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Abstract. As next-generation computer worms may spread within min-
utes to million of hosts, protection via human intervention is no longer
an option. We discuss the implementation of SweetBait, an automated
protection system that employs low-interaction honeypots to capture
suspicious traffic. After discarding whitelisted patterns, it automatically
generates worm signatures. To provide a low response time, the signa-
tures may be immediately distributed to network intrusion detection and
prevention systems. At the same time the signatures are continuously re-
fined for increased accuracy and lower false identification rates. By mon-
itoring signature activity and predicting ascending or descending trends
in worm virulence, we are able to sort signatures in order of urgency.
As a result, the set of signatures to be monitored or filtered is managed
in such a way that new and very active worms are always included in
the set, while the size of the set is bounded. SweetBait is deployed on
medium sized academic networks across the world and is able to react
to zero-day worms within minutes. Furthermore, we demonstrate how
globally sharing signatures can help immunise parts of the Internet.

1 Introduction

As new breeds of worms are expected to spread to millions of hosts in minutes,
if not seconds, it is imperative to automate both outbreak detection and re-
sponse [1, 2]. Worse, in order to be effective the automated system should take
appropriate counter measures in a fraction of the time that it takes the worm
to spread. Previous attempts to develop such detection systems have built on
flow-based anomaly detection, honeypots, and end-host detection [3, 4, 5]. Sev-
eral projects have addressed the problem of automatic signature detection [?, 6].
Unfortunately, most existing approaches exhibit one or more of the following
problems:

1. False positives. For any automated response system holds that misclassifying
and blocking bona fide traffic may result in unleashing a denial of service
attack by the defence mechanism.

2. Individuals rather than families. Most existing systems extract the signature
of an individual worm with no attempt to check whether this is a variation
of a worm that was previously detected.



3. Presence rather than virulence. Anyone brave enough to connect an unpro-
tected machine to the Internet will soon discover that there are many differ-
ent worms out there. In addition to an exhaustive list of what worms have
been encountered in various places, a security system would benefit from a
information about the worm activity level. Virulent worms may require more
drastic and immediate measures than worms that spread slowly.

In SweetBait we address the problem of fast-spreading worms by means of
honeypots. The system also detects worms that spread more slowly and even
other forms of malware, but these are not its focus. We discuss the design and
implementation of a system that aims to protect small and medium sized net-
works from random IP scanning worms. The size of the networks in focus was
motivated by a desire to avoid performance issues that arise with systems on
backbone links. Our goal is to automate the procedures of: worm signatures
generation, and signature distribution to external NID and NIP systems. At the
same time we aim to achieve a low reaction time to new outbreaks. The chal-
lenging task of identifying new worms is performed by honeypots. For reasons
that will be made clear shortly, we emphasise that honeypots have the unique
property that almost all traffic directed at the honeypot may be considered sus-
pect. In SweetBait the honeypots along with the NID and NIP systems (NIDS
and NIPS) will be managed by a control centre (CC), which will be able to re-
spond to outbreaks even when untended. Some contributions of this paper are
summarised below:

1. reduce false positives by ‘whitelisting’ benevolent traffic;
2. continuously refine worm signatures to provide automated signature revision;
3. utilise both NIDS and NIPS for detection and containment respectively;
4. predict worm aggressiveness by monitoring a worm’s activity level;
5. distribute signatures through a global control centre (GCC) to all instances

of the system to achieve possible immunisation of parts of the Internet;

We chose honeypots rather than network taps for several reasons. First, net-
work administrators feel more comfortable with handing out chunks of unused
IP address space than with systems that snoop on user traffic. Second, while it
is true that honeypots by themselves never see hit-list worms, this is technically
fairly simple to remedy by directing suspicious traffic to the honeypot. For in-
stance, we are currently working on a NID system that uses anomaly detection
as a first, and honeypots as a second tier in the detection process: whenever un-
usual behaviour is detected, the corresponding traffic is forwarded to honeypots
for further analysis. In this way, we preserve the property that all traffic arriv-
ing at the honeypot is suspect. This is in contrast to approaches that protect
against attacks at the user’s machine, which makes the task of separating wanted
from unwanted traffic more difficult [5, ?]. A third consideration may be that
random IP scanning worms have been much more popular than hit-list worms
and scanning worms are responsible for the fastest spreading behaviour to date.
However, we consider this argument much less important as this situation may



(and probably will) change when more effective measure against scanning worms
are in place.

The remainder of this paper is organised as follows. In Sect. 2 we will give a
detailed description of the system’s architecture and outline our implementation.
We evaluate the system in Sect. 4. Related work is discussed throughout the text
and also in Section 5. Finally, we will present our conclusions and future work
in Sect. 6.

2 System Overview

SweetBait is comprised of multiple components with distinct roles, which can be
roughly classified into two categories: sensors and control elements. Honeypots,
intrusion detection and prevention systems are all sensors, while control centres
and a global control centre constitute the control components. The honeypots are
set up to receive data destined to nonexistent IP addresses of the corresponding
subnet. These data are primarily filtered to exclude any known benevolent traffic
patterns, and the remainder is treated as of malicious origin and is processed
to generate NID signatures that we claim to belong to malware. The generated
signatures are then posted to the CC, where they are compared with the ones
already known. Based on the incidence reports from multiple locations, the CC
decides which signatures to transmit to the NID and NIP components. NID and
NIP sensors return feedback to the CC concerning the number of hits for the
signatures they have been monitoring or filtering. Finally, the CC is responsible
for exchanging signatures and activity statistics with a GCC. The presence of a
GCC enables cooperation of instances of SweetBait globally, which is necessary
to achieve worm containment [1].

A typical configuration of SweetBait components is shown in Fig. 1. In the
remainder of this section we will describe each component in detail.

2.1 Honeypot sensors

Honeypots are powerful devices for capturing random IP scanning worms. These
worms discover new victims to attack by randomly generating IP addresses. The
IP address of a honeypot is by nature unadvertised on the Internet, and as
such it does not exchange any legitimate data with the rest of the network.
It is therefore logical to assume that all traffic destined to it is suspect. By
populating the unused IP address space of a network with honeypots, there is a
high probability of finding a scanning worm in its early stages.

Deploying a honeypot presents us with two possibilities. The first is to sacri-
fice a real host running real services (high-interaction), while the second is to sim-
ulate services and/or hosts (low-interaction). The former offers high-interactivity
with attackers and makes the honeypot almost indistinguishable from other
hosts, but it requires additional protection mechanisms such as sandboxing [7, 8]
Since no real services are run, the latter offers a lower level of interaction, but
requires less maintenance and supplies a greater degree of security [9, 10]. Also,
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Fig. 1. SweetBait overview

it was shown in NoSEBrEaK that high-interaction honeypot can often be fairly
easily discovered as such by intruders [11].

SweetBait currently uses low-interaction honeypots, mainly because of the
low maintenance requirements, and security considerations. The honeypot is able
to simulate multiple hosts, which allows us to populate unused IP address space
easily and maximise the amount of captured traffic. Our choice is also justified by
the fact random IP scanning worms rarely interact with a host before attacking
it. While we have focused on low interaction, there is nothing in the architecture
that precludes connecting high-interaction honeypots.

Even though we consider all traffic received by the honeypot suspect, in
practice a small amount of non-worm related, or even legitimate traffic is also
captured. Broadcast messages, or attempts to scan the network are both exam-
ples of traffic that may be ignored. To tackle this we introduce the notion of a
whitelist : a list consisting of patterns that are considered benevolent, or inappli-
cable for generating NID signatures. A filter placed at the honeypot rejects all
traffic matching a whitelisted pattern. The filter can be largely auto-generated
by training the system on a network when it is unconnected to the larger In-
ternet. We will show that as a result of this simple step the number of false
positives drops dramatically.

Consequently, the sensors process the remainder of incoming data, scanning
for repeated byte sequences in an attempt to identify worm propagation and
generate a signature. For the scanning process to be effective it is necessary to
utilise stream reconstruction for sequenced, connection based protocols such as
TCP, since the underlying IP layer may deliver packets out of order impeding
our capability to identify patterns spanning multiple packets.



Finally, we transmit the generated signatures from the sensor to the control
centre, where subsequent actions are taken. The transmission is done in a secure
manner that guarantees the authentication of both parts, as well as the integrity
of the transmitted data.

2.2 Network Intrusion Detection and Prevention Sensors

We use network intrusion detection sensors to passively monitor ingress and
egress traffic for worms, based on the signatures generated by the honeypots.
Whenever a signature is matched, the NID sensor reports it by issuing an alert
that also includes the IP addresses involved in the transaction. This information
besides allowing us to quantify a worm’s activity it also enables us to:

– populate an Internet map with infected IP addresses;
– block infected remote hosts from accessing our network;
– identify infected hosts in our network, and initiate immunisation procedures.

NIP sensors, besides monitoring and reporting worms by issuing alerts, as-
sume the active role of filtering ingress and egress traffic. If initiated before any
host in the network has been compromised, blocking worms from entering the
network will lead to immunisation. On the other hand, obstructing worms from
leaving the network is tantamount to ‘team play’ on our part that helps contain
the worm, and earns time for other networks to raise their defences.

Most NID and NIP systems today are manually updated each time a new
worm appears, while alert reports are being used for purely historical purposes.
The SweetBait sensors are in constant communication with the control centre,
which are responsible for updating the sensors with the signatures that need
to be monitored or filtered respectively. Additionally, we immediately post the
alerts generated by the sensors to the CC for storage, as well as for estimating
worm aggressiveness. Again, the communication channel is secure to ensure only
authorised access to the CC.

2.3 Control Centre

If honeypots, network intrusion detection and prevention systems are the arms
and legs of SweetBait, the control centre is the brain. The CC collects informa-
tion from the sensors, processes it and instructs the sensors on future actions.
Information exchange between the CC and connected sensors is performed based
on a well-defined protocol, decoupling the exchanged data from specific sensor
types. The CC gathers two types of incidence reports: network intrusion signa-
tures and alerts.

Signatures are compared with every known signature to detect overlaps.
When significantly sized overlaps exist, the received signature is considered to
be a specialisation of the stored one, and it is stored as a new version. Besides
the actual network intrusion signature, the stored data consist of accompanying



meta-information. Such data include the timestamp to indicate the time of gen-
eration, the source of the signature (e.g., the IP of the honeypot), and various
flags to indicate whether it has been verified by an expert to be a valid or a false
signature. The latter is essential information that permits humans to affect the
decision making process that is described later on to increase the effectiveness
of the system.

The CC also collects alerts generated by NID and NIP components when net-
work traffic is found to match one of the known signatures. Each alert contains
information that identifies the signature, as well as the source and destination IP
addresses involved in the data exchange. The information is stored in a database
both for auditing and the reasons mentioned in Sect. 2.2. Furthermore, the num-
ber of occurrences of a worm in the network is an indication of its aggressiveness,
and will be used to classify the signatures based on the threat they pose.

Besides gathering these incidence reports, the CC also pushes information to
NID and NID sensors. A sensor that identifies itself as able to perform either
intrusion detection or prevention abilities receives periodic reports about what
packets it should monitor or block. This automates the deployment of NID sig-
natures, and consists a significant step to zero-hour detection and containment.

In most implementations, the number and size of signatures that each NID
or NIP is looking for determines its maximum throughput, therefore we enforce
a limit on the size in bytes of the signatures that are pushed to the sensors. We
adopt the notion of a signature budget, signatures are sorted based on their viru-
lence and we push as many as the budget permits. Additionally, a policy dictates
which of these signature are to be filtered. When a signature’s activity exceeds
a configurable threshold, the sensors will be instructed to filter the offending
traffic. Whether a signature is verified to be valid or false, can also be used to
exclude false or even unverified signatures from being filtered, preventing in this
way the system from accidentally stopping legitimate traffic.

Finally, the CC periodically exchanges information with the global control
centre (GCC). The information include newly generated signatures, as well as
activity statistics of known signatures. The statistics received by the GCC are
accumulated with the ones generated locally to determine a worm’s aggressive-
ness. This accumulation ensures that the CC is able to react on a planetary
outbreak, even if it has not yet been attacked itself, achieving immunisation of
the protected network.

Vulnerability

2.4 Global Control Centre

The detailed specification of a planetary scale centre for worm control is beyond
the scope of our work, nevertheless we briefly mention the aspects of such a centre
that are necessary for SweetBait. The GCC collects signatures and statistics in
a similar way to a CC, with the main difference being the lack of a signature
budget when pushing signatures to CCs. Additionally, because of performance,



as well as privacy concerns only the number of alerts is exchanged discarding the
source and destination IPs information. As a single GCC obviously is susceptible
to attacks and could become itself a liability, a distributed solution is preferable
both for performance and security reasons.

3 System Implementation

This section discusses the implementation of sensors and CC. We have employed
already available solutions wherever possible in an attempt to seamlessly inte-
grate already deployed systems in SweetBait.

3.1 Honeypot Sensor

For the honeypot sensor we use honeyd, a virtual honeypot framework that pro-
vides multiple low-interaction virtual honeypots on a single host [4]. It captures
traffic destined to unused IP addresses on the deployed network and supports
third party plug-ins that can access and process the captured traffic. Every
honeypot is attached to an operating system (OS) profile that results in the
simulation of its TCP stack on established connections. This approach protects
the host from tools like xprobe [12] and nmap [13] that fingerprint TCP pack-
ets to identify its implementation and expose the host’s OS. Besides simulating
operating systems, honeyd supports scripts that emulate services such as a web
server or a telnet daemon.

For automatically generating NID signatures from the captured traffic, we
employ honeycomb, a honeyd plug-in that scans incoming traffic and detects
repeating patterns using a longest common substring (LCS)

algorithm [6]. In addition, honeycomb performs flow reconstruction, and is
able to detect patterns even when they are segmented in multiple IP packets.
Signatures are periodically written out to a log file in pseudo-snort rule format
along with a timestamp that can be later read and distributed to the CC.

To utilise a filter for whitelisted patterns, we developed a new honeyd plug-in
named honeybounce. This plug-in supports a list of rules that specify in snort
rule format the patterns to be excluded from the NID signature generation.
This is achieved by loading honeybounce prior to honeycomb and rejecting the
matching packets. Since honeyd plug-ins do not support packet rejection, we
have developed a patch that installs this functionality. Currently, honeybounce
does not perform flow reconstruction, because of difficulties imposed by the
honeyd plug-in architecture and to conserve CPU time for pattern detection
by honeycomb. We do not expect this to become an inconvenience, because of
the nature of whitelisted traffic, which is benevolent by definition and consists
mainly of broadcast and multicast messages originating from the subnet. These
messages are mostly small enough to be contained in a single packet, and in all
other cases we observed in practice that fragmentation is predictable, being the
result of regular fragmentation of a stream into IP packets.



Honeybounce supports filtering of TCP and UDP packets based on exact byte
sequences and perl regular expressions. To accelerate the filtering procedure the
filters are classified in three categories based on protocol: TCP, UDP or ANY.
For each of these classes the filters are hashed based on their destination port
number(s), which can also be ANY. Filters are applied sequentially, when a
match occurs the procedure is terminated by signalling honeyd to reject the
packet averting its processing by honeycomb and subsequent plug-ins.

The signatures generated by honeycomb are read by a signature distribution
process that transmits them immediately to the CC. The signatures are first
examined to ensure that the content is valid and that they are not older than
the last signature received from the CC. This is accomplished by requesting the
timestamp of the last signature received from the CC, when first establishing
the connection. Such an approach is necessary, because honeycomb generates
signatures even for obscure protocol flags combinations, and additionally dumps
all generated signatures periodically. Finally, SSL is used between the honeypot
and the CC to perform authentication between the two using public and private
keys, and to ensure that the exchanged data are secure from eves dropping.

3.2 Network Intrusion Detection and Prevention Sensor

Snort [14] is one of the most popular open source NIDS, and is deployed in many
networks. This along with the fact that honeycomb generates signatures in snort
rule format motivated the adoption of snort as the base of NID sensors. Snort
scans received traffic for a set of rules and generates an alert each time a match
occurs. These alerts are logged in a file and subsequently transmitted to the CC.
The information contained in an alert includes a custom annotation, which we
use to identify the rule that caused it, and the involved IP addresses. Such an
alert is shown in Example 1. Snort can also react (in a passive way) when a
TCP flow has been found to match a rule by using control packets to terminate
it. This is accomplished by transmitting a TCP FIN packet to both ends of a
TCP flow, when a corresponding rule is matched. Unfortunately, in the case of
worms such a mechanism is not sufficient, since the original packets containing
the worm have already reached their destination, and have probably infected it.

Example 1 (Snort alert).

[**] [1:2003:4] MS-SQL Worm propagation attempt [**]

[Classification: Misc Attack] [Priority: 2]

08/24-16:03:13.805589 192.168.2.24:1178 -> 192.168.24.16:1434

UDP TTL:108 TOS:0x0 ID:30134 IpLen:20 DgmLen:404

Len: 376

[Xref => http://vil.nai.com/vil/content/v_99992.htm]

[Xref => http://www.securityfocus.com/bid/5311]

[Xref => http://www.securityfocus.com/bid/5310]

Since snort is not deployed in-line and does not offer an efficient protection
mechanism, along with the lack of open NIP alternatives, we implemented a



very simple NIP system based on Linux netfilter (http://www.netfilter.org).
Netfilter on a Linux router permits us to intercept packets before being routed,
and thus filter them at the point of entry in the network.

We developed a Linux kernel module, named CBFilter, based on Netfilter
to perform content based filtering. The module scans for exact byte sequences in
packets’ payload using the well-known Aho-Corasick algorithm [15]. If a packet’s
payload matches a target pattern corresponding to one of the rules and the
packet’s protocol and destination port number also match, the packet is dropped.
We have chosen to scan first the payload of a packet and then check the protocol
and port number to avoid instantiating multiple search trees for each protocol
and port number pair. Such an approach would diminish the benefits of using the
aho-corasick algorithm, reducing performance to that of a serial search algorithm.
Note that even though the algorithm is the most effective we could use, this
procedure remains computationally expensive.

CBFilter is controlled from user-space over a device file. A process can in-
struct the module to load new filters, start and stop filtering, as well as recover
statistics. Statistics include the number of packets filtered using a specific rule,
but not the source and destination addresses involved due to performance re-
strictions. Each time statistics are retrieved, the corresponding counter is reset.

The alerts generated by snort and CBFilter are collected by a signature
distribution process that transmits them to the CC. The same process also listens
for signature updates from the CC, and applies them to snort and CBFilter.
To minimise data transmission, the process supports alerts caching: aggregation
of the alerts generated by each rule, and periodic transmission of the number
of hits incurred during ine each period. This is useful when the number alerts
is sufficiently large to approach saturation of the connection with the CC, or
the CC itself. The aggregation occurs at the expense of detailed information
that may be used for auditing, as the IP addresses are not included with the
aggregate alerts. As in all case, we use SSL on this connection for authentication
and security purposes.

3.3 Control Centre

We implemented CC as a multi-threaded server that handles multiple concur-
rently connected sensors, and uses a PostgreSQL database for storing its data
(http://www.postgresql.org). system in SweetBait is The CC collects two
types of information: signatures and alerts. When a new signature N is received
it is first compared with every stored signature S, sharing the same protocol,
using the LCS algorithm. If an overlap O exists, then the following apply:

1. Specialisation: the length of O is at least X% of the length of N .
O will be treated as a new version of the stored signature S exists. On
practice we found an initial value of X = 85 to perform well, as it leaves
space for the generation of more specialised signatures, while protecting the
system from misclassifying a new worm signature N as a new version of a
stored signature S.



2. Generalisation: the length of O is at least Y % of the length of S;
This rule was introduced to keep the system consistent when a new honeypot
sensor is introduced or an already running one is restarted. The honeypot
sensors do not hold persistent information regarding previously generated
signatures; when restarted in an attempt to generate signatures as soon as
possible they will generate signatures more generic than the ones already
stored at the CC. These signatures will be large enough to evade the first
rule, but will be captured by this one. The value of Y should be just below
100, or even 100 to completely eliminate the possibility of missing valid new
signatures. In practice, we found a value of 95 to be sensible and effective.

In both cases, if O is identical with S, it is discarded. Furthermore, to avoid
over-specialisation of signatures and unreasonable signature lengths, we also in-
troduce a minimum and maximum. If the length of N or O do not fall within
these limits it is also discarded. As for the alerts, their process is quite straight-
forward: whenever an alert is received the activity counter of the corresponding
signature is increased, and the involved IPs are stored in the database.

The CC periodically updates the NID and NIP sensors with the set of sig-
natures that should be monitored and filtered respectively. Because we enforce
a budget on the maximum size of the signature set deployed on these sensors,
we need to sort them based on their expected aggressiveness. To quantify this,
we selected the exponentially weighted moving average of the number of alerts
generated by each signature on each period. It is defined as

m′ = w × a + (1 − w) × m (1)

where: m′ is the new value, m is the previous value, a is the number of alerts
this period, and w is the weight (a configurable parameter). Selecting a value for
the weight 0 < w ≤ 1 configures m to follow more or less aggressively the recent
changes in activity levels. In practice, values less then 0.5 are not very useful.
The value m is used to predict future values of a worm’s aggressiveness. The
value of a signature’s activity A that is eventually used by SweetBait is biased
towards specific destination ports and protocols:

A = m × portbias × protocolbias (2)

This approach allows us, for instance, to react more aggressively to UDP
than TCP worms, and with caution to signatures involving web or mail services.
This is also useful as some ports (e.g., ports 139 and 80) and protocols are much
more frequently attacked (or scanned) than others [16].

The signatures are subsequently transmitted to the NID and NIP sensors,
starting with new signatures, and proceeding with signatures that have the
largest activity value, going as far as the signature budget allows. Signatures
with a value of A larger than the filtering threshold are transmitted to the sen-
sors with the indication that they should be filtered, unless the administrator of
the system has requested that only verified ones should be filtered.



Finally, the CC periodically contacts the GCC to exchange signatures and
global activity statistics. The received statistics are aggregated with the local
ones to provide new values of a and A. Again, SSL is used for communication
between CC and GCC.

3.4 Global Control Centre

The global control centre is a stripped-down version of the CC described above.
It is a multi-threaded server that handles multiple connections from CCs, and
exchanges signatures and statistics. Signature specialisation is done as described
in Sect. 3.3. Activity statistics received by the CCs are aggregated, and are
periodically cleared to avoid stale values from inhibiting the ability of detecting
new outbreaks.

4 Experimental Evaluation

To evaluate SweetBait we deployed it in four different sites: Vrije Universiteit
in Amsterdam, ICS FORTH in Heraklio, UNINET in Oslo, and University of
Pennsylvania in the US. In all cases we deployed a honeypot sensor, but as it
was unlikely that we would obtain permission to setup a NID or NIP system for
the entire network, we resorted to deploying the NID system on the same host
as the honeypot. The goal of our evaluation is to prove the ability of SweetBait
to generate valid worm signatures, and achieve a low reaction time.

The size of unused IP address space varied from 32 IPs in ICS FORTH to
two class C subnets in Vrije Universiteit. As expected, the larger the address
space, the more traffic was captured by the honeypot and consequently more
signatures were generated. Additionally, we noted increased activity in our Uni-
versity of Pennsylvania honeypot, which may be caused by the higher density of
IP addresses in this area.

Initially, we ran SweetBait for 24 hour lapses, to get a first glimpse on the
generated signatures, and tune the system to achieve the best possible results.
We setup the honeypot to emulate hosts running the following operating systems:
Linux kernel 2.4.20-2.5.20, Windows XP Professional RC+1, and MS Windows
Professional Advance Server Beta3. Additionally, the hosts emulated services
such as FTP, POP3, and IIS application server, while accepting connections on
all ports. Obviously, such a choice is not suggested for a production system, since
it would expose the honeypot, but it is ideal for maximising the captured traffic
during evaluation.

4.1 Signature Generation

Exceeding our expectations we collected a significant number of signatures in
just a couple hours. Using the values given in section 3.3, signature specialisation
reduced the tens of thousands generated by honeycomb to tens. Table 1 depicts
this for five of our experiments. SweetBait also generated signatures that could



Table 1. Specialisation results

Usable signatures Unique signatures CC entries

(honeycomb log) (honeycomb log) (database)

23400 12356 14

2861 592 9

6030 2402 11

35500 9269 20

43470 22504 21

323237 4042 27

not be applied to a NIP sensor, since it would not be able to discriminate between
legitimate and malicious traffic, resulting in the whitelisted signatures shown in
Table 2.

After applying the whitelist at the honeypot the results where further im-
proved. The generated signatures consisted of well known older worms such
as CodeRedII [17], Slammer, MSBlaster [18] and Nimda [19], as well as many
exploit attempts including the more recent Veritas backup exec [20] and Mi-
crosoft WINS [21] vulnerabilities. A significant number of signatures is indi-
rectly connected with worm propagation, since it involves traffic targeting back-
doors created by worms on infected hosts, such as MyDoom [22] and Sasser [23].
A detailed list of all the generated signatures can be found on-line at http:

//www.liacs.nl/~gportoka/signatures.html.

Almost 100% of the generated signatures concern malicious activity, regard-
less whether they are the result of a computer worm, or a human exploiting
vulnerabilities. In the latter case, it is possible that generated signatures are
not applicable to NIP sensors, since it might also hinder access to legitimate
users.

Most of the signatures are of less than 200 bytes long. Small signatures focus
on the exploit used by a worm, and permit us to deploy more of them on the
NID and NIP sensors. The distribution of the size of the generated signatures
is shown in Fig. 2. The fact that the length of most signatures is smaller than
an IP packet does not imply that the worms used a single packet to propagate.
Honeycomb employs flow reconstruction, and can identify patterns fragmented
across multiple packets.

4.2 Performance

To complete the evaluation of our system, we conducted measurements regard-
ing the performance of the CC. It has to be able to process all the received
information in a reasonable amount of time to achieve a low reaction time to
worm outbreaks. Because of the nature of the honeypot sensor, the amount of
traffic sent to the CC is negligible, while the number of alerts generated during
an outbreak could be overwhelming.



Table 2. Whitelist

alert udp any any -> any 137 (msg: "NetBIOS Name Service Wildcard Query";

pcre: "\x00*\x0F*\x00*\x01\x00*\s*CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\x00*!

\x00*\x01*\$"; )

alert tcp any any -> any any ( msg: "NULL packets"; pcre: "^\x00+$"; )

alert tcp any any -> any 80 ( msg: "Web Server DoS"; pcre: "^GET / HTTP/

1\.1\r\nAccept\x3A image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

\*/\*\r\nUser-Agent: Mozilla/4\.0 (compatible; MSIE 5\.5; Windows 98)\r\n

Host\x3A .+\r\nConnection\x3A Keep-Alive\r\n\r\n$"; )

alert tcp any any -> any 139 ( msg: "Session Request to SMBSERVER";

pcre: "\x81\x00\x00D [A-Z]{32}\x00 [A-Z]{32}\x00$"; )

alert tcp any any -> any 139 ( msg: "Session Request to SMBSERVER";

pcre: "A\x00 [A-Z]{32}"; )

alert tcp any any -> any 80 ( msg: "IIS WebDAV request"; pcre: "^OPTIONS

/ HTTP/1\.1\r\ntranslate\x3A f\r\nUser-Agent\x3A Microsoft-WebDAV-

MiniRedir/5\.1\.2600\r\nHost\x3A .+\r\nContent-Length\x3A 0\r\n

Connection\x3A Keep-Alive\r\n\r\n$" );

We conducted experiments with a NID sensor generating false alerts to test
the throughput of the CC, and locate possible bottlenecks. We set up the NID
sensor to continuously transmit alerts, and measured the number of alerts that
were processed every second at the CC. To achieve more realistic results, a hon-
eypot sensor was also connected and was sending signatures. Initially, the NID
sensor did not use alert caching, which resulted on a mere 15 alerts per second
on average. Investigating the cause of such poor performance, we discovered that
the database needed approximately 70 msec to store a single alert. Using faster
hardware to host the control centre would definitely improve throughput, since
we just used a PC with 256MB of memory running at 1.2Ghz. Switching to alert
caching overcomes this limitation by achieving an astounding 140,000 alerts per
second.

Another aspect of performance is the time it takes for the control centre
to initiate monitoring, and consequently filter a new worm signature. As we
have mentioned before, the generation of signatures depends on repeated byte
patterns being identified by honeycomb. This implies that the speed in which a
signature is generated,depends on the speed of the worm itself. As soon as the
signature is generated, it is send to the CC within seconds. The time needed
to initiate monitoring, depends solely on the period T that the CC updates
NID and NIP sensors. Exchange with the GCC is also performed periodically,
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so the maximum time needed for a signature to be distributed globally is 2× T ,
assuming all deployed systems have the same period. 2×T has to elapse as well,
before filtering a signature, assuming that its activity has exceeded the defined
threshold. To conclude, a short update period leads to fast reaction times against
new worms, but would overwhelm the GCC. A distributed GCC would overcome
such issues, but is beyond the scope of this paper. During our evaluation, T was
set to 2 minutes and we were pleased to observe that no unexpected performance
degradation occurred.

5 Related Work

Various types of honeypots have been used for worm detection. A network of
high-interaction honeypots are used to capture worms in the honeynet project [7].
By analysing network traffic and the honeypot’s state it is possible to produce de-
tailed descriptions of worm behaviour. Successful application of low-interaction
virtual honeypots was demonstrated by Laurent Oudot in capturing and counter-
attacking the MSBlaster worm [24]. . LaBrea [25], is a honeypot used as a tarpit:
it slows down scanning worms, by keeping TCP connections open indefinitely
period. While effective for some worms, it would be powerless in the face of
a UDP worm like Slammer. Sombria [26] is yet another honeypot system that
has been setup for research purposes in Japan. All of these projects differ form
SweetBait in that the focus is on capturing worms, rather than on automated
response based on automatically extracted and refined signatures.

Honeycomb is a system that automatically creates intrusion detection sig-
natures [6]. It uses honeyd [4], a popular low-interaction virtual honeypot, to
capture suspicious traffic and uses a longest common substring algorithm to



compare received packets and consequently generate NID signatures. Honey-
comb managed to generate accurate signatures for the Slammer and Code Red
II worms; nevertheless it can be fooled by long sequences of bytes repeated by
certain protocols such as NetBIOS or by malevolent service availability scans,
and create signatures for otherwise legitimate traffic. Another system that auto-
matically generates signatures for TCP worms is AutoGraph [27]. It operates by
analysing prevalence of portions of flow payloads and exhibits a fairly low false
positives rate. Like SweetBait it operates better in a distributed environment.
However, it is not aimed at finding refinements or generalisation of signatures,
nor is it currently coupled to an automated response system.

A worm containment environment for enterprise scale networks was proposed
by Joukov and Chiueh [28]. Their design combines anomaly detection, egress fil-
ters and honeypots to generate worm signatures and filter them at the enterprise
firewall. It is a system quite similar to the one we propose. Its major weakness
can be identified in that entire TCP sessions destined to a non-existent host are
treated as worm signatures and no dedicated host is acting as a honeypot. The
ease by which even an unsophisticated polymorphic worm could evade detection
and flood the system with new worm signatures is apparent. Furthermore, the
system is isolated from the rest of the Internet unable to take advantage of worm
epidemic alerts generated by other parts of the Internet.

A similar system also addressing the issue of an Internet wide centre to
correlate warnings and share information is described by Changchun Zou et al
[29]. Ingress and egress scan monitors are distributed in different parts of the
network and submit their warnings to a malware warning centre. The monitors
are using a Kalman filter to identify the propagation of a worm based on observed
illegitimated scan traffic. Such an approach aims to detect zero-day worms at
their early stage, but is vulnerable to background noise that could cause a high
rate of false alarms.

A fast containment system is presented in [30]. It differs from most projects
described here, including ours, in that it takes a network-centric and aims at
implementation in hardware.

A cooperative immunisation system against worms is described by Anagnos-
takis et al [31]. The system consists of distributed nodes exchanging information
about on going threats and the actions necessary to defend. Each node hosts
an agent which scans incoming traffic for worm and virus signatures. The set of
scanned signatures and the intensity of scanning is determined by the observed
virulence of each worm/virus and the available resources of each node. Node
agents periodically poll each other to update their state. To solve the issue of
trust, each agent polls multiple nodes to compose a global state used to validate
the node’s claims. This method of validation can be susceptible to attacks if a
large number of nodes is compromised. Also, the assumption made that routers
and switches are less likely to be attacked leaves these network components
exposed to attacks.

A more aggressive approach is adopted by Sidiroglou and Keromytis [32].
Similarly to the architecture we propose, diverse sensors are employed for mon-



itoring including network monitors and honeypots. The honeypots used are
highly-interactive, running real versions of popular applications to be protected.
To avoid the compromise of the honeypots the applications run on a sandbox
environment or on a high performance virtual machine. The applications are
monitored for illegal behaviour, and when such is detected the error that caused
it is located and a patch is automatically generated and distributed through a
software update service. Such active measures cannot be easily trusted though.
An automatically generated patch could do more harm than good and it leaves
the possibility of gaming by hackers; carefully crafted input to the honeypots
could cause the generation of patches that create weaknesses.

Besides Honeypots there are various other approaches to intrusion detec-
tion and prevention. Anomaly detection systems (ADS) In-band content inspec-
tion [?]. Intrusion-tolerant systems [33]. Bro [34]. Early warning [29]

6 Conclusions and Future Work

In this paper we discussed the design and implementation of SweetBait, a system
that is an amalgam of network intrusion detection and preventions technical.
It was shown that SweetBait is able to automatically generate signatures for
random IP address space scanning worms without any prior knowledge. We also
demonstrated how this information can be distributed and deployed without any
human intervention minimising reaction time to zero-day worms. Furthermore,
the signature version-ing, activity prediction and automatic deployment tech-
niques introduced provide an invaluable administration tool, which condenses
the information that need auditing by administrators, while self-adapting to
ensure a high throughput of the monitoring nodes.

Our future plans are to further extend SweetBait with new sensors, as well
as to improve existing ones. New sensor types will be introduced to capture ’hit-
list’ worms, which currently evade our honeypot sensor. Improvements will be
explored in the section of signature generation by moving to algorithms employed
in Bioinformatics, which are able to detect all common substrings between two
sequences. Technical modifications are also scheduled, communications between
sensors will be changed from periodical to asynchronous, to even more lower re-
action time to new worms. Additionally, we are also considering distributing the
planetary scale control centre to achieve fault tolerance and higher performance.
Finally, we will also be involved in worm detection in encrypted network traffic.
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