Cryptography Primer

CS-576 Systems Security

Instructor: Georgios Portokalidis Fall 2018

Goals of Cryptography

Confidentiality

Keep content secret from unauthorized entities

Integrity

- Protect content from unauthorized modification
- Authentication
 - Confirm the identity of communicating entities
 - Confirm the identify of data author

Non-repudiation

 Prevent entities from denying previous commitments or actions

Overview

Symmetric encryption

Public-key encryption

Hashing and message authentication codes

Symmetric Encryption

The universal technique for providing confidentiality for transmitted or stored data

Also referred to as conventional encryption or singlekey/secret-key encryption

Two requirements for secure use:

- A strong encryption algorithm
- Sender and receiver must have obtained copies of the secret key in a secure fashion and must keep the key secure

Overview

Terminology

Types of Ciphers

Block ciphers

Processes the input one block of elements at a time

Produces an output block for each input block

Stream ciphers

Processes the input and produces output one element at a time

Requires unpredictable pseudorandom stream independent of the key

Stream Ciphers

Beware of Randomness

Cryptographic algorithms frequently require random numbers

- A true random number generator (TRNG)
 - Uses a nondeterministic source to produce randomness
 - Most operate by measuring unpredictable natural processes
 - e.g., radiation, gas discharge, leaky capacitors
 - Available on modern systems, but cannot provide highvolume of data

Pseudorandom numbers are

- Sequences produced that satisfy statistical randomness tests
- Likely to be predictable
- Likely to be used by implementations

Blocking Ciphers

Block Ciphers - AES

Advanced Encryption Standard (AES)

- A specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001
- A subset of the Rijndael cipher
- Multiple key sizes: 128, 192 or 256 bits
- Block size: 128 bits

Currently considered safe to use

Attacks

Brute force attacks

- Try all possible keys on some ciphertext until an intelligible translation into plaintext is obtained
- On average half of all possible keys must be tried to achieve success

Time Required to Brute-force

Key size (bits)	Cipher	Number of Alternative Keys	Time Required at 10 ⁹ decryptions/s	Time Required at 10 ¹³ decryptions/s
56	DES	$2^{56} \approx 7.2$ ´ 10^{16}	2^{55} ns = 1.125 years	1 hour
128	AES	$2^{128} \approx 3.4$ 10^{38}	$2^{127} \text{ ns} = 5.3 \text{ (10)}^{21}$ years	5.3 \cdot 10 ¹⁷ years
168	Triple DES	$2^{168} \approx 3.7$ 10^{50}	$2^{167} \text{ ns} = 5.8 \text{ (} 10^{33} \text{ years}$	5.8 \cdot 10 ²⁹ years
192	AES	$2^{192} \approx 6.3 \ \ 10^{57}$	$2^{191} \text{ ns} = 9.8 10^{40} \text{ years}$	9.8 \cdot 10 ³⁶ years
256	AES	$2^{256} \approx 1.2$ 10^{77}	2^{255} ns = 1.8 \cdot 10 ⁶⁰ years	1.8 ´ 10 ⁵⁶ years

Attacks

Brute force attacks

- Try all possible keys on some ciphertext until an intelligible translation into plaintext is obtained
- On average half of all possible keys must be tried to achieve success

Cryptanalytic attacks

- Exploit the characteristics of the algorithm and attempt to deduce a specific plaintext or the key being used
- Requires...
 - ... knowledge of the general characteristics of the plaintext
 - ... sample plaintext-ciphertext pairs

How to Break Crypto

Adi Shamir: "Crypto is typically bypassed, not penetrated

Modes of Operation

Direct use of block ciphers is not very useful

- Attackers can build a "code book" of plaintext/ciphertext equivalents
- Message-length needs to be multiple of cipher block size

Solution! Modes of operation

Five standard modes

Mode	Description	Typical Application	
Electronic Codebook (ECB)	Each block of 64 plaintext bits is encoded independently using the same key.	•Secure transmission of single values (e.g., an encryption key)	
Cipher Block Chaining (CBC)	The input to the encryption algorithm is the XOR of the next 64 bits of plaintext and the preceding 64 bits of ciphertext.	General-purpose block- oriented transmissionAuthentication	
Cipher Feedback (CFB)	Input is processed <i>s</i> bits at a time. Preceding ciphertext is used as input to the encryption algorithm to produce pseudorandom output, which is XORed with plaintext to produce next unit of ciphertext.	General-purpose stream- oriented transmissionAuthentication	
Output Feedback (OFB)	Similar to CFB, except that the input to the encryption algorithm is the preceding DES output.	•Stream-oriented transmission over noisy channel (e.g., satellite communication)	
Counter (CTR)	Each block of plaintext is XORed with an encrypted counter. The counter is incremented for each subsequent block.	 General-purpose block- oriented transmission Useful for high-speed requirements 19 	

ECB Mode

In electronic codebook (ECB) mode each block of plaintext is encrypted using the same key

Easy to parallelize

Problems

- Cryptanalysts may be able to exploit regularities in the plaintext (e.g., if p_i == p_i then c_i == c_i)
- Data patterns may remain visible

ECB Mode

ECB mode is not recommended

CBC Mode

In Cipher Block Chaining mode the input is the XOR of the current plaintext block and the preceding ciphertext block

- Initialization vector (IV)
 - Must be random and must not be reused
- Not parallelizable

CBC Mode

During decryption the same IV must be used

Can be transmitted with the message

An error in a transmitted block also affects the following block but not subsequent ones

CTR Mode

Counter mode can be used to turn any blocking cipher to a stream cipher

- The counter is a combination of an integer (0..N-1) with an nonce (IV)
- Parallelizable!

Public-Key Encryption

Publicly proposed by Diffie and Hellman in 1976

Based on mathematical functions

- ...on the practical difficulty of factoring the product of two large prime numbers
- Asymmetric
 - Uses two separate keys a public and a private key
 - Public key is made public for others to use
- Multiple algorithms with different uses
 - Establish a shared secret key
 - Encrypt a message
 - Digital signatures

Requirements for Public-Key Cryptosystems

Computationally easy ...

- ... to create key pairs
- In for sender knowing public key to encrypt messages
- ... for receiver knowing private key to decrypt ciphertext

Computationally infeasible ...

- In for opponent to determine private key from public key
- In for opponent to otherwise recover original message

Useful if either key can be used for each role

Symmetric vs Asymmetric

Which one is best?

- The strength of public-key cryptography depends more heavily on the length of the key
- Intrinsically both offer similar guarantees against cryptanalysis
- Public-key encryption is usually slower
- A shared key must be kept secret, similarly to the private key, but unlike the public key

Encryption with Public Key

Encryption with Private Key

Digital Signing

Digital Signing

Verify ...

- ... the author of data
- ... the integrity of data

Digital Envelopes

Use PK cryptography for encrypting a randomly generated symmetric key, which is used to encrypt a (large) message

PK is only used to encrypt the key

Digital Envelopes

Opening an envelope

PK Encryption Algorithms

Diffie-Hellman key exchange algorithm

- Enables two users to securely reach agreement about a shared secret that can be used as a secret key for subsequent symmetric encryption of messages
- Limited to the exchange of the keys
- RSA (Rivest, Shamir, Adleman)
 - Developed in 1977
 - Most widely accepted and implemented approach to publickey encryption
- Elliptic curve cryptography (ECC)
 - Security like RSA, but with much smaller keys

Comparison

Algorithm	Digital Signature	Symmetric Key Distribution	Encryption of Secret Keys
RSA	Yes	Yes	Yes
Diffie-Hellman	No	Yes	No
DSS	Yes	No	No
Elliptic Curve	Yes	Yes	Yes