is not always a good idea

Fall 2018

0x0300

0x03FF

…
x : = x & 00FF
x : = x | 0300
write x

Malicious code could 
bypass masking 

operations

Time Of Check
Time Of Use

(TOCTOU)
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Constraining Memory Accesses
Can malicious code bypass checks with temporary 
registers?
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tmp : = x & 00FF
tmp : = tmp | 0300
write tmp

0x0300

0x03FF
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Constraining Memory Accesses
Can malicious code bypass checks with temporary 
registers?
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tmp : = x & 00FF
tmp : = tmp | 0300
write tmp

0x0300

0x03FF

?
• tmp has not been initialized 

and will probably cause the 
program to crash.

• Can be forced to crash by 
setting tmp to bad address 
(e.g., 0xffffffff) after write
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Constraining Control Flow
Sandboxes are mainly to used to constrain untrusted code 
so obviously this is a general problem
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…
jmp ptr

?
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Constraining Control Flow
Similar tricks can be applied
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…
jmp ptr

…
tptr : = ptr & 00FF
tptr : = tptr | 0300
jmp tptr

…
call ptr

…
tptr : = ptr & 00FF
tptr : = tptr | 0300
call tptr

…
ret ?
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Constraining Control Flow
Naive approach
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ret

pop tptr
tptr : = tptr & 00FF
tptr : = tptr | 0300
jmp ptr
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CISC Trouble
Constraining within the domain is not enough

§ Instructions may be hidden within instructions in CISC 
programs
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ins ins ins ins ins ins

ins ins ins ins ins ins

ins ins ins ins ins ins
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Pseudo Fixed-size Instructions
Align every “pseudo” instruction on a 32-byte boundary

§ 0x1F bits are always zero
Force pointer so it can only point to a pseudo instruction
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pop tptr
tptr : = tptr & 00E0
tptr : = tptr | 0300
jmp ptr
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Benefits of SFI
No context switches

Faster if run-time checks are faster than context switching
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Google Native Client (NaCL)
A sandboxing technology for running a subset of Intel 
x86, ARM, or MIPS native code in a sandbox

https://developer.chrome.com/native-client

NaCL programs are compiled with modified compiler

Supports subset of language

Produces sandboxed programs
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Escaping Sandboxes
Exploitation of a sandboxed component grants limited 
control

But sandboxes may have bugs

Multiple exploits in different components are usually 
required

In 2012’s pwnium competition 14 bugs where needed to 
take down chrome

§ http://blog.chromium.org/2012/05/tale-of-two-pwnies-part-
1.html
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Multiple Layers of Sandboxes

Sandboxed process

Sandboxed
component

Original process
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Other Use Cases for Isolation
Process-level Isolation from the OS is frequently used to 
realize the principle of least privilege in servers

Examples: SSH, Web servers
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SSH

SSH 
listening 
process

SSH request 
serving 
process

Connections

Authenticate
SSH request 

serving 
process

SSH request 
serving 
process

fork()
Runs as root

How is access control done here?
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SSH

SSH 
listening 
process

SSH request 
serving 
process

Connections

Authenticate
SSH request 

serving 
process

SSH request 
serving 
process

fork()
Runs as root

setuid()/seteuid()

Process drop privileges and 
run as the authenticated user
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