
Hardware
Vulnerabilities

CS-576 Systems Security
Instructor: Georgios Portokalidis

Fall 2018

Status Quo … Some Years Ago
Software is faulty and includes vulnerabilities

§ Lack of memory safety, insecure design, programmer errors,
…

§ Integrity can be compromised, and confidential data leaked

Hardware is correct and can be trusted
§ Main problem is the outsourcing of manufacturing
§ Can we trust that the chips we import contain only the logic

that was part of the original design?

Fall 2018 Stevens Institute of Technology 2

New Attitude Towards HW
Hardware complexity has risen significantly

§ To deliver more performance despite the end of Moore’s law
§ Moore's law is the observa0on that the number of transistors in a

dense integrated circuit doubles about every two years. --wikipedia
§ To deliver new features

§ Virtualiza>on, security, and other extensions

§ To increase performance despite other limita>ons
§ Memory bandwidth, non-parallelized workloads

Fall 2018 Stevens Institute of Technology 3

$ cat /proc/cpuinfo
…
flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2
ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid
sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb
invpcid_single kaiser tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms
invpcid rtm mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp
hwp_notify hwp_act_window hwp_epp
…

New Attitude Towards HW
Hardware complexity has risen significantly

§ To deliver more performance despite the end of Moore’s law
§ Moore's law is the observation that the number of transistors in a

dense integrated circuit doubles about every two years. --wikipedia
§ To deliver new features

§ Virtualization, security, and other extensions

§ To increase performance despite other limitations
§ Memory bandwidth, non-parallelized workloads

Hardware bugs are now a reality!
Fall 2018 Stevens InsHtute of Technology 4

$ cat /proc/cpuinfo
…
flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2
ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid
sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb
invpcid_single kaiser tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms
invpcid rtm mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp
hwp_notify hwp_act_window hwp_epp
…

Multiple Different Bugs
Discovered
Rowhammer: corruption of bits (bit flips) in modern
DRAM

Cache-based side channels

Speculative execution bugs

Fall 2018 Stevens Institute of Technology 5

Fall 2018 Stevens Ins0tute of Technology 6

Memory
Hierarchies

Random-Access Memory
(RAM)
Key features

§ RAM is traditionally packaged as a chip.
§ Basic storage unit is normally a cell (one bit per cell).
§ Multiple RAM chips form a memory.

RAM comes in two varieties:
§ SRAM (Static RAM)
§ DRAM (Dynamic RAM)

DRAM

FROM: Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fall 2018 Stevens InsQtute of Technology 7

SRAM vs DRAM Summary

Transistors Access Needs Needs
per bit time refresh? EDC*? Cost Applications

SRAM 4 or 6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
frame buffers

*Error detection and correction

Fall 2018 Stevens InsLtute of Technology 8

Nonvolatile Memories
DRAM and SRAM are volatile memories

§ Lose information if powered off.

Nonvolatile memories retain value even if powered off
§ Read-only memory (ROM): programmed during production

§ Programmable ROM (PROM): can be programmed once

§ Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)

§ Electrically eraseable PROM (EEPROM): electronic erase capability

§ Flash memory: EEPROMs. with partial (block-level) erase capability

§ Wears out after about 100,000 erasings

Uses for Nonvolatile Memories
§ Firmware programs stored in a ROM (BIOS, controllers for disks,

network cards, graphics accelerators, security subsystems,…)

§ Solid state disks (replace rotating disks in thumb drives, smart
phones, mp3 players, tablets, laptops,…)

§ Disk caches

Fall 2018 Stevens Institute of Technology 9

Connecting CPU and Memory
A bus is a collec,on of parallel wires that carry address,
data, and control signals.
Buses are typically shared by mul,ple devices.

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus

Fall 2018 Stevens Institute of Technology 10

Memory Read Transaction (1)
CPU places address A on the memory bus.

ALU

Register file

Bus interface
A 0

Ax

Main memory
I/O bridge

%rax

Load operaEon: movq A, %rax

Fall 2018 Stevens Institute of Technology 11

Memory Read Transaction (2)
Main memory reads A from the memory bus, retrieves
word x, and places it on the bus.

ALU

Register file

Bus interface

x 0

Ax

Main memory

%rax

I/O bridge

Load operaFon: movq A, %rax

Fall 2018 Stevens Institute of Technology 12

Memory Read Transaction (3)
CPU read word x from the bus and copies it into register
%rax.

x
ALU

Register file

Bus interface x

Main memory
0

A

%rax

I/O bridge

Load operaFon: movq A, %rax

Fall 2018 Stevens Institute of Technology 13

Memory Write Transaction (1)
CPU places address A on bus. Main memory reads it and

waits for the corresponding data word to arrive.

y
ALU

Register file

Bus interface
A

Main memory
0

A

%rax

I/O bridge

Store operaHon: movq %rax, A

Fall 2018 Stevens Institute of Technology 14

Memory Write Transaction (2)
CPU places data word y on the bus.

y
ALU

Register file

Bus interface

y

Main memory
0

A

%rax

I/O bridge

Store operaGon: movq %rax, A

Fall 2018 Stevens Institute of Technology 15

Memory Write Transaction (3)
Main memory reads data word y from the bus and stores
it at address A.

y
ALU

Register file

Bus interface y

main memory
0

A

%rax

I/O bridge

Store operaEon: movq %rax, A

Fall 2018 Stevens Institute of Technology 16

The CPU-Memory Gap
The gap between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Disk seek time
SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

DRAM

CPU

SSD

Disk

Fall 2018 Stevens InsBtute of Technology 17

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a
fundamental property of computer programs known as
locality

Fall 2018 Stevens Institute of Technology 18

Locality
Principle of Locality: Programs tend to use data and
instruc6ons with addresses near or equal to those they
have used recently

Temporal locality:
§ Recently referenced items are likely

to be referenced again in the near future

Spa6al locality:
§ Items with nearby addresses tend

to be referenced close together in 6me

Fall 2018 Stevens Institute of Technology 19

Fall 2018 Stevens Institute of Technology 20

Caching in the
Memory Hierarchy

Caches
Cache: A smaller, faster storage device that acts as a
staging area for a subset of the data in a larger, slower
device.
Fundamental idea of a memory hierarchy:

§ For each k, the faster, smaller device at level k serves as a
cache for the larger, slower device at level k+1.

Why do memory hierarchies work?
§ Because of locality, programs tend to access the data at level

k more often than they access the data at level k+1.
§ Thus, the storage at level k+1 can be slower, and thus larger

and cheaper per bit.

Fall 2018 Stevens InsHtute of Technology 21

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds disk
blocks retrieved from
local disks.

Fall 2018 Stevens Institute of Technology 22

General Cache Concepts

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

Fall 2018 Stevens Ins>tute of Technology 23

General Cache Concepts: Hit

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Fall 2018 Stevens Institute of Technology 24

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

Fall 2018 Stevens InsLtute of Technology 25

Types of Cache Misses
Cold (compulsory) miss

§ Cold misses occur because the cache is empty.

Conflict miss
§ Most caches limit blocks at level k+1 to a small subset

(sometimes a singleton) of the block positions at level k.
§ E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

§ Conflict misses occur when the level k cache is large enough,
but multiple data objects all map to the same level k block.
§ E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

Capacity miss
§ Occurs when the set of active cache blocks (working set) is

larger than the cache.

Fall 2018 Stevens InsLtute of Technology 26

Fall 2018 Stevens Ins0tute of Technology 28

Dynamic RAM

Conventional DRAM Organization
d x w DRAM:

§ dw total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

supercell
(2,1)

2 bits
/

8 bits
/

Memory
controller

(to/from CPU)

Fall 2018 Stevens Institute of Technology 29

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

Cols

Rows

RAS = 2 0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Fall 2018 Stevens InsJtute of Technology 30

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually
back to the CPU.

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2

/

8

/

Memory

controller

supercell

(2,1)

supercell

(2,1)

To CPU

Fall 2018 Stevens Institute of Technology 31

Memory Banks

: supercell (i,j)

64 MB

memory module

consisting of

eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory

controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits

0-7

bits

8-15

bits

16-23

bits

24-31

bits

32-39

bits

40-47

bits

48-55

bits

56-63

64-bit word

031 78151623243263 394047485556

Fall 2018 Stevens Institute of Technology 32

DRAM Refresh

Cols

Rows

RAS = 2 0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Electric charge is lost when reading
§ Data need to be re-written in the cells

Fall 2018 Stevens InsItute of Technology 33

DRAM Refresh
Electric charge is lost when reading

§ Data need to be re-wri4en in the cells

Charge is also lost over 7me
§ Data need to be refreshed

Cols

Rows

RAS = 2 0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Fall 2018 Stevens Institute of Technology 34

DRAM Disturbance Errors
Memory cells (capacitors) have a natural discharge rate

§ Refresh every 64ms

Activating neighboring cells increases the discharge rate
§ Victim cell is charged to represent 1
§ Neighboring cells are accessed frequently
§ Victim cell leaks charge below a certain threshold
§ When read, victim cell is interpreted 0

FROM: van der Veen et al., “GuardION: Practical Mitigation of DMA-based Rowhammer Attacks on
ARM”

Fall 2018 Stevens Institute of Technology 35

10 11010 0

10 01010 1

00 11010 1

10 00010 1

00 10010 1

Fall 2018 Stevens Ins0tute of Technology 36

10 11010 0

10 01010 1

00 11010 1

10 00010 1

00 10010 1

Fall 2018 Stevens Ins0tute of Technology 37

10 11010 0

10 01010 1

00 11010 1

10 00010 1

00 10010 1

Fall 2018 Stevens Institute of Technology 38

10 11010 0

10 01010 1

00 11010 1

10 00010 1

00 10010 1

Fall 2018 Stevens Institute of Technology 39

10 11010 0

10 01010 1

00 11010 1

10 00010 1

00 10010 1

Fall 2018 Stevens Institute of Technology 40

10 11010 0

10 01010 1

00 11010 1

10 00010 1

00 10010 1

Fall 2018 Stevens Institute of Technology 41

10 11010 0

10 01010 1

00 11010 1

10 00010 1

00 10010 1

Fall 2018 Stevens Institute of Technology 42

10 11010 0

10 01010 1

00 11010 1

10 00010 1

00 10010 1

Fall 2018 Stevens Institute of Technology 43

10 11010 0

10 01010 1

00 11010 1

10 00010 1

00 10010 1

Fall 2018 Stevens Ins0tute of Technology 44

10 11010 0

10 01010 1

00 11010 1

10 00010 1

00 10010 1

Fall 2018 Stevens Ins0tute of Technology 45

10 11010 0

10 01010 1

10 11010 1

10 00010 1

00 10010 1

Fall 2018 Stevens Institute of Technology 46

Rowhammer
Flip a bit in a victim row by reading from two aggressor

rows
Not every bit may flip
Bit flips are reproducible

Challenges
1. Bypass the CPU cache
2. Get large contiguous chunks of memory

Fall 2018 Stevens InsFtute of Technology 47

High-level Steps for Exploitation
Memory Templating

§ Scan memory for useful bit flips

Land sensitive data
§ Store a crucial data structure on a vulnerable page

Reproduce the bit flip
§ Modify the data structure and get root access

Fall 2018 Stevens InsAtute of Technology 48

Memory Templating
Un-cached memory access

§ cache evic1on with clflush

Find pairs of addresses that are on a different row, but on
the same bank

§ Use knowledge of how the CPU’s memory controller maps
physical addresses to DRAM’s

§ Virt-to-phys page mappings /proc/self/pagemap
§ Use 2MB huge pages (4K is smaller than a typical DRAM row)

Fall 2018 Stevens Institute of Technology 49

code1a:
mov (X), %eax // Read from address X
mov (Y), %ebx // Read from address Y
clflush (X) // Flush cache for address X
clflush (Y) // Flush cache for address Y
jmp code1a

Land Sensitive Data
Store a page table on a vulnerable page

Fall 2018 Stevens Ins6tute of Technology 50

Fall 2018 Stevens Institute of Technology 51

Virtual Memory
Basics

Address Translation Overview

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU Cache/
MemoryPA

Data

CPU VA

CPU Chip PTEA

PTE
1

2

3

4

5

Fall 2018 Stevens Institute of Technology 52

Fall 2018 Stevens Institute of Technology 53

VM in x86

Fall 2018 Stevens Institute of Technology 54

Page Table Entry

Land Sensitive Data
Store a page table on a vulnerable page
To:

§ Map a kernel page containing privileged data to user space
§ By creating a new mapping to its physical page

§ Make a kernel page writable from user space

Hard problem: need to massage memory to look exactly
right

§ Potentially no access to pagemap (virtual – physical address
mapping)

Fall 2018 Stevens Institute of Technology 55

Massaging Memory Tricks
Allocate all physical memory
De-allocate memory corresponding to vulnerable bits
Cause allocation of new page table entry

Requires knowledge of the allocator

Fall 2018 Stevens Institute of Technology 56

Reproduce the Bit Flip
Demonstrated to be able to

§ Compromise OpenSSH PK authentication on VM co-location
scenario
§ Two VMs (attacker and victim) running on the same host

§ apt-get compromise by GPG signature forgery

No need for a software bug

Fall 2018 Stevens Institute of Technology 57

Fall 2018 Stevens Institute of Technology 58

Cache side channel
attacks: CPU Design

as a security
problem

FROM: Anders Fogh, Protect Software

Cache Side Channel Attacks
Cache side channel attacks are attacks enabled by the
micro architectural design of the CPU

Because these side channels are part of hardware design
they are notoriously difficult to defeat

Probably most important side channel because of
bandwidth, size and central position in the architecture

Fall 2018 Stevens InsEtute of Technology 59

Fall 2018 Stevens Institute of Technology 60

Modern Processor

Fall 2018 Stevens Institute of Technology 61

Cache Hierarchy
Sh

ar
ed

Pe
r c

or
e

Cache Features
Almost any memory read/write is placed in the cache:
The cache is a mirror image of memory activity on the
computer.

L3 is shared globally across all users and privilege levels

Inclusive cache hierarchy: If we remove memory from L3,
we remove it from all caches: We can manipulate the
cache!

Fall 2018 Stevens InsHtute of Technology 62

General Cache Organization
N = 2n lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x N x B data bytes

valid bitFall 2018 Stevens Institute of Technology 63

Cache Read

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data star9ng

at offset

N = 2n lines per set

Fall 2018 Stevens InsFtute of Technology 64

N-way Set Associative Cache
(Here: N = 2)

N = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

Fall 2018 Stevens Institute of Technology 65

N-way Set Associative Cache
(Here: N = 2)

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

tag

N = 2: Two lines per set
Assume: cache block size 8 bytes

Fall 2018 Stevens Institute of Technology 66

N-way Set Associative Cache
(Here: N = 2)

N = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

short int (2 Bytes) is here
No match:
• One line in set is selected for evicNon and replacement
• Replacement policies: random, least recently used (LRU), …

https://en.wikipedia.org/wiki/Cache_replacement_policies
Fall 2018 Stevens InsNtute of Technology 67

Typical L3 Cache
Cache lines are typically 64 bytes long
N-Way set associative cache

§ 2048 cache sets per core
§ Each set can store N (typically 12-20) cache lines, depending

on total cache size

Fall 2018 Stevens InsEtute of Technology 68

Fall 2018 Stevens Ins0tute of Technology 69

Typical L3 Cache

Common Aspects of Atacks
We can determine if something is cached

§ Speed difference: 80 CLK vs. 200 CLK

We can manipulate the cache
§ Evict: Access memory until a given address is no longer

cached
§ Flush: Remove a given address using clflush instruction
§ Prime: Place known addresses in the cache

Fall 2018 Stevens Institute of Technology 70

Big 3 Cache Side Channel Attacks
Evict + Time
Prime + Probe
Flush + Reload

They all work this way: Manipulate cache to
known state, „wait“ for victim activity and examine
what has changed

Fall 2018 Stevens Institute of Technology 71

Evict + Time
Step 1. Execute a function to prime cache
Step 2. Time the function
Step 3. Evict a cache set
Step 4. Time the function

If Step 2 was faster than step 4 the function probably
used an address congruent to the cache set in step 3

Fall 2018 Stevens InsDtute of Technology 72

Prime + Probe
Step 1. Prime a cache set to contain known attacker
addresses
Step 2. Wait for victim activity
Step 3. Time accessing address from step 1.

If accessing memory in step 3 is slow (cache miss)
victim used memory congruent with cache set in
step 1

Fall 2018 Stevens InsEtute of Technology 73

Flush + Reload
Step 1. Flush: Flush shared address from cache
Step 2. Wait for vic9m
Step 3. Reload: Time access for accessing the
shared address:

If fast 9ming in 3 was fast it was placed in cache
by vic9m. If slow vic9m did not use the address

Fall 2018 Stevens Institute of Technology 74

Fall 2018 Stevens Ins0tute of Technology 75

Example: Code Vulnerable to a
Side Channel

WCHAR gdk_keysym_to_unicode(gkeysym Input)
{

if (IsUpper(Input)) {
return gkeysym2unicode_UpperCase(Input);

} else {
return gkeysym2unicode_LowerCase(Input);

}
}

Fall 2018 Stevens Institute of Technology 76

Spectre and
Meltdown

FROM: Adam Belay, Srini Devadas, and Joel Emer

Control Speculation

I: Compute

I+1: Compute

I+2: Compute

I+3: Compute

I: Control Flow

J: Compute

J+1: Compute

J+2: Compute

K: Compute

K+1: Compute

K+2: Compute

Correct direction Mis-speculated
direction

Sequential
Instruction
Execution

Non-SequenBal
InstrucBon
ExecuBon

Fall 2018 Stevens Institute of Technology 77

Control Speculation

I: Compute

I+1: Compute

I+2: Compute

I+3: Compute

I: Control Flow

J: Compute

J+1: Compute

J+2: Compute

K: Compute

K+1: Compute

K+2: Compute

Correct direc9on Mis-speculated
direction

Sequential
Instruction
Execution

Non-Sequen9al
Instruc9on
Execu9on Operations are

undone by the
processor

Fall 2018 Stevens Institute of Technology 78

Meltdown
Problem: Attacker can influence speculative control flow
Bug:

§ Speculative execution not subject to page permission checks
§ Data remain in cache

Attack: User code can read kernel data (secret)
Three steps:

§ Setup: flush the cache
§ Force speculation that depends on secret
§ Measure cache timings

Fall 2018 Stevens InsJtute of Technology 79

Meltdown example
Setup:
clflush(timing_ptr[guess]);

Transmit:
timing_ptr[*kernel_addr];

Receive:
mfence();
s = rdtsc(); *timing_ptr[guess];
e = rdtscp();
if (e - s < CACHE_MISS_THRESHOLD)
printf(“guess was right!\n”);

Page Fault
May s-ll read
*kernel_addr (specula-vely)

Fall 2018 Stevens Institute of Technology 80

Spectre
Problem: Attacker can influence speculative control flow
Bug:

§ Speculative execution leads to out-of-bounds memory access
§ Data remain in cache

Attack: User code can read data in the same process
§ For example, through JS executing on the same host

Same steps

Fall 2018 Stevens Institute of Technology 81

Spectre Example
Transmit - Bounds Check Bypass:
if (x < array1_size)

array2[array1[x] * 256];
May execute for x >= array_size

Fall 2018 Stevens Institute of Technology 82

