
Malware
CS-576 Systems Security

Instructor: Georgios Portokalidis

Fall 2018

Fall 2018 Stevens Institute of Technology 2

Malware

Sample definition
“a program that is inserted into a system, usually
covertly, with the intent of compromising the
confidentiality, integrity, or availability of the victim’s
data, applications, or operating system or otherwise
annoying or disrupting the victim.”

Viruses

Worms

Rootkits

Keyloggers

Trojan Horses

Ransomware

Dialers

Droppers

Spyware

Adware

Backdoors

Fall 2018 Stevens Institute of Technology 3

Evil Takes Many Forms

Infection vector

The type of vulnerability
the malware exploits to
infect a host

▪ Software vulnerability,
download, design flaw,
social engineering, …

The method the malware
uses to propagate

▪ Disks, USB, network,
website, ad, …

Payload

The actions the malware
takes after infecting

▪ DDoS, encrypting disk,
stealing data, backdoor,
…

Fall 2018 Stevens Institute of Technology

Main Classification

4

Also Classified By

Code of malware
▪ Binary, interpreted (JS, VB), macros, …

Infection point
▪ File, boot sector, firmware, memory-only, BIOS, …

Activation
▪ Through user interaction, automatic, mixed

Evasion strategies
▪ Packing, polymorphism, obfuscation, anti-VM/debugging, …

Fall 2018 Stevens Institute of Technology 5

Fall 2018 Stevens Institute of Technology 6

Infection Vectors

Fall 2018 Stevens Institute of Technology

Installed by User

awesome free software

7

Fall 2018 Stevens Institute of Technology

Installed by User

awesome free software

8

Fall 2018 Stevens Institute of Technology

Installed by User

awesome free software

9

Fall 2018 Stevens Institute of Technology

Installed by User

awesome free software

10

Malware Anti-Malware

Fall 2018 Stevens Institute of Technology 11

Fall 2018 Stevens Institute of Technology

ScareWare

12

The Malware Is Hidden In the
Application

Fall 2018 Stevens Institute of Technology 13

Obtained awesome game from shady source

You Got Mail

Receiving a malicious executable or link over email

The obvious
▪ A malicious executable as an attachment

▪ Usually compressed

▪ A link to a website serving malicious executables

Fall 2018 Stevens Institute of Technology 14

Fall 2018 Stevens Institute of Technology 15

Fall 2018 Stevens Institute of Technology 16

You Got Mail

Receiving a malicious executable or link over email

The obvious
▪ A malicious executable as an attachment

▪ Usually compressed

▪ A link to a website serving malicious executables

Less obvious
▪ The attachment has non-executable extension (e.g., .gif), but will

be executed when opened
▪ The file magic number is used instead of the extension

▪ Two file extensions are used and system hides known extensions
▪ Example: “Image.gif.exe”

▪ HTML emails with “hidden” URLs

Fall 2018 Stevens Institute of Technology 17

Fall 2018 Stevens Institute of Technology 18

Fall 2018 Stevens Institute of Technology 19

In All of The Above Cases…

The malware is …

…the application

…embedded in the application

Users initiate download and execution of the malware

Fall 2018 Stevens Institute of Technology 20

Fall 2018 Stevens Institute of Technology

Drive-by-Downloads

awesome website

21

Fall 2018 Stevens Institute of Technology

Drive-by-Downloads

awesome website

22

Fall 2018 Stevens Institute of Technology 23

Typical Drive-by-Download

User visits a website

The website exploits a vulnerability
in the browser

The compromised browser
downloads and installs malware

Drive-by-Downloads

No interaction is required beyond visiting the website,
hence, drive-by

The visited domain does not have to be malicious
▪ For example, it could include a malicious ad or other 3rd

party content

Exploited vulnerabilities
▪ Memory corruptions vulnerabilities in browser or other

native-code component (e.g., Flash)

▪ Plugins that execute code over the network (e.g., ActiveX)

Fall 2018 Stevens Institute of Technology 24

Exploits Delivered Over Email

Email includes document carrying exploit
▪ PDF, doc, etc.

The document exploits a vulnerability in the application
used to opend the

Or it can include malicious interpreted code
▪ Scripts, macros, etc.

Fall 2018 Stevens Institute of Technology 25

Fall 2018 Stevens Institute of Technology 26

Exploits Delivered Over Email

Email includes malicious document

The user opens the attachment

The compromised application
downloads and installs malware

Attachment exploits a vulnerability
in the application used

Fall 2018 Stevens Institute of Technology 27

Exploits Against Servers

Fall 2018 Stevens Institute of Technology 28

Connect to server port

Exploit server vulnerability

The compromised server
downloads and installs malware

Computer Worms

Malware that exploits software vulnerabilities in client or
server programs

Main difference from viruses: it actively seeks out
vulnerable hosts to infect → self replicates

Propagation vectors include:
▪ The network (network shared, server vulnerabilities, email)

▪ Physical media (USB drives, CD, DVD data disks)

Fall 2018 Stevens Institute of Technology 29

Random
▪ Generate random IP addresses and

probe them

Local subnet
▪ First scan the local subnet for targets

▪ Bypasses network-periphery defenses
▪ Faster than random

Hit-list
▪ Compile a long list of potentially

vulnerable machines
▪ Parts of the list are distributed to

“siblings” of the worm
▪ Fast!

Topological
▪ Learn new targets from infected

hosts

Fall 2018 Stevens Institute of Technology 30

Network Target Discovery

Random
▪ Generate random IP addresses and

probe them

Local subnet
▪ First scan the local subnet for

targets
▪ Bypasses network-periphery

defenses
▪ Faster than random

Hit-list
▪ Compile a long list of potentially

vulnerable machines
▪ Parts of the list are distributed to

“siblings” of the worm
▪ Fast!

Topological
▪ Learn new targets from infected

hosts

Fall 2018 Stevens Institute of Technology 31

Network Target Discovery

Random
▪ Generate random IP addresses and

probe them

Local subnet
▪ First scan the local subnet for targets

▪ Bypasses network-periphery defenses
▪ Faster than random

Hit-list
▪ Compile a long list of potentially

vulnerable machines
▪ Parts of the list are distributed to

“siblings” of the worm
▪ Fast!

Topological
▪ Learn new targets from infected

hosts

Fall 2018 Stevens Institute of Technology 32

Network Target Discovery

Random
▪ Generate random IP addresses and

probe them

Local subnet
▪ First scan the local subnet for targets

▪ Bypasses network-periphery defenses
▪ Faster than random

Hit-list
▪ Compile a long list of potentially

vulnerable machines
▪ Parts of the list are distributed to

“siblings” of the worm
▪ Fast!

Topological
▪ Learn new targets from infected

hosts

Fall 2018 Stevens Institute of Technology 33

Network Target Discovery

0.2

0

Slow start phase

Fraction of
hosts infected

Fraction of
hosts not
infected

Time

Figure 6.3 Worm Propagation Model

0.4

0.6

0.8

1.0

Fast spread sphase Slow finish phase

Fall 2018 Stevens Institute of Technology 34

Worms and Epidemiology

Case Study: Morris Worm

Earliest significant worm infection

Released by Robert Morris in 1988

Facts about 1988:
▪ The Internet consisted of about 60,000 computers

▪ They were connected using TCP/IP

▪ Mostly run BSD Unix

Fall 2018 Stevens Institute of Technology 35

Vectors of Infection

Attempted to crack local password file to use
login/password to logon to other systems

Exploited a bug (buffer overflow) in the finger daemon

Exploited a trapdoor in the debug option of the remote
process that receives and sends mail

▪ DEBUG function enables one to run a program at the host
▪ Added by the author of sendmail to remotely troubleshoot systems

▪ Who needs shellcode! Morris sent a C program in an email,
compiled it, and executed it to fetch the rest of the worm
from the already infected host

Fall 2018 Stevens Institute of Technology 36

Target Acquisition

Internet too sparse for random scanning

On SUN and VAX architectures other hosts can be found
by looking in

▪ /etc/hosts.equiv

▪ /.rhosts

▪ .forward

▪ ~/.rhosts

▪ Routing tables

▪ End points of point-to-point interfaces

Fall 2018 Stevens Institute of Technology 37

What It Never Did

Gain privileged access

Destroy data

Install time bombs or backdoors

Brute force the root account

Stevens Institute of Technology 38Fall 2018

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi6_KXvt5nQAhXj5oMKHWGOBRIQjRwIBw&url=http://deadline.com/2016/06/chaotic-good-studios-hires-corey-sienega-john-wikstrom-1201776580/&psig=AFQjCNGAuSAXKc99u6f_mxKKAKS--eml0Q&ust=1478703900248162

Flaws

Never checked if a host is already infected

Routines would exit with errors while leaving a copy of
the virus running:

▪ When multiple instances of the worm attempted to infect a
clean host concurrently

▪ When multiple instances of the worm attempted to infect
and already compromised host

▪ When a machine is heavily loaded (remember it is actually
compiling)

Infection rate was proportional to number of instances of
the worm running on a host

Fall 2018 Stevens Institute of Technology 39

Bad Target Finding

Worm checked for telnet or rsh ports to determine
if a host is running UNIX

▪ Some systems only run sendmail!

It did not utilize DNS

Stevens Institute of Technology 40Fall 2018

First Reactions

Administrators cut off the sendmail service

Big mistake!

It shut off communication channels necessary to fix the
error

The worm had alternate ways to propagate

Stevens Institute of Technology 41Fall 2018

The Author

Robert Morris was a student at Cornell University

He was identified, tried, and convicted in 1990
▪ 3 years of probation, fines, etc.

Received a PhD from Harvard

Now a professor at MIT

Stevens Institute of Technology 42Fall 2018

Fall 2018 Stevens Institute of Technology

More Examples: Code Red

43

Fall 2018 Stevens Institute of Technology 44

Code Red Propagation

Fall 2018 Stevens Institute of Technology

Example: Nimda Worm

45

Passive Propagation

Infect service and wait for clients to connect

Infect connected clients

Fall 2018 Stevens Institute of Technology 46

Usually two
vulnerabilities are needed

Fall 2018 Stevens Institute of Technology 47

Recent Worm Attacks

Melissa 1998 e-mail worm first to include virus, worm and Trojan in one package

Code Red July 2001 exploited Microsoft IIS bug probes random IP addresses
consumes significant Internet capacity when active

Code Red II August 2001 also targeted Microsoft IIS installs a backdoor for access

Nimda September 2001 had worm, virus and mobile code characteristics
spread using e-mail, Windows shares, Web servers, Web clients, backdoors

SQL Slammer Early 2003 exploited a buffer overflow vulnerability in SQL server compact and spread
rapidly

Sobig.F Late 2003 exploited open proxy servers to turn infected machines into spam engines

Mydoom 2004 mass-mailing e-mail worm installed a backdoor in infected machines

Warezov 2006 creates executables in system directories
sends itself as an e-mail attachment
can disable security related products

Conficker
(Downadup)

November 2008 exploits a Windows buffer overflow vulnerability
most widespread infection since SQL Slammer

Stuxnet 2010 restricted rate of spread to reduce chance of detection
targeted industrial control systems

Fall 2018 Stevens Institute of Technology 48

Fast Worms

July 19, 2001
spread of

CODE RED

in 24 hours!

Jan 29, 2003
spread of
SLAMMER

in 30 minutes!

Fall 2018 Stevens Institute of Technology 49

Payloads

Click fraud

Bank fraud

Phishing

Spamming

Spreading malware

Data theft

Identity theft

Extortion

DDoS

Espionage

Sabotage

Fall 2018 Stevens Institute of Technology

Payloads

50

Fall 2018 Stevens Institute of Technology 51

Sources/Motivation

Politically
motivated
attackers

Criminals
Organized

crime

Organizations
that sell their

services to
companies
and nations

National
government

agencies

Two Stage Payloads

The more complex the payload the larger the malware

Maybe too large to send along with the infection

Fall 2018 Stevens Institute of Technology 52

Infect

Get malware

Malware program

Example: Two-stage Attack with
ROP

Use a ROP payload to download and execute malware
▪ system(“wget …”) -> system(“malware …”)

Fall 2018 Stevens Institute of Technology 53

Infect

Get malware

Malware program

OverflowROP payload

Fall 2018 Stevens Institute of Technology 54

Exploit Kits

Exploit Kits

Initially the development and deployment of malware
required considerable technical skill by software authors

The development of virus-creation toolkits in the early 1990s
and then more general attack kits in the 2000s greatly assisted
in the development and deployment of malware

▪ Toolkits are often known as “crimeware”
▪ Widely used toolkits include: Zeus, Blackhole, Sakura, Phoenix

Include a variety of propagation mechanisms and payload
modules that even novices can deploy

Variants that can be generated by attackers using these
toolkits creates a significant problem for those defending
systems against them

Fall 2018 Stevens Institute of Technology 55

Fall 2018 Stevens Institute of Technology

Exploit Kit Infection Chain

http://www.trendmicro.com/vinfo/us/security/definition/exploit-kit

56

http://www.trendmicro.com/vinfo/us/security/definition/exploit-kit

Fall 2018 Stevens Institute of Technology

Exploit Arsenal in Popular Kits

http://www.trendmicro.com/vinfo/us/security/definition/exploit-kit

57

http://www.trendmicro.com/vinfo/us/security/definition/exploit-kit

Fall 2018 Stevens Institute of Technology 58

Malware Analysis

Why Do We Analyze Malware?

To access damage

To identify infection signs for discovering other
compromised hosts

To determine how it can be removed

To generate a “vaccine” for the infection

Stevens Institute of Technology 59Fall 2018

Static

Analyze the code without
executing it

Disassemble

Higher coverage
▪ Prone to obfuscation

Dynamic

Analyze the code while
executing it

Monitor execution

Lower coverage, what I see
is what is executed

Stevens Institute of Technology 60

Types of Analysis

Fall 2018

Examples of extracted data from malware:

Instructions

Function call graph

Control flow graph

Invoked APIs

Disrupting Disassembly

Common obfuscation approaches:

Use indirect control transfers

Overlapping instructions
▪ x86

▪ Dalvik -- http://www.dexlabs.org/blog/bytecode-obfuscation

Return-oriented programming
▪ https://www.usenix.org/system/files/conference/usenixsecu

rity13/sec13-paper_wang-updated-8-23-13.pdf

Stevens Institute of Technology 61Fall 2018

21

Fall 2018 Stevens Institute of Technology 62

Different Code Based on Where
you Start From

0

ins ins ins ins ins ins

ins ins ins ins ins ins

ins ins ins ins ins ins

Fall 2018 Stevens Institute of Technology

Combining both static and
dynamic analysis is

frequently necessary

63

Detecting Virtual Machines and
Debuggers

If a program is not run natively on a machine, chances are
high that it

▪ is being analyzed (in a security lab)

▪ scanned (inside a sandbox of an Antivirus product)

▪ debugged (by a security specialist)

Modern malware detect execution environment to
complicate analysis

▪ Hide or alter its functionality

▪ Attempt to breakout

Fall 2018 Stevens Institute of Technology 64

Detecting the Matrix VM

Look for VM artifacts in processes, file system, and/or registry
▪ Special files and processes (e.g., VMtools)

Look for VM artifacts in memory
▪ How do you peak into memory?

Look for VM-specific virtual hardware
▪ Device names, device parameters (e.g., MAC address)

Look for VM-specific processor instructions and capabilities
▪ Extra instructions added by VM for guest-host communication

▪ VMs frequently don’t support obscure instructions or have limited
support for instructions

▪ `The red pill’

Remotely by inspecting IP packets

Stevens Institute of Technology 65Fall 2018

Detecting VMs with the Red Pill

Proposed by Joanna Rutkowska

Runs a single instruction
▪ SIDT → Store Interrupt Descriptor Table

▪ Store IDT in memory

Facts and observations
▪ On VMware guest machines, the IDT is typically located at

0xffXXXXXX
▪ On VirtualPC guests, it is located at 0xe8XXXXXX
▪ On host operating systems, it is located lower than that,

typically around 0x80ffffff (Windows) and 0xc0ffffff (Linux)

It is sufficient to look at the first byte of the address
▪ If it’s greater than 0xd0, you've got a virtual machine
▪ If it is less than or equal to 0xd0, you are in a real machine

Stevens Institute of Technology 66Fall 2018

Red Pill++

Other OS features can be obtained with other instructions
▪ The Global Descriptor Table (GDT), measured by the SGDT

instruction

▪ The Local Descriptor Table (LDT), measured by the SLDT
instruction

Stevens Institute of Technology 67Fall 2018

Anti-Debugging

Detecting a debugger is easy
▪ Windows: IsDebuggerPresent()

▪ Linux: ptrace()

Stevens Institute of Technology 68Fall 2018

if (ptrace(PTRACE_TRACEME, 0, NULL, 0) == -1)
printf("traced!\n");

Fall 2018 Stevens Institute of Technology

http://www.trapkit.de/tools/scoopyng/

69

http://www.trapkit.de/tools/scoopyng/

Malware Detection

So you managed to collect:
▪ Instructions, function call graphs, control-flow graphs, APIs

For many years (static) malware signatures were used to
identify them

Fall 2018 Stevens Institute of Technology 70

Malware Signatures

Signature → a sequence of bytes (usually code) that
uniquely identifies software as malicious

Examples:
▪ The hash of the entire executable

▪ An expression that matches part of an executable

Static signatures have proven not to be a good way to
identify malware

Fall 2018 Stevens Institute of Technology

ce14856cf5fce0b4401
fac00d50e1ce82b641b
e19a2566121045c9bcd
30b4664

71

Polymorphism

Avoid detection by changing (morphing) the bytes of the
malware on each infection

▪ The actual payload can remain the same

Most popular method: encrypt or encode the payload
using a different key for each infection

Fall 2018 Stevens Institute of Technology 72

Creating Variants Using Packers

Examples: UPX, Aspack, FSG, PE Compact, …

Fall 2018 Stevens Institute of Technology 73

Key within binary or
fetched from the network

Weak packers can just
compress the payload

Metamorphism

Create different “versions” of the program code that look
different but have the same semantics (i.e., do the same
thing)

Example techniques:

Dead-code insertion

Instruction reordering

Instruction substitution

Register substitution

…

Fall 2018 Stevens Institute of Technology 74

Dead Code Insertion

Fall 2018 Stevens Institute of Technology 75

5B 00 00 00 00 8D 4B 42 51 50 90 50 40 0F 01 4C 24 FE

48 5B 83 C3 1C FA 8B 2B

5B pop ebx

8D 4B 42 lea ecx, [ebx + 42h]

51 push ecx

50 push eax

90 nop

50 push eax

40 inc eax

0F 01 4C 24 FE sidt [esp – 02h]

48 dec eax

5B pop ebx

83 C3 1C add ebx, 1Ch

FA cli

8B 2B mov ebp, [ebx]

5B 8D 4B 42 51 50 90 50 40 0F 01 4C 24 FE 48 5B 83 C3

1C FA 8B 2B

Fall 2018 Stevens Institute of Technology 76

Instruction Reordering

5B pop ebx

EB 09 jmp <S1>

S2:

50 push eax

0F 01 4C 24 FE sidt [esp - 02h]

5B pop ebx

EB 07 jmp <S3>

S1:

8D 4B 42 lea ecx, [ebx + 42h]

51 push ecx

50 push eax

EB F0 jmp <S2>

S3:

83 C3 1C add ebx, 1Ch

FA cli

8B 2B mov ebp, [ebx]

5B EB 09 50 0F 01 4C 24 FE 5B EB 07 8D

4B 42 51 50 EB F0 83 C3 1C FA 8B 2B

1

1

2

2

3

3

4

4

Fall 2018 Stevens Institute of Technology 77

Instruction Substitution

5B 8D 4B 42 51 50 83 EC 04 89 04 24 0F 01 4C 24 FE

83 04 24 1C 5B 8B 2B

5B pop ebx

8D 4B 42 lea ecx, [ebx + 42h]

51 push ecx

50 push eax

83 EC 04 sub esp, 04h

89 04 24 mov [esp], eax

0F 01 4C 24 FE sidt [esp - 02h]

83 04 24 1C add [esp], 1Ch

5B pop ebx

FA cli

8B 2B mov ebp, [ebx]

pop ebx

lea ecx, [ebx + 42h]

push ecx

push eax

push eax

0F 01 4C 24 FE sidt [esp – 02h]

pop ebx

add ebx, 1Ch

cli

mov ebp, [ebx]

Behavior-based Malware
Detection

Focus on the malicious behaviors demonstrated by
malware instead

Fall 2018 Stevens Institute of Technology 78

Click fraud

Bank fraud

Phishing

Spamming

Spreading malware

Data theft

Identity theft

Extortion

DDoS

Espionage

Sabotage

Advanced Persistent Threats

Well-resourced attacks targeting high-value targets

Aim to gain persistent presence in a system or network
▪ By utilizing multiple attack vectors

▪ By employing hiding techniques

High profile attacks include Aurora, RSA, APT1, and
Stuxnet

Fall 2018 Stevens Institute of Technology 79

How Would you Hide?

Deception

Present a fake image of how
things are (Potemkin
village)

Methods:

Masquerade

Lie
▪ Modify programs to lie
▪ Modify the kernel to lie
▪ Modify VM to lie
▪ Modify the HW to lie?

Stevens Institute of Technology 80Fall 2018

Masquerading

Assume unsuspecting
filename

Stealthy operation
▪ Piggyback

communications

▪ Small footprint

Infect a legitimate
application

Stevens Institute of Technology 81Fall 2018

Before After

Fall 2018 Stevens Institute of Technology 82

Application Infection

Code running at startup

Hook code to call malware

Go back to startup code and
application

Fall 2018 Stevens Institute of Technology 83

Hiding Between Functions

Function 1:
…
…
return

Function 2:
…
return

Function 3:
…
…
return

Gap left for alignment

Gap left for alignment

Fall 2018 Stevens Institute of Technology 84

Hiding Between Functions

Function 1:
…
…
return

Function 2:
…
return

Function 3:
…
…
return

Gap left for alignment

Gap left for alignment

Virus segment

Virus segment

Malware jumps from
segment to segment to
compose its functionality

Lying

Rootkits → Malicious software
designed to hide malware related data

▪ Files

▪ Processes

▪ Logins

▪ Network connections

The inner the level controlled, the
better!

User-level rootkits

Kernel-level rootkits

Stevens Institute of Technology 85Fall 2018

Lying

User-level rootkits

Stevens Institute of Technology 86

• Hypervisor-level rootkits
• Bootkits
• Firmware-level bootkits

Ring -1

Kernel-level rootkits

Rootkits → Malicious software
designed to hide malware related data

▪ Files

▪ Processes

▪ Logins

▪ Network connections

The inner the level controlled, the
better!

Fall 2018

User-level Rootkits

Modify:

Utilities → ps, netstat, top, sshd

Applications → Alter behavior (e.g., modify Windows
Explorer to hide a file)

API hooks → replace system calls, etc.

Stevens Institute of Technology 87Fall 2018

Kernel-level Rootkits

Modify or add:

Kernel code (Phantasmagoria adds instructions in system calls)

Kernel data structures (remove malware from process lists, FU)

APIs (Knark adds entries in the proc file system, SuckIT adds new
system calls)

Mostly implemented as Loadable Kernel Modules

Stevens Institute of Technology 88Fall 2018

Hypervisor Rootkits

Runs with higher privilege than the kernel

Developed in academia (SubVirst, Blue Pill)

Ring 3

Ring 0

Ring -1 (Intel VT-x AMD-V)

Rings 1 and 2

Applications

Unused

Kernel

Reserved for hypervisor

Rootkit

Stevens Institute of Technology 89Fall 2018

Firmware-level Rootkits

Firmware is the lowest-level of software that controls
certain operations of hardware

Till recently the integrity of firmware was not checked
▪ Companies have started using signed firmware updates

Examples:
▪ Organized crime tampers with European card swipe device

http://www.theregister.co.uk/2008/10/10/organized_crime_doctors_chip_and_pin_machines

▪ Attacks on BIOS anti-theft devices turn them into rootkits
http://www.blackhat.com/presentations/bh-usa-09/ORTEGA/BHUSA09-Ortega-DeactivateRootkit-PAPER.pdf

Stevens Institute of Technology 90Fall 2018

http://www.theregister.co.uk/2008/10/10/organized_crime_doctors_chip_and_pin_machines
http://www.blackhat.com/presentations/bh-usa-09/ORTEGA/BHUSA09-Ortega-DeactivateRootkit-PAPER.pdf

(Some) Defenses

Check for file integrity → Tripwire, chkrootkit

Check for divergent results → checkps

Protecting hooks → system calls, internal kernel APIs

Code integrity checks → page-level signing

Stevens Institute of Technology 91Fall 2018

File Integrity Testing

Create checksums (hashes) of binaries on the system

Periodically check installed binaries vs stored checksums

Application signing

Challenges:

Storing the checksums out of reach

Keeping up with updates

Storing the tools out of reach!

Stevens Institute of Technology 92Fall 2018

Looking for Divergent Results

Run binaries and collect results
▪ ps, top, netcat

Collect results from other sources
▪ Directly access /proc filesystem

Compare results to find discrepancies

Challenges:
▪ Find other sources of information

▪ False alerts, system state is dynamic

▪ Storing the tools out of reach!

Stevens Institute of Technology 93Fall 2018

Monitor API Hooks

Store currently used, good set of hooks

Periodically read the values of hooks

Compare values to identify hooks being replaced

Challenges:
▪ Which APIs should be monitored

▪ False alerts, hooks can be placed for legitimate reasons
▪ That’s usually the problem with running multiple antivirus engines

on your PC

Stevens Institute of Technology 94Fall 2018

Code-integrity Checking

Upon loading a page of code hash its contents

Periodically re-hash every page and check it against
previously taken hash

Can be done
▪ By the kernel
▪ A hypervisor
▪ A coprocessor

Challenges:
▪ Storing the hashes out of reach
▪ Keeping up with code updates
▪ Code provenance/generated code
▪ Pages containing both code and data

Stevens Institute of Technology 95Fall 2018

