
The Best of Both Worlds. A Framework for the Synergistic
Operation of Host and Cloud Anomaly-based IDS for

Smartphones

Dimitrios Damopoulos
Stevens Institute of

Technology
Hoboken, NJ, USA

ddamopou@stevens.edu

Georgios Kambourakis
University of the Aegean

Karlovasi, Samos, Greece
gkamb@aegean.gr

Georgios Portokalidis
Stevens Institute of

Technology
Hoboken, NJ, USA

gportoka@stevens.edu

ABSTRACT
Smartphone ownership and usage has seen massive growth in the
past years. As a result, their users have attracted unwanted attention
from malicious entities and face many security challenges, includ-
ing malware and privacy issues. This paper concentrates on IDS
carefully designed to cater to the security needs of modern mobile
platforms. Two main research issues are tackled: (a) the defini-
tion of an architecture which can be used towards implementing
and deploying such a system in a dual-mode (host/cloud) manner
and irrespectively of the underlying platform, and (b) the evalua-
tion of a proof-of-concept anomaly-based IDS implementation that
incorporates dissimilar detection features, with the aim to assess
its performance qualities when running on state-of-the-art mobile
hardware on the host device and on the cloud. This approach al-
lows us to argue in favor of a hybrid host/cloud IDS arrangement
(as it assembles the best characteristics of both worlds) and to pro-
vide quantitative evaluation facts on if and in which cases machine
learning-driven detection is affordable when executed on-device.

1. INTRODUCTION
Smartphones have become an integral part of the way we com-

municate and work. Sixty one percent of mobile subscribers in
the US owned a smartphone in 2013 [15], while their European
counterparts are closely following [5]. Unfortunately, their use
also introduces a variety of security threats. Android-based devices
have drawn a lot of unwanted attention from malware authors [12],
while users of different devices are all facing privacy issues due to
leaks of personal information [10], either performed accidentally
by buggy applications, or intentionally by malicious ones.

Over the last few years, many different anomaly-based (AD)
mechanisms have been proposed [2–4, 9, 18], specifically targeting
smartphones, because of the reasons above. AD techniques pro-
file normal behavior and attempt to identify anomalous patterns of
activities that deviate from a predefined profile. They begin by ex-
tracting features based on various characteristics, like user actions,
API calls, utilization of system resources, and network traffic, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSec’14, April 13 - 16, 2014, Amsterdam, The Netherlands
Copyright 2014 ACM 1-4503-2715-2/14/04 ...$15.00.

use them to construct normal behavior profiles in a training phase.
During regular operation they search for significant deviations from
these profiles to detect security related problems.

There are two major directions taken by these systems. Host-
based systems [2] are designed to operated on the device, and their
proponents argue that it is necessary because it is the only way
to ensure timely reaction to identified issues. On the other hand,
cloud-based systems [4] are designed to offload a significant part of
their operation to the cloud, where their computationally intensive
algorithms and analyses are running. Their designers argue that
it is not possible to deploy such mechanisms on-device because of
the prohibitive slowdown they would incur on normal phone opera-
tions. This is because smartphones usually have limited processing
and memory resources compared to those of PCs.

This paper argues that both host- and cloud-based protection sys-
tems need to operate concurrently to complement each other. The
reasoning is straightforward; although cloud-hosted mechanisms
do save system resources, on their own they cannot offer real-time
protection, and they can leave devices vulnerable when connec-
tivity with the server is poor, something which malware already
present on the device could pursue intentionally to masquerade an
infection. Nevertheless, we cannot ignore the potential benefits of
offloading certain mechanisms to the cloud, such as low overhead
and increased battery life.

We propose a new framework that supports both host- and cloud-
based protection mechanisms, and facilitates synergy. We focus on
anomaly-based intrusion detection systems (IDS) used primarily
for malware detection and privacy invasive software [2, 6, 14]. The
framework aims to decouple the IDS from where it is hosted, en-
abling the “movement” of mechanisms from host to cloud and vice-
versa transparently, and without any modifications to the IDS. This
means that an IDS component will be able to operate autonomously
on the device (e.g., for run-time protection or when connectivity is-
sues occur), as well as with the assistance of the cloud for relieving
the device from sophisticated but computationally expensive oper-
ations.

Ideally, our solution would automatically decide where to deploy
a particular IDS, by balancing resource consumption and security
requirements such as the time required to detect a threat. Policies
regarding resource allocation could also be applied, for instance, if
the phone is fully charged we may decide to run more IDS on the
device, and as the battery depletes offload them to the cloud.

The focus of this paper is, however, the design, implementation,
and evaluation of the framework enabling such hybrid IDS. We
demonstrate its capabilities by incorporating four different IDSs
introduced in previous work [6–8, 14]. First, we show that we can
successfully combine multiple mechanisms to provide broader de-

fensive capabilities. To the best of our knowledge, we are the first to
propose such a system. Second, we evaluate the performance of all
four IDS running under our framework, when running on the device
and on the cloud, both for training and detection (in earlier work,
these mechanisms were only evaluated in terms of effectiveness).
This is important because it allows us to make several observations
about the various benefits and downsides of each deployment op-
tion. While the results we obtained are closely related to the imple-
mented detection mechanisms, they are indicative and can be used
as a reference for future work in the subject. Our results can help
put similar works [3], which focus mostly on accuracy and do not
provide experimental results regarding performance and scalability,
in perspective.

Summarizing the above, the contributions of this work consist of
the following:

• We design a new framework that facilitates the development
of hybrid IDS for mobile devices. Our architecture can sup-
port diverse anomaly-based mechanisms to be concurrently
applied, either directly on the device, or by offloading com-
putation on the cloud, maximizing synergy between device
and cloud-hosted defenses. To our knowledge, literature lacks
such a comprehensive proposal and most work on this issue
is fragmentary.

• We implement the framework for the iOS architecture. Note,
however, that an implementation for the Android platform is
straightforward (discussed in 3.1).

• We utilize the framework to develop an IDS that combines
four diverse detection mechanisms, introduced in previous
work [6–8, 14]. The combination of diverse techniques pro-
vides protection against a broader set of attacks.

• Our prototype is evaluated along three main axes: overhead
in terms of CPU load, memory and battery consumption, and
timeliness, i.e., the time it takes for the IDS to respond to
an attack. The results provide insights on the actual advan-
tages and disadvantages of hosting a defense on the device
or the cloud and can be used as a reference for future work.
Our observations show that an optimal deployment strategy
varies based on the technique.

The rest of the paper is organized as follows. The next section
reviews recent literature for IDS on mobile platforms. Section 2
introduces the proposed framework, and its use to implement a hy-
brid, four-way IDS as discussed in Sec. 3. In Sec. 4 we present
the evaluation of our prototype. Section 6 concludes the paper and
gives pointers to future work.

2. THE FRAMEWORK
In this section we describe our framework for developing hybrid

IDS for mobile devices. The term “hybrid” refers to the ability to
deploy the mechanisms on the host and on the cloud and have them
work in synergy. We first present the components of the architec-
ture, and then briefly describe how they interact.

2.1 On-device Components

2.1.1 Event Sensors
Event Sensors monitor and collect information from different

layers of the OS. For instance, system calls, inter-process commu-
nications (IPC), hardware sensors, API calls, system services (e.g.,
user SMS), and generally any library call can be monitored and in-
tercepted. An IDS can deploy one or more Event Sensors based

on the data it requires to create a valid usage profile and monitor
the device for intrusion, as shown in Fig. 1 1 . The preferred
way to transparently intercept information exchanges in modern
mobile devices is by hooking and overwriting [7] the appropriate
functions and system calls. Hooking is lightweight and enables
multiple Event Sensors to intercept the same data.

The information collected by the sensors may include sensitive
user data, such as SMS, e-mails, etc. Because an IDS could be de-
ployed in the cloud, it may be undesirable to submit raw sensor data
to the cloud due to privacy concerns. Sensors can anonymize sen-
sitive data using cryptographic primitives available on most mobile
devices, such as fast (sometimes hardware supported) implementa-
tions of one-way hash functions like SHA-1 and SHA-2. By obfus-
cating parts of the the user data early on, we reduce the possibility
of inadvertently exposing sensitive information later.

2.1.2 System Manager
The System Manager, shown in Fig. 1 2 , is the brain of the

framework as it coordinates all other components. It is the com-
ponent responsible for deciding which detection mechanisms are
going to be applied and their “sensitivity” in terms of detecting in-
trusions. Different users may have different requirements, so flexi-
bility is an important property.

When the System Manager receives an event from a sensor, it
forwards it to the Detection Manager. Along with new events, it
also retrieves older events and their characterization from the de-
tection engines from a local database, shown as “Behavior Profiles”
in Fig. 1, and also sends them forward.

2.1.3 Detection Manager
The Detection Manager is in charge of running the defensive

analysis mechanisms hosted by our framework. It supports two
types of engines, a host and a cloud engine. A host engine runs an
IDS on the device, utilizing the information provided by the System
Manager (i.e., events and previously generated behavior profiles) to
identify malicious behavior. The outcomes of the analysis, which
could indicate an intrusion, are sent to the Response Manager. Re-
spectively, a cloud engine executes an IDS on the cloud and is ap-
propriate for computationally demanding analyses. It receives the
sensor data forwarded by the System Manager, but it can use its
own copy of behavior profile data, instead of the device-local data,
to minimize communications with the cloud. The Detection Man-
ager received decisions from the running IDS and forwards them to
the Response Manager.

2.1.4 Response Manager
This component is in charge of deciding, and if needed, respond-

ing to suspicious activity reported by the Detection Manager. If the
analyses signal that an event is suspicious, it decides, based on the
“sensitivity” configured by the System Manager, to either ignore it,
or perform an action. Response modules can be used to support
different actions. For instance, display a notification to the user
requesting his input, block the suspicious event, terminate an ap-
plication, require re-authentication, etc. In all cases, the decision
of the IDS, the action taken, and any user feedback are stored back
into the behavior profiles database to be used in future decision
making. Finally, it informs the Cloud Manager about the incident
to ensure that it can also update its database, if it maintains its own.

2.2 The Cloud Manager
Detection engines running on the cloud are managed by the Cloud

Manager, which communicates with the Detection Manager on the
device. The Cloud Manager can keep its own store of Behavior

Figure 1: Proposed cross-layer IDS framework for mobile platforms.

Profiles into the cloud, synchronizing with the device when neces-
sary. However, when continuous connectivity with the cloud can
be maintained, newly generated knowledge is pushed back to the
cloud by the Response Manager.

2.3 Overall Operation
As depicted in Fig. 1 the operation of an IDS based on our frame-

work includes seven steps. As soon as the Event Sensor 1 inter-
cepts a new event, it forwards it to the System Manager 2 , which
is responsible for: i) loading the behavior profile that corresponds
to a detection mechanism, ii) forwarding the necessary data (i.e.,
the new event and the existing behavior profile) to the Detection
Manager 3 . The Detection Manager passes the data for classi-
fication to the detection engines, which can be running either on
the host, or on the cloud 4 . The results from the engines are sent
to the Response Manager which determine which actions, if any,
need to be taken for the particular event 5 . Finally, the event it-
self and the corresponding decision is stored into profiles database,
enriching the knowledge of the system.

3. IMPLEMENTATION
To evaluate the architecture described in the previous section,

we developed a proof-of-concept implementation of the framework
and a hybrid IDS using it.

3.1 System description
We implemented our prototype on Apple’s iOS 7 platform. Specif-

ically, it consists of a main daemon, written in Objective-C, con-
taining the functionality for the System, Detection, Response, and
Security managers. To implement the event sensors for the pro-
totype we created dynamic libraries (dylibs), utilizing the Mobile-
Substrate framework. This framework provides a lightweight way
to interact with the OS at a low level, and thus enables us to hook,
overwrite, and monitor the kernel, application APIs, etc. As for the
detection engine, we rely on the OpenCV library which runs na-
tively on the iOS platform and supports a variety of machine learn-
ing classifiers. Note that although our prototype targets the iOS
platform, it can be easily ported to Android. This stands true be-
cause MobileSubstrate is supported by Android as well, while the
WEKA framework can be imported as a decision engine to any An-
droid application. Bear in mind, that both these popular OSs need
to be jailbroken/rooted before we can install and run our system on
the device.

The cloud service part of our framework is implemented as a
simple client-server, where the server is considered trusted. The
communication link between the smartphone and the cloud entity
is also considered to be secure, say, by means of an SSL tunnel. The

Cloud Manager and cloud-based detection engines are all contained
within a single multi-threaded server written in Java, which uses the
popular WEKA framework. Note that WEKA provides the same
machine learning classifiers as the OpenCV, so we have capabilities
equivalent with the ones on the device.

In a nutshell, the system works both on the host and the cloud.
Host-side detection is autonomous, while cloud-based detection re-
lies on the host for sending the behavioral data (in the form of vec-
tors of behavioral attributes) to the cloud, waits for the cloud to
process the received data, and makes a decision, which is sent back
to the host.

3.2 Detection Mechanisms
We implemented four smartphone detection mechanisms based

on previous work [6–8, 14]. The first two detection mechanisms,
namely SMS Profiler and iDMA, aim to detect the illegitimate use
of system services and identify unknown malware. The other two,
coined iTL and Touchstroke, can provide (post) authentication to
ensure the legitimacy of the current user.

An overall description of the four detection mechanisms can be
found in Tab. 1. The features column corresponds to the sensor
events that are required to build the corresponding behavior pro-
file for each detection mechanism. Data Training and Data Testing
represent the minimum amount of data required during the training
and testing process by the classifiers. Accuracy corresponds to the
effectiveness of the detection mechanism, while the behavior pro-
files are built using the aforementioned specifications. The popular
Random Forest algorithm is used as a classification engine, because
it has yielded the best results in previous works.

To summarize, these four mechanisms present the following ca-
pacities: (a) the SMS Profiler detects misuses pertaining to SMS by
observing user behavior, (b) iDMA is able to monitor the behavior
of running applications as means to detect malware, (c) iTL is a
touch logger that profiles the user of the device based on touching
behavior, and (d) Touchstroke provides a keystroke-based authen-
tication system for mobile devices equipped with a touchscreen. A
detailed description of these four mechanisms can be obtained from
the corresponding works [6–8, 14].

4. EVALUATION
This section provides results derived from the evaluation of the

proposed IDS prototype. We utilized the latest Apple smartphone,
iPhone 5s, as the host of our IDS. The cloud service was located
within the AWS Amazon’s EC2 infrastructure, and the client was
connected to the cloud service through a local 802.11bg hotspot.
The results correspond to the performance of the system when all
four detection mechanisms were running either directly on the host

Table 1: Overview of the four detection mechanisms used.
Detection Mechanism Features Training Testing Frequency Accuracy Reference
SMS Profiler Number, Timestamp, Flags,

Country, Intruder/Legit
1 week 1 SMS 99.6 % [8]

iDMA Method, Malicious/Legit Legit and Malicious
App methods

10 sequences methods 99.1 % [7]

iTL Touch Type, X, Y, Timestamp,
Intruder/Legit

1 day touch patterns 1 day touch patterns 99.2% [6]

Touchstroke Hold-time, Inter-time, Dis-
tance, Speed, Intruder/Legit

12 sentence samples 1 sentence 80.6 % [14]

or on the cloud. Our experiments essentially evaluate two extreme
scenarios, where we could either deploy entirely on the host or in
the cloud.

Although the effectiveness in identifying intrusions is one of the
most critical metrics when designing and evaluating an IDS, two
other attributes that indicate how the system behaves during the
detection phase are of equal importance. Specifically, the Perfor-
mance and Timeliness metrics are directly associated with the ef-
fectiveness of any IDS with regard to real-time detection (real time
means that an intrusion is detected before any, or significant, dam-
age occurs). In particular, these metrics are significant because of
the following:

Timeliness An IDS has to react as quickly as possible in order to
prevent the attacker from subverting the system. In the liter-
ature, two metrics are widely used to decide if the timeliness
of a given system; Train Time, which is concerned with time
required to build the behavior model and Test Time, which is
the time required to classify an anomaly pattern.

Performance The performance of a system can be measured using
two metrics; the CPU and memory consumption during the
detection process (for both training and testing the mecha-
nism of interest). Bear in mind, that although modern smart-
phones are powerful, they are significantly more constrained
than PCs.

These characteristics are well-known in the area of desktop IDS
systems, but they have been neglected in the smartphone domain
because the IDS needs to run directly on the device.

Table 2 presents the performance results in terms of Classifica-
tion Time, CPU, Memory, Battery metrics, for all four detection
mechanisms for both host- and cloud- based scenarios. We used
the Random Forest algorithm in the detection engine for all experi-
ments. Additionally, the same behavioral set of data were provided
to both scenarios during the training and test phases according to
Tab. 1. The user-behavior profiles used in every scenario were cre-
ated based on real data collected from a critical mass of partici-
pants. More details on these datasets and the way the profiles were
constructed can be obtained from the references provided in Tab. 1.
For the cloud scenario, all data produced by the IDS Event Sen-
sors were sent to the cloud service for further analysis via the use
of Cloud Engine. On the other hand, for the Host scenario, the
Host Engine analyzed the data outright on the device. Both Train
and Test Times have been calculated from the time either Host En-
gine or Cloud Engine get the data, until their processing is finished.
Bear in mind, that the amount of data the Host and Cloud Engines
have to process is different for each mechanism and it depends on
the behavior profile structure, as well as on the number of features
used for their creation. For all the metrics included in Tab. 2, we
consider the statistical average of the values resulting from the total
number of cases. Also, during the measurements, all non- essential
services running on the device were disabled.

What we observe from the results is that host-based detection is
affordable for the high-end iPhone device used throughout testing.
In all cases, the time required to detect and intrusion (i.e., decision
making) remains less than 0.4 secs. As expected, the training phase
was the one with the longest time penalty requiring almost 6 secs
in the worst case (iTL). Generally, both cloud -based training and
testing times are lower than host-based times, ranging between 0.35
and 0.45 secs, however they are burdened by communication delays
between the smartphone and the cloud. As a result, host-based de-
tection requires significantly less time to classify a new event. On
the other hand, CPU performance almost reached 100% when de-
tection occurs on the host itself, while during the training phase it
varies between 90% and 97%, depending on the mechanism used.

Table 2 also shows that the training phase stresses the battery
to a greater degree than detection. Specifically, between 0.04 and
0.27 mAh\sec, making decisions for new events can be considered
a rather lightweight operation. Classifying new events can cause
a decrease rate in battery life between 0.05 to 0.22 mAh\sec per
event. Bear in mind that detecting intrusions can become a energy-
demanding process when the frequency of events rises. This means
that the power consumption of the iTL mechanism when perform-
ing detection is 0.21 mAh per second (or 2.80 Watt (W)) and that it
can be performed for 24.116 events based on a 1.570 mAh battery
and 3.8 V. It is important to underline that the average number of
touch events collected during our experiments were 1200 per day.
We should mention that applications like Safari, iBooks, Maps, and
Infinity Blade have a power consumption of 1.1 W, 1.4 W, 2.6 W
respectively [1]. Due to the fact that battery lifetime is affected by
on-device detection, cloud-based approaches seem to be the best
alternative when battery life matters. Of course these results are in-
dicative as they depend on several factors including the smartphone
model, the OS, and the battery itself.

Looking at the results derived from the cloud-based scenario, one
can observe that CPU consumption remains mostly around 20%
and 25% both for the training and testing phases, and only in the
iTL case it increases up to 41% and 45% respectively. Lastly, mem-
ory consumption fluctuates between 78% and 88% for the host-
based scenario depending on the detection mechanism used, and
between 62% and 63% for the cloud-based scenario. This is rather
straightforward as the first scenario requires more memory to exe-
cute and build the necessary classification model, while the second
one needs to only construct the proper sockets to initiate commu-
nication with the server. From the results it is also obvious that the
iDMA and iTL mechanisms are the most demanding in terms of
resources because inherently they need to produce a considerably
greater mass of data in comparison with the other two.

Summarizing all the above one can arrive to the following con-
clusions regarding the basic question posed by this paper. It seems
that host-based detection and classification consumes every avail-
able resource on the device and therefore is far more demanding
than that executed in the cloud. This excessive overhead may in-
duce battery drain and cause user discontent. Cloud-based IDS op-

Table 2: Classification, CPU, Memory and Battery performance results.
Random Forest

Detection Mechanism Scenario Classification (sec) CPU (%) Memory (%) Battery (mAh/sec)
Train Test Train Test Train Test Train Test

SMS Profiler Device 2.51 0.04 90 97 78 79 0.16 0.10
Cloud 0.25 0.23 22 21 63 62 0.07 0.07

iDMA Device 4.83 0.29 96.2 100 82 83 0.27 0.20
Cloud 0.45 0.33 25 25 63 62 0.06 0.07

iTL Device 5.42 0.31 97 100 87 88 0.26 0.21
Cloud 0.35 0.39 41 45 63 62 0.05 0.05

Touchstroke Device 2.43 0.07 96.5 98.7 79.4 79.7 0.19 0.14
Cloud 0.26 0.24 25 26 63 62.0 0.04 0.05

eration on the other hand is far more relieving for the mobile device
but it cannot be considered real-time. This is obvious from Tab. 2
where for all the detection mechanisms, but one, the test phase lasts
far more time than that required when executed on the host. For
example, for the first mechanism (SMS profiler) the time needed
when detection is conducted on the host and cloud is 0.04 and 0.23
secs correspondingly (i.e., we perceive an additional time penalty
of 0.19 secs). Of course, this time gap is due to network commu-
nications required for the host to upload the detection data to the
cloud and receive the result back. Naturally, as already pointed out,
this is not the only problem with an IDS consigned to cloud care.
Temporary or even permanent network outages due to the lack of
network coverage or malware activity may provide the necessary
time window for an attack to successfully complete and compro-
mise the IDS. Considering all the above, we argue that a hybrid
IDS deployment may be the King’s Solomon solution the problem.
That is, having the most heavyweight detection mechanisms run-
ning on the cloud and keeping others, which are considered more
sensitive mostly in terms of Timeliness, on the device. Of course,
this decision needs to be taken on a case by case basis as it is ab-
solutely associated with the detection mechanisms at hand. For
instance, in case the IDS affords a user (post)authentication sensor
(as that of Touchstroke) it is better to assign it on the cloud. How-
ever, when it comes to malware detection (as that of iDMA) it is
better to keep it on the host. Last but not least, although battery
consumption during the training and testing phases can be consid-
ered quite low (having in mind modern smartphones are equipped
with a larger 2.000 mAh battery) the detection procedure can still
deplete the battery and greatly reduce the autonomy of the device.

5. RELATED WORK
This section reviews host and cloud anomaly-based IDS propos-

als for mobile devices presented in the recent literature. Note that,
theoretical approaches or individual detection mechanisms, that do
not provide a comprehensive IDS solution, have been deliberately
left out.

One of the first remote monitoring frameworks for the Android
platform was proposed in [17]. Specifically, this mechanism was
able to analyze the Android kernel to detect anomalies in the sys-
tem. The authors in [3] have proposed a behavioral detection frame-
work able to detect mobile worms, viruses and Trojans infecting
devices under the Symbian OS. However, the detection mechanism
was able to run only within the emulator.

TaintDroid a real-time monitoring system for Android OS was
presented in [11]. Although, it doesn’t use anomaly detection, but
“taint tracking” analysis, it was the first security mechanism able
to run directly on the device. Paranoid Android prototype was in-
troduced by the work in [16]. This system was the first malware

detection system with the ability to analyze on the cloud Android
mobile phone replicas.

The authors in [13] presented a cloud-based intrusion detection
and response engine for smartphones. According to the authors, the
system was able to perform forensics analysis to detect any misbe-
haviors. Crowdroid, a cloud-based anomaly detection system for
Android platforms, was presented in [4]. Crowdroid was able to
obtain the traces of applications’ behavior, utilizing a crowdsourc-
ing system, to detect malicious applications.

The first host-based detection framework, named Andromaly,
was proposed for Android OS [18]. Andromaly was able to de-
tect new types of malware based on samples of known malware
families. Also, the authors in [9] presented a host-based anomaly
detector for Android malware, coined as MADAM. This system
was able to monitor the Android OS to detect malware infections
with the help of machine learning techniques. The authors indicate
that their system produces an average 7% of CPU overhead and
of 3% MB of RAM space, without providing any detailed perfor-
mance analysis on their system.

Very recently, DREBIN, a host-based detection mechanism for
Android OS was introduced [2]. This system was able to detect
malware using machine learning techniques and more specifically
the Support Vector Machine (SVM) classifier. The authors shortly
discuss about the performance of their system, which was found
to be between 10 and 20 secs for high and low-end smartphones
respectively.

From the above it seems that several research efforts have been
done so far for deploying IDS systems in the smartphone ecosys-
tem. However, it is obvious that none of them introduces a dual
host/cloud IDS architecture and (in addition) no work addresses
performance issues in detail.

On the top of that we found that nearly all the solutions proposed
so far in the literature do not occupy themselves with performance
issues, but only care about increasing the accuracy of the system
and reducing critical factors including false positives and negatives.
However, while the aforementioned issues are indeed the most im-
portant for every IDS, one should also consider performance at least
when it comes to the smartphone realm. This is because although
modern mobile devices are quite capable of coping with high com-
putation and memory demands that are required by, say, machine
learning algorithms for the classification procedure, this leads to a
high cost regarding battery resources and user discontent.

6. CONCLUSIONS
Given the increased popularity of smartphones and the services

they can support, more and more people will be threatened by up-
coming instances of mobile malware and illegitimate usage of ser-
vices by unauthorized users. In this context, few will argue that the

Smartphone ecosystem needs specially designed, custom-tailored
IDS that are lightweight and effective, as well as easy to use.

In this paper, we address a number of still unresolved issues
around mobile IDS. First off, we present our design for a mobile
IDS architecture and a framework supporting it for deploying de-
fensive mechanisms both on the host and the cloud, and having
them work in synergy. Second, we implement a proof-of-concept
IDS, implemented for state-of-the-art mobile hardware and includ-
ing four different detection mechanisms. Third, we conduct a thor-
ough performance evaluation of the detection mechanisms in a ef-
fort to approximate the cost of a real IDS. In this respect, the results
obtained by this study can be used as a reference to any future work
in the mobile IDS domain. Still, research on mobile IDS has a long
road ahead as several important issues remain semi-explored, in-
cluding the design of novel lightweight decision engines, the low-
ering of energy consumption, and the exploration of new advance
methods to detect intrusions.

7. REFERENCES
[1] F.-A. L. S. an Brian Klug. Apple iphone 4s: Thoroughly

reviewed. Anandtech, 2011.
http://www.anandtech.com/show/4971/apple-iphone-4s-
review-att-verizon/15.

[2] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and
K. Rieck. Drebin: Efficient and explainable detection of
android malware in your pocket. In Proc. of 17th Network
and Distributed System Security Symposium, NDSS ’14.
IEEE, 2014.

[3] A. Bose, X. Hu, K. G. Shin, and T. Park. Behavioral
detection of malware on mobile handsets. In Proceedings of
the 6th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’08, pages 225–238.
ACM, 2008.

[4] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid:
Behavior-based malware detection system for android. In
Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, SPSM ’11,
pages 15–26, New York, NY, USA, 2011. ACM.

[5] comScore. Smartphones reach majority in all EU5 countries.
comScore Data Mine, 2013.
http://www.comscoredatamine.com/2013/03/smartphones-
reach-majority-in-all-eu5-countries/.

[6] D. Damopoulos, G. Kambourakis, and S. Gritzalis. From
keyloggers to touchloggers: Take the rough with the smooth.
Computers & Security, 32(0):102 – 114, 2013.

[7] D. Damopoulos, G. Kambourakis, S. Gritzalis, and S. Park.
Exposing mobile malware from the inside (or what is your
mobile app really doing?). Peer-to-Peer Networking and
Applications, pages 1–11, 2012.

[8] D. Damopoulos, S. A. Menesidou, G. Kambourakis,
M. Papadaki, N. Clarke, and S. Gritzalis. Evaluation of
anomaly-based ids for mobile devices using machine
learning classifiers. Security and Communication Networks,
5(1):3–14, 2012.

[9] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra.
Madam: A multi-level anomaly detector for android
malware. In Proceedings of the 6th International Conference
on Mathematical Methods, Models and Architectures for
Computer Network Security: Computer Network Security,
MMM-ACNS’12, pages 240–253. Springer-Verlag, 2012.

[10] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting privacy leaks in iOS applications. In Proceedings

of the Network and Distributed System Security Symposium
(NDSS), February 2011.

[11] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 1–6. USENIX Association,
2010.

[12] F-Secure. Mobile threat report july-september 2013.
F-Secure Research, 2013.
http://www.f-secure.com/static/doc/labs_global/Research/
Mobile_Threat_Report_Q3_2013.pdf.

[13] A. Houmansadr, S. Zonouz, and R. Berthier. A cloud-based
intrusion detection and response system for mobile phones.
In Dependable Systems and Networks Workshops (DSN-W),
2011 IEEE/IFIP 41st International Conference on, pages
31–32, 2011.

[14] G. Kambourakis, D. Damopoulos, D. Papamartzivanos, and
E. Pavlidakis. Introducing touchstroke: Keystroke-based
authentication system for smartphones. Security and
Communication Networks, Special Issue on: Challenges and
Opportunities in Next Generation Cyberspace Security, To
appear.

[15] nielsen. Mobile majority: U.s. smartphone ownership tops
60%. nielsen Mobile Newswire, June 2013.
http://www.nielsen.com/us/en/newswire/2013/mobile-
majority--u-s--smartphone-ownership-tops-60-.html.

[16] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos.
Paranoid android: Versatile protection for smartphones. In
Proceedings of the 26th Annual Computer Security
Applications Conference, ACSAC ’10, pages 347–356, New
York, NY, USA, 2010. ACM.

[17] A.-D. Schmidt, F. Peters, F. Lamour, and S. Albayrak.
Monitoring smartphones for anomaly detection. In
Proceedings of the 1st International Conference on MOBILe
Wireless MiddleWARE, Operating Systems, and
Applications, MOBILWARE ’08, pages 40:1–40:6. ICST
(Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2007.

[18] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss.
Andromaly: a behavioral malware detection framework for
android devices. Journal of Intelligent Information Systems,
38(1):161–190, 2012.

http://www.anandtech.com/show/4971/apple-iphone-4s-review-att-verizon/15
http://www.anandtech.com/show/4971/apple-iphone-4s-review-att-verizon/15
http://www.comscoredatamine.com/2013/03/smartphones-reach-majority-in-all-eu5-countries/
http://www.comscoredatamine.com/2013/03/smartphones-reach-majority-in-all-eu5-countries/
http://www.f-secure.com/static/doc/labs_global/Research/Mobile_Threat_Report_Q3_2013.pdf
http://www.f-secure.com/static/doc/labs_global/Research/Mobile_Threat_Report_Q3_2013.pdf
http://www.nielsen.com/us/en/newswire/2013/mobile-majority--u-s--smartphone-ownership-tops-60-.html
http://www.nielsen.com/us/en/newswire/2013/mobile-majority--u-s--smartphone-ownership-tops-60-.html

	1 Introduction
	2 The Framework
	2.1 On-device Components
	2.1.1 Event Sensors
	2.1.2 System Manager
	2.1.3 Detection Manager
	2.1.4 Response Manager

	2.2 The Cloud Manager
	2.3 Overall Operation

	3 Implementation
	3.1 System description
	3.2 Detection Mechanisms

	4 Evaluation
	5 Related Work
	6 Conclusions
	7 References

