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Status Quo … Some Years Ago
Software is faulty and includes vulnerabilities

§ Lack of memory safety, insecure design, programmer errors, 
…

§ Integrity can be compromised, and confidential data leaked

Hardware is correct and can be trusted
§ Main problem is the outsourcing of manufacturing
§ Can we trust that the chips we import contain only the logic 

that was part of the original design?
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New Attitude Towards HW
Hardware complexity has risen significantly

§ To deliver more performance despite the end of Moore’s law
§ Moore's law is the observa0on that the number of transistors in a 

dense integrated circuit doubles about every two years. --wikipedia
§ To deliver new features 

§ Virtualiza>on, security, and other extensions

§ To increase performance despite other limita>ons
§ Memory bandwidth, non-parallelized workloads
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$ cat /proc/cpuinfo
…
flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 
ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid
sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb
invpcid_single kaiser tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms
invpcid rtm mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp
hwp_notify hwp_act_window hwp_epp
…



New Attitude Towards HW
Hardware complexity has risen significantly

§ To deliver more performance despite the end of Moore’s law
§ Moore's law is the observation that the number of transistors in a 

dense integrated circuit doubles about every two years. --wikipedia
§ To deliver new features 

§ Virtualization, security, and other extensions

§ To increase performance despite other limitations
§ Memory bandwidth, non-parallelized workloads

Hardware bugs are now a reality!
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$ cat /proc/cpuinfo
…
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hwp_notify hwp_act_window hwp_epp
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Multiple Different Bugs 
Discovered
Rowhammer: corruption of bits (bit flips) in modern 
DRAM

Cache-based side channels

Speculative execution bugs
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Random-Access Memory 
(RAM)
Key features

§ RAM is traditionally packaged as a chip.
§ Basic storage unit is normally a cell (one bit per cell).
§ Multiple RAM chips form a memory.

RAM comes in two varieties:
§ SRAM (Static RAM)
§ DRAM (Dynamic RAM)

DRAM

FROM: Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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SRAM vs DRAM Summary

Transistors Access Needs Needs
per bit time refresh? EDC*? Cost Applications

SRAM 4 or 6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
frame buffers

*Error detection and correction
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Nonvolatile Memories
DRAM and SRAM are volatile memories

§ Lose information if powered off.

Nonvolatile memories retain value even if powered off
§ Read-only memory (ROM): programmed during production

§ Programmable ROM (PROM): can be programmed once

§ Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)

§ Electrically eraseable PROM (EEPROM): electronic erase capability

§ Flash memory: EEPROMs. with partial (block-level) erase capability

§ Wears out after about 100,000 erasings

Uses for Nonvolatile Memories
§ Firmware programs stored in a ROM (BIOS, controllers for disks, 

network cards, graphics accelerators, security subsystems,…)

§ Solid state disks (replace rotating disks in thumb drives, smart 
phones, mp3 players, tablets, laptops,…)

§ Disk caches
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Connecting CPU and Memory
A bus is a collec,on of parallel wires that carry address, 
data, and control signals.
Buses are typically shared by mul,ple devices.

Main
memory

I/O 
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus
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Memory Read Transaction (1)
CPU places address A on the memory bus.

ALU

Register file

Bus interface
A 0

Ax

Main memory
I/O bridge

%rax

Load operaEon: movq A, %rax
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Memory Read Transaction (2)
Main memory reads A from the memory bus, retrieves 
word x, and places it on the bus.

ALU

Register file

Bus interface

x 0

Ax

Main memory

%rax

I/O bridge

Load operaFon: movq A, %rax
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Memory Read Transaction (3)
CPU read word x from the bus and copies it into register 
%rax.

x
ALU

Register file

Bus interface x

Main memory
0

A

%rax

I/O bridge

Load operaFon: movq A, %rax
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Memory Write Transaction (1)
CPU places address A on bus. Main memory reads it and 

waits for the corresponding data word to arrive.

y
ALU

Register file

Bus interface
A

Main memory
0

A

%rax

I/O bridge

Store operaHon: movq %rax, A
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Memory Write Transaction (2)
CPU places data word y on the bus.

y
ALU

Register file

Bus interface

y

Main memory
0

A

%rax

I/O bridge

Store operaGon: movq %rax, A
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Memory Write Transaction (3)
Main memory reads data word y from the bus and stores 
it at address A.

y
ALU

Register file

Bus interface y

main memory
0

A

%rax

I/O bridge

Store operaEon: movq %rax, A
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The CPU-Memory Gap
The gap between DRAM, disk, and CPU speeds. 
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Locality to the Rescue!

The key to bridging this CPU-Memory gap is a 
fundamental property of computer programs known as 
locality

Fall 2018 Stevens Institute of Technology 18



Locality
Principle of Locality: Programs tend to use data and 
instruc6ons with addresses near or equal to those they 
have used recently

Temporal locality:  
§ Recently referenced items are likely 

to be referenced again in the near future

Spa6al locality:  
§ Items with nearby addresses tend 

to be referenced close together in 6me
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Caching in the 
Memory Hierarchy



Caches
Cache: A smaller, faster storage device that acts as a 
staging area for a subset of the data in a larger, slower 
device.
Fundamental idea of a memory hierarchy:

§ For each k, the faster, smaller device at level k serves as a 
cache for the larger, slower device at level k+1.

Why do memory hierarchies work?
§ Because of locality, programs tend to access the data at level 

k more often than they access the data at level k+1. 
§ Thus, the storage at level k+1 can be slower, and thus larger 

and cheaper per bit.
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Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers

L2 cache 
(SRAM)

L1 cache holds cache lines 
retrieved from the L2 cache.

CPU registers hold words 
retrieved from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds disk 
blocks retrieved from 
local disks.
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General Cache Concepts

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive
memory caches a  subset of
the blocks

4

4

4

10

10

10
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General Cache Concepts: Hit

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!
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General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)
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Types of Cache Misses
Cold (compulsory) miss

§ Cold misses occur because the cache is empty.

Conflict miss
§ Most caches limit blocks at level k+1 to a small subset 

(sometimes a singleton) of the block positions at level k.
§ E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

§ Conflict misses occur when the level k cache is large enough, 
but multiple data objects all map to the same level k block.
§ E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

Capacity miss
§ Occurs when the set of active cache blocks (working set) is 

larger than the cache.
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Dynamic RAM



Conventional DRAM Organization
d x w DRAM:

§ dw total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

supercell
(2,1)

2 bits
/

8 bits
/

Memory
controller

(to/from CPU)
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Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

Cols

Rows

RAS = 2 0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller
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Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually 
back to the CPU.

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2

/

8

/

Memory

controller

supercell

(2,1)

supercell

(2,1)

To CPU
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Memory Banks

: supercell (i,j)

64 MB  

memory module

consisting of

eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory

controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits

0-7

bits

8-15

bits

16-23

bits

24-31

bits

32-39

bits

40-47

bits

48-55

bits

56-63

64-bit word

031 78151623243263 394047485556
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DRAM Refresh

Cols

Rows

RAS = 2 0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Electric charge is lost when reading
§ Data need to be re-written in the cells
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DRAM Refresh
Electric charge is lost when reading

§ Data need to be re-wri4en in the cells

Charge is also lost over 7me
§ Data need to be refreshed

Cols

Rows

RAS = 2 0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller
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DRAM Disturbance Errors
Memory cells (capacitors) have a natural discharge rate

§ Refresh every 64ms

Activating neighboring cells increases the discharge rate
§ Victim cell is charged to represent 1
§ Neighboring cells are accessed frequently
§ Victim cell leaks charge below a certain threshold
§ When read, victim cell is interpreted 0

FROM: van der Veen et al., “GuardION:  Practical Mitigation of DMA-based Rowhammer Attacks on 
ARM”
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Rowhammer
Flip a bit in a victim row by reading from two aggressor 

rows
Not every bit may flip
Bit flips are reproducible

Challenges
1. Bypass the CPU cache
2. Get large contiguous chunks of memory
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High-level Steps for Exploitation
Memory Templating

§ Scan memory for useful bit flips

Land sensitive data
§ Store a crucial data structure on a vulnerable page

Reproduce the bit flip
§ Modify the data structure and get root access
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Memory Templating
Un-cached memory access

§ cache evic1on with clflush

Find pairs of addresses that are on a different row, but on 
the same bank

§ Use knowledge of how the CPU’s memory controller maps 
physical addresses to DRAM’s

§ Virt-to-phys page mappings /proc/self/pagemap
§ Use 2MB huge pages (4K is smaller than a typical DRAM row)
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code1a:
mov (X), %eax  // Read from address X
mov (Y), %ebx  // Read from address Y
clflush (X)  // Flush cache for address X
clflush (Y)  // Flush cache for address Y
jmp code1a



Land Sensitive Data
Store a page table on a vulnerable page
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Basics



Address Translation Overview

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU Cache/
MemoryPA

Data

CPU VA

CPU Chip PTEA

PTE
1

2

3

4

5
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VM in x86
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Land Sensitive Data
Store a page table on a vulnerable page
To:

§ Map a kernel page containing privileged data to user space
§ By creating a new mapping to its physical page

§ Make a kernel page writable from user space

Hard problem: need to massage memory to look exactly 
right

§ Potentially no access to pagemap (virtual – physical address 
mapping)
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Massaging Memory Tricks
Allocate all physical memory
De-allocate memory corresponding to vulnerable bits
Cause allocation of new page table entry

Requires knowledge of the allocator 

Fall 2018 Stevens Institute of Technology 56



Reproduce the Bit Flip
Demonstrated to be able to

§ Compromise OpenSSH PK authentication on VM co-location 
scenario
§ Two VMs (attacker and victim) running on the same host

§ apt-get compromise by GPG signature forgery

No need for a software bug
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Cache side channel 
attacks: CPU Design 

as a security 
problem

FROM: Anders Fogh, Protect Software 



Cache Side Channel Attacks
Cache side channel attacks are attacks enabled by the 
micro architectural design of the CPU

Because these side channels are part of hardware design 
they are notoriously difficult to defeat

Probably most important side channel because of 
bandwidth, size and central position in the architecture
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Modern Processor
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Cache Features
Almost any memory read/write is placed in the cache: 
The cache is a mirror image of memory activity on the 
computer.

L3 is shared globally across all users and privilege levels

Inclusive cache hierarchy: If we remove memory from L3, 
we remove it from all caches: We can manipulate the 
cache!
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General Cache Organization
N = 2n lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x N x B data bytes

valid bitFall 2018 Stevens Institute of Technology 63



Cache Read

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data star9ng

at offset

N = 2n lines per set
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N-way Set Associative Cache 
(Here: N = 2)

N = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set
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N-way Set Associative Cache 
(Here: N = 2)

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

tag

N = 2: Two lines per set
Assume: cache block size 8 bytes
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N-way Set Associative Cache 
(Here: N = 2)

N = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

short int (2 Bytes) is here
No match: 
• One line in set is selected for evicNon and replacement
• Replacement policies: random, least recently used (LRU), …

https://en.wikipedia.org/wiki/Cache_replacement_policies
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Typical L3 Cache
Cache lines are typically 64 bytes long
N-Way set associative cache

§ 2048 cache sets per core
§ Each set can store N (typically 12-20) cache lines, depending 

on total cache size
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Typical L3 Cache



Common Aspects of Atacks
We can determine if something is cached

§ Speed difference: 80 CLK vs. 200 CLK

We can manipulate the cache
§ Evict: Access memory until a given address is no longer 

cached
§ Flush: Remove a given address using clflush instruction
§ Prime: Place known addresses in the cache
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Big 3 Cache Side Channel Attacks
Evict + Time
Prime + Probe
Flush + Reload

They all work this way: Manipulate cache to
known state, „wait“ for victim activity and examine
what has changed
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Evict + Time
Step 1. Execute a function to prime cache
Step 2. Time the function
Step 3. Evict a cache set
Step 4. Time the function

If Step 2 was faster than step 4 the function probably
used an address congruent to the cache set in step 3
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Prime + Probe
Step 1. Prime a cache set to contain known attacker 
addresses
Step 2. Wait for victim activity
Step 3. Time accessing address from step 1.

If accessing memory in step 3 is slow (cache miss)
victim used memory congruent with cache set in
step 1

Fall 2018 Stevens InsEtute of Technology 73



Flush + Reload
Step 1. Flush: Flush shared address from cache
Step 2. Wait for vic9m
Step 3. Reload: Time access for accessing the
shared address:

If fast 9ming in 3 was fast it was placed in cache
by vic9m. If slow vic9m did not use the address
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Example: Code Vulnerable to a 
Side Channel

WCHAR gdk_keysym_to_unicode(gkeysym Input)
{

if (IsUpper(Input)) {
return gkeysym2unicode_UpperCase(Input);

} else {
return gkeysym2unicode_LowerCase(Input);

}
}
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Spectre and 
Meltdown

FROM: Adam Belay, Srini Devadas, and Joel Emer



Control Speculation

I: Compute

I+1: Compute

I+2: Compute

I+3: Compute

I: Control Flow

J: Compute

J+1: Compute

J+2: Compute

K: Compute

K+1: Compute

K+2: Compute

Correct direction Mis-speculated 
direction

Sequential 
Instruction
Execution

Non-SequenBal 
InstrucBon
ExecuBon
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Control Speculation

I: Compute

I+1: Compute

I+2: Compute

I+3: Compute

I: Control Flow

J: Compute

J+1: Compute

J+2: Compute

K: Compute

K+1: Compute

K+2: Compute

Correct direc9on Mis-speculated 
direction

Sequential 
Instruction
Execution

Non-Sequen9al 
Instruc9on
Execu9on Operations are 

undone by the 
processor
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Meltdown
Problem: Attacker can influence speculative control flow
Bug: 

§ Speculative execution not subject to page permission checks
§ Data remain in cache

Attack: User code can read kernel data (secret)
Three steps:

§ Setup: flush the cache
§ Force speculation that depends on secret
§ Measure cache timings
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Meltdown example
Setup:
clflush(timing_ptr[guess]);

Transmit:
timing_ptr[*kernel_addr];

Receive:
mfence();
s = rdtsc(); *timing_ptr[guess];
e = rdtscp();
if (e - s < CACHE_MISS_THRESHOLD)
printf(“guess was right!\n”);

Page Fault
May s-ll read 
*kernel_addr (specula-vely)
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Spectre
Problem: Attacker can influence speculative control flow
Bug: 

§ Speculative execution leads to out-of-bounds memory access
§ Data remain in cache

Attack: User code can read data in the same process
§ For example, through JS executing on the same host

Same steps
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Spectre Example
Transmit - Bounds Check Bypass:
if (x < array1_size)

array2[array1[x] * 256];
May execute for x >= array_size
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