
SysPart: Automated Temporal System Call Filtering for Binaries
Vidya Lakshmi Rajagopalan
Stevens Institute of Technology

Hoboken, NJ, USA

Konstantinos Kleftogiorgos
Stevens Institute of Technology

Hoboken, NJ, USA

Enes Göktaş
Stevens Institute of Technology

Hoboken, NJ, USA

Jun Xu
University of Utah

Salt Lake City,UT, USA

Georgios Portokalidis
Stevens Institute of Technology

Hoboken, NJ, USA
IMDEA Software Institute

Madrid, Spain

Abstract

Restricting the system calls available to applications reduces the
attack surface of the kernel and limits the functionality available to
compromised applications. Recent approaches automatically iden-
tify the system calls required by programs to block unneeded ones.
For servers, they even consider different phases of execution to
tighten restrictions after initialization completes. However, they re-
quire access to the source code for applications and libraries, depend
on users identifying when the server transitions from initializa-
tion to serving clients, or do not account for dynamically-loaded
libraries. This paper introduces SysPart, a semi-automatic system-
call filtering system designed for binary-only server programs that
addresses the above limitations. Using a novel algorithm that com-
bines static and dynamic analysis, SysPart identifies the serving
phases of all working threads of a server. Static analysis is used
to compute the system calls required during the various serving
phases in a sound manner, and dynamic observations are only used
to complement static resolution of dynamically-loaded libraries
when necessary. We evaluated SysPart using six popular servers
on x86-64 Linux to demonstrate its effectiveness in automatically
identifying serving phases, generating accurate system-call filters,
and mitigating attacks. Our results show that SysPart outperforms
prior binary-only approaches and performs comparably to source-
code approaches.

CCS Concepts

• Security and privacy→ Systems security.

Keywords

System-call filtering, temporal, binary analysis, attack-surface re-
duction, exploit mitigation.

ACM Reference Format:

Vidya Lakshmi Rajagopalan, Konstantinos Kleftogiorgos, Enes Göktaş, Jun
Xu, and Georgios Portokalidis. 2023. SysPart: Automated Temporal System

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3623207

Call Filtering for Binaries. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’23), November 26–30, 2023,
Copenhagen, Denmark. ACM, New York, NY, USA, 17 pages. https://doi.org/
10.1145/3576915.3623207

1 Introduction

Applications interact with operating systems (OSs) through system
calls (syscalls). Over time, the number of syscalls has increased
to accommodate the growing size and complexity of application
software. Indicatively, the latest Linux kernel (v6.3.1) provides 451
syscalls in x86-64 architectures, compared to just 347 in the previ-
ous version (v5.5). Astoundingly, more than 100 new syscalls have
been added since then. However, this increase is not without risks.
Unprivileged applications, whether malicious or compromised [11],
can exploit vulnerabilities in system-call code, which runs with
higher privileges, to elevate their own privileges [28–30, 33, 45, 46].
System calls are also the only means by which malicious appli-
cations can execute dangerous actions, such as downloading and
running malware, communicating over the network, and so on.
The Literature: To mitigate this issue, recent approaches attempt
to limit the number of system calls available to applications. One
such approach is sysfilter [13] (SF), which utilizes binary analysis
to statically approximate the minimum set of system calls required
by an entire binary application over its lifetime. A filter is then in-
stalled to block unnecessary calls at load time. In contrast, temporal
system call specialization [20] (TSP) focuses on server applications,
and partitions the application lifetime into initialization and serving
phases. Static analysis at the compiler-level is employed to further
restrict the system calls available during the serving phase. While
TSP offers superior security, it has several limitations: ❶ TSP works
only on source code and cannot be applied to applications with bi-
nary components; ❷ it depends on the manual identification of the
serving phase; and ❸ it ignores dynamically-loaded libraries (DLL),
potentially resulting in false positives when syscalls are needed for
those libraries.
Our Approach: In this paper, we present SysPart, a binary-only,
automatic system-call filtering system for server programs. We
introduce two new techniques to overcome TSP’s limitations.
▶ Similar to TSP, we divide a server’s lifetime into two phases:
initialization and serving. However, unlike TSP, SysPart automati-
cally identifies the beginning of the serving phase. Our approach
employs a novel algorithm that combines static and dynamic anal-
ysis with simple workloads, freeing the user from the burden of

https://doi.org/10.1145/3576915.3623207
https://doi.org/10.1145/3576915.3623207
https://doi.org/10.1145/3576915.3623207

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Vidya Lakshmi Rajagopalan, Konstantinos Kleftogiorgos, Enes Göktaş, Jun Xu, and Georgios Portokalidis

manual identification. We observe that a server’s serving phase
typically employs a loop structure, and we identify a loop that can
only be entered once and also dominates execution time as the main
loop. SysPart applies this algorithm to each thread of execution
independently, which enables automatic identification of all serv-
ing phases in applications that use different types of work threads
(e.g., multiple services). This can mitigate attacks where a compro-
mised serving thread uses another one as a confused deputy [24]
to perform syscalls on its behalf.
▶ In order to accurately determine the system calls required during
the serving phase, it is necessary to calculate the code partition that
is accessible from the beginning of the main loop. To accomplish
this, SysPart utilizes static analysis of the server binary and all of its
library dependencies to construct safe, albeit conservative, versions
of the program’s function-call graph (FCG) and control-flow graph
(CFG). These graphs are then used to compute the serving partition
and the system calls made from it. Although reverse-engineering ar-
bitrary binary software can be challenging, recent research [13, 56]
has demonstrated that it can be accomplished in a sound manner for
modern x86-64/ARM Linux binaries. Moreover, SysPart introduces
a combination of value-flow analysis (VFA) and heuristics, among
other static analyses, to increase the precision of the FCG and to
resolve the names of libraries and functions loaded at run time (e.g.,
via dlopen() and dlsym()).
Evaluation: SysPart was implemented for x86-64 Linux, using
static and dynamic analyses built as passes over the Egalito frame-
work [56] and run-time tools over Intel’s Pin framework [35], re-
spectively. The FCG was further pruned using TypeArmor [55],
and application binaries were rewritten using Egalito to install a
Linux Seccomp-BPF filter just before the main loop. We evaluated
SysPart using six popular servers (Nginx, Apache Httpd, Lighttpd,
Bind, Memcached, and Redis), demonstrating that it outperforms
sysfilter and performs closely to TSP, even without source code
access. On average, SysPart only allows 8.33% more syscalls than
TSP, and filters as many security-critical syscalls as TSP in 88.23%
of cases. In fact, SysPart outperforms TSP in 2% of cases. SysPart
is effective in thwarting exploit payloads, with a success rate of
53.83% - 78.5% and a success rate of 36.11% - 77.77% in blocking
kernel vulnerabilities, for the ones tested, depending on the ap-
plication. When considering libraries loaded at runtime, SysPart
outperforms sysfilter in resolving instances of dlopen() and
dlsym() by 58.33% and 18.75%, respectively, and resolves all re-
lated calls in Redis server entirely with static analysis. We also
evaluated SysPart on Abyss Web Server [1], which is a closed-
source server. Last, on average, the static analysis component of
SysPart runs 80% faster than TSP.
Contributions: Our main contributions are as follows:
• We introduce SysPart, a system that can significantly limit the
number of available syscalls during the serving phase of a server
application, even without access to the application’s source code.
• We design a novel algorithm for automatically detecting the main
loop corresponding to the serving phases of a server application’s
threads and processes.
• We propose a novel static analysis that combines VFA, TypeAr-
mor, and heuristics to refine the FCG and resolve dynamically-
loaded libraries and functions.

• We evaluate SysPart using six server applications.
– In terms of security benefits, SysPart surpasses the state-of-
the-art binary-only solution sysfilter by tightly restricting
the available syscalls during the serving phase of server ap-
plications. It also performs closely to TSP (the state-of-the-art
source-code solution).

– SysPart beats sysfilter in resolving DLL-related calls and,
to the best of our knowledge, is the first to soundly handle a
server application loading libraries at run time.

• We make SysPart available at https://github.com/vidyalakshmir
/SysPartArtifact.git.

2 Threat Model

Binary server applications may contain vulnerabilities in the ap-
plication or the used libraries, which can be exploited [54] during
the serving of requests. These vulnerabilities can allow attackers
to execute arbitrary code using techniques like code injection and
code reuse [14, 53, 57], bypassing popular defenses such as stack-
canaries [10], ASLR [44], DEP [7], and others [4] using known
methods [21, 22, 52].

This work focuses on what a compromised process can do af-
ter this point. If the process is unprivileged, attackers frequently
exploit a vulnerability reachable through a system call to elevate
their privileges [28–30, 33, 45, 46]. Compromised programs, also
use system calls to perform malicious actions, which are part of
their payload, such as downloading and executing malicious soft-
ware, attacking other servers over the network, and more. In multi-
threaded/process applications, where the compromised thread is
restricted and cannot perform a vulnerable system call, attackers
may attempt to confuse another (unrestricted) thread or process into
performing the syscall on their behalf [24]. This can be achieved,
for example, by corrupting the data used by the other thread or
sending malformed data to another process through inter-process
communication (IPC) channels.

3 Background and Motivation

3.1 Filtering System Calls using Seccomp-BPF

Filtering the unused system calls of a process is one way to limit
the attack surface of the kernel and what a process can do in ad-
herence to the principle of least privilege. Seccomp-BPF [31] is a
Linux kernel facility which allows filtering of system calls using
Berkeley Packet filter rules. The process of filtering system calls
using Seccomp-BPF is one-way, which means the filtered system
calls cannot be re-allowed later as this would open a window for
attackers to reactivate them once an application is compromised.
Seccomp-BPF filters are manually defined which is an error-prone
process as determining the system calls that are actually needed by
an entire application is often complex.

3.2 Automating Filter Generation in Binaries

Previous works, such as sysfilter [13], aim to automate the process
of installing Seccomp-BPF filters on binaries. This is achieved by
disabling syscalls that are not required during the binary program’s
lifetime. Using static analysis, sysfilter first constructs the function
call graph of the binary and extracts the syscalls reachable from

https://github.com/vidyalakshmir/SysPartArtifact.git
https://github.com/vidyalakshmir/SysPartArtifact.git

SysPart: Automated Temporal System Call Filtering for Binaries CCS ’23, November 26–30, 2023, Copenhagen, Denmark

ngx_worker_process_cycle()main()

ngx_dlopen()

CVE-2013-1858

Initialization Phase Working Phase

CVE-2017-6001KERNEL

ngx_log_error() get_host_from_headers_in()

x x
x

Dynamic library loading
Execution-phase partition

Phase
entry point

Syscall filtering
(Seccomp BPF)

Example of called function

{ perf_event_open, … } {perf_event_open, clone, … }

Figure 1:Motivating example–System call filtering prevents compromised processes from performing system calls to interact

with the OS or exploit kernel vulnerabilities. Installing more restrictive filters for the working phase of processes, like the

Nginx web server’s serving phase, further eliminates attacks and limits attacker capabilities. Existing approaches depend on

manual defining the execution-phase partition, ignore dynamic library loading, and require source code and recompilation.

its code. It then injects code in the binary to install the generated
Seccomp-BPF filters at load time.

3.3 Temporal System-Call Filtering

Compared to limiting syscalls for the whole execution, a more ef-
fective approach is temporal system-call filtering: installing progres-
sively more restrictive system-call filters as an application executes.
For example, most server programs work in two phases. ❶ The
initialization phase performs tasks like initializing configuration
parameters, forking service processes, spawning worker threads,
etc.❷ Upon completion of the initialization phase, it enters the
serving phase, which is usually designed as a loop—or themain

loop— to continuously handle client requests. We define the point
of transition from the initialization phase to the serving phase as
the transition point. Many syscalls are no longer needed after
this transition point, which can be filtered out to further constraint
the application.
Running Example: In Figure 1, we show a running example on
Nginx to demonstrate the security benefits of temporal system-call
filtering. The serving phase of Nginx starts at the function ngx_-
worker_process_cycle(). By exploiting vulnerabilities like CVE-
2013-2028 [39], adversaries can control the execution of the serving
phase through ROP. Temporal syscall filtering can help prevent such
adversaries from moving deeper by elevating the privileges of the
controlled process. For instance, it can filter out the clone syscall
during the serving phase, disallowing the adversaries to compro-
mise the kernel via vulnerability CVE-2013-1858 [38]. In contrast,
whole-binary syscall filtering like sysfilter cannot achieve this as
clone is needed in the initialization phase.
Existing Solutions: TSP [20] is the state-of-the-art solution for
temporal syscall filtering. TSP runs semi-automatic analyses on
the source code to determine the serving phase and the required
syscalls. It further mounts a syscall filter at the transition point to
disable the unneeded syscalls. While insightful, the design of TSP
has several limitations that can restrict its practicality.
▶ TSP requires source code. It cannot work on closed-source ap-
plications that are common in various domains: (i) Commercial
servers like Aprelium Abyss Web Server, SAP NetWeaver, Oracle
Database, etc., are only provided in the format of binary; (ii) Many
closed-source desktop applications, such as Zoom and Skype, act
as both clients and servers; (iii) Governments often acquire and
run specialized proprietary software, including Linux servers, as

attested by their interest in securing them [3]; (iv) Cloud users
can run binary servers without sharing the source code for cloud
vendors to provide protection. Even for open-source applications,
gathering the correct version of source code and all its dependent
libraries is cumbersome and can be infeasible (e.g., open-source
servers can use proprietary binary libraries). In addition, inline
assembly can arise in source code (like those in GNU libc) and fail
source-code-based approaches.
▶ TSP requires users to identify the transition point manually. This
is more complicated and time-consuming than it appears to be. For
instance, Memcached offers a diverse set of services (client request
handling, LRU maintenance, slab rebalancing, etc.) via different
worker threads. These services use different serving code and have
different transition points. It is important to identify all of them and
place a syscall filter on each of them. Otherwise, confused deputy
attacks are possible: a compromised but filter-restricted thread can
hijack another unrestricted thread to invoke an unavailable syscall.
The manual effort needed and the possibility of errors dramatically
increase in such cases.
▶ TSP currently does not handle dynamically-loaded libraries,
which can cause critical functionality issues. For instance, Httpd
may use mod_ssl.so to enable SSL and TLS connections, requiring
14 additional system calls. Handling dynamically-loaded libraries
presents a non-trivial challenge for server applications, which often
follow a modularized design and load these libraries at run time
using interfaces like dlopen() and dlsym() based on a configura-
tion file. However, resolving the libraries and functions imported
by an application through these interfaces is necessary to avoid
errors.

4 Design and Implementation

4.1 Overview

The objective of SysPart is to overcome the limitations of pre-
vious works [13, 20] and generate an automatic system-call filter
for server binaries. To achieve this, our approach uses both static
and dynamic analyses, as illustrated in Figure 2. All analyses op-
erate on binary code. Static analyses are based on the Egalito [56]
framework, while dynamic analyses use Intel’s Pin [35] framework.
To automatically identify the serving phase of server binaries, we
first use static analysis to locate loops, and then employ dynamic
analysis to determine the dominant loop for each thread, which
corresponds to its main loop. Before generating system-call filters,

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Vidya Lakshmi Rajagopalan, Konstantinos Kleftogiorgos, Enes Göktaş, Jun Xu, and Georgios Portokalidis

Call Graph
Construction

Loops
Identification

System-Call Set
Generation

(per partition)

BPF Filters Generation

Syscall-Filter
InjectionBinary with Shared Libraries Hardened Binary

Egalito

Dominant
Loop

Detection
Pin

TypeArmor
DLL Analysis Sysfilter

Figure 2: Workflow of SysPart.

we construct the function call graph of the application statically,
and then refine it using value-flow analyses (VFA) and heuristics.
We also use TypeArmor [55], a third-party tool, to further refine the
graph. To determine the use of dynamically-loaded libraries (DLL)
by the application, we combine both static and dynamic analysis,
with the former providing soundness. The above information is
then combined to generate a list of required system calls for each
serving phase. Next, SysPart generates a BPF program that will
install the appropriate Seccomp-BPF filters, which is inspired from
sysfilter. Finally, using Egalito, we rewrite the application and
inject these functions at the phase transition points. All extensions
that we developed over Egalito is described in section A.5.

4.2 Serving Phase Detection

To define the beginning of the serving phase of a server program,
we build on the following observations:
• Server applications utilize a loop to serve clients.
• A system-call filter should be installed outside a loop to avoid
repeated installation.
Hence, we define the serving phase of a program as the beginning

of a top-level loop, where it spends most time executing. Here, top-
level means the loop is not enclosed in another loop. Our algorithm
for detecting the serving phase, therefore, focuses on identifying
this main loop. Preceding it is the transition point, where a system-
call filter can be installed. Serving phase detection consists of a
static-analysis phase (§4.2.1), which finds all loops in the application
and its libraries, and a dynamic-analysis phase (§4.2.2), where this
information is used to find the dominant or main loop. By design,
this algorithm can find the main loop used by different worker
threads (or processes) of the server, enabling SysPart to generate
system-call filters for all of them. We describe them below.

4.2.1 Loops Identification: To identify all loops, we employ the
Egalito [56] binary-analysis tool to statically disassemble appli-
cations and libraries, and extract the control-flow graph (CFG)
of each function of the application and its libraries. We focus on
loops produced using: for() {}, while() {}, do{} while(),
and goto statements. For each function, we employ the worklist
algorithm [12, 17, 34], which builds on the concept of dominance,
to identify all loops present in the function. Briefly, the algorithm
is based upon finding dominator nodes and back edges, as defined
below.
Dominator: A node N (which represents a basic block in a CFG)
dominates node M if all paths to M must pass through N. A node
dominates itself. If there is an edge from node N to M in the CFG,
then N is a predecessor of M and M is a successor of N. The set of
dominators of node Z is defined as:

𝑑𝑜𝑚(𝑍) = 𝑍 ∪ (∩(𝑑𝑜𝑚(𝑌)),
where 𝑌 = set of all predecessors of 𝑍 .

Back Edge: An edge from node N to node H is a back edge if H
dominates N. Node H is the “header” of the loop (the place where
the loop is entered).

Using the above, the algorithm identifies the code blocks com-
prising the body of loops, as well as the exit nodes of each loop:
Loop Body: For a loop with back edge from node N to node H
(header node), the body of the loop is obtained by starting from node
N and recursively finding all predecessor nodes until the header
node is reached.
Exit Nodes: The exit nodes of a loop are determined by identifying
those nodes within the loop bodywho have outgoing edges to nodes
outside of the loop.

Algorithm 1 Dynamically compute the executed top-level loops
Input: A set of loops S with a start_address and a set E of exit_address
Output: Set executed_top_loops which contains executed top-level loops
1: function compute_outer_loop(S)
2: cur_loop← []
3: for Each instruction with address i do

4: for Each loop L in S whose exit_address is i do

5: if cur_loop is L then

6: endtime(cur_loop)← get_current_time()
7: duration(cur_loop)← endtime(cur_loop) - starttime(cur_loop)
8: executed_top_loops← executed_top_loops ∪ cur_loop
9: cur_loop← NULL
10: break
11: if i is the entry_address of loop L then

12: if cur_loop is NULL then

13: cur_loop← L
14: starttime(L)← get_current_time()
15: iterations(L)← 0
16: else if cur_loop is L then

17: iterations(L)← iterations(L) + 1

4.2.2 Dominant Loop Detection: We implement a component us-
ing Intel’s Pin [35] to determine the dominant loop when running
servers with simple workloads . Intel Pin is a dynamic binary in-
strumentation tool for developing and applying tools, known as
pintools, on binary programs at run-time. We develop a pintool that
utilizes the data obtained statically in the previous step, including
the start address of the loop and the addresses of its exit nodes,
to calculate the amount of time each top-level loop encompasses
execution for each process and thread, according to Algorithm 1.

The tool takes a set of loops S as input, where each loop has a
starting address and a set of exit addresses. The algorithm iterates
through each executed instruction in the program and, for each
instruction, checks whether it is the entry address of a loop in S. If it
is, and if the currently executing loop (cur_loop) is NULL, then it
sets cur_loop to this loop and sets its start time and iteration count
to zero. If cur_loop is not NULL, the algorithm increments the

SysPart: Automated Temporal System Call Filtering for Binaries CCS ’23, November 26–30, 2023, Copenhagen, Denmark

iteration count for cur_loop. If the instruction is an exit address
of cur_loop, the algorithm calculates the duration of the loop and
adds it to the output set of executed loops. This process is repeated
for each instruction in the program until the program exits. At
the end of the algorithm, the set of executed loops contains all the
top-level loops that were executed, along with their start time, end
time, duration, and iteration count. The information is organized
per thread/process. We consider the loop with the largest execution
time as the main loop of each execution thread, and its start address
the transition point where filter installation should be placed.

4.3 Call Graph Construction

In order to compute the system calls needed by each main loop, we
need to determine the code that is reachable after the transition
point. As a first step, we generate the function-call graph (FCG)
of the program rooted at main() and across shared libraries. Al-
though, we do not include any code running before main(), such
as initialization routines, we do account for how it may affect the
FCG (discussed in §4.3.2). The method described here is based on
Egalito’s VacuumFCG pass, which is also used by sysfilter and
demonstrated to be sound. Below, we summarize the methodology.

4.3.1 Computing Direct Edges: FCG construction starts from the
functions that the Linux program loader will call, which includes
initialization functions in .init, .init_array, and .preinit_-
array, cleanup functions in .fini and .fini_array, and the pro-
gram’s main(). Egalito disassembles each function’s instructions
and follows direct branches, such as calls, jumps, and conditional
branches, to construct an initial CFG. When there are calls to func-
tions in shared libraries, those edges initially point to the binary’s
procedure linkage table (PLT). Egalito emulates the dynamic link-
er/loader to resolve them and point them to the actual function,
extending (this way) the graph across shared libraries. Egalito is
robust enough to also handle GNU libc. Also, we resolve calls to
functions over the Name Service Switch (NSS) scheme using the
approach mentioned in sysfilter.

4.3.2 Computing Indirect Edges: The FCG includes indirect control-
flow edges that correspond to calls made through function pointers,
which are represented by indirect call or jump instructions in the
basic blocks of the disassembled binaries. However, it is difficult
to resolve the targets of these indirect branches [51]. Therefore,
SysPart over-approximates the set of functions that these branches
can target. Specifically, it includes all address taken (AT) functions,
which are functions whose start address is referenced or loaded in
the program either directly or by taking the address of a PLT entry.
To identify AT functions, VacuumFCG takes advantage of the fact
that modern Linux binaries are built as position-independent code
(PIC) and include metadata in the form of relocation entries for
every function address taken in the program [15].

Many function pointers in programs and libraries are part of
the initialization of constant function-pointer arrays. To reduce
the number of AT functions, VacuumFCG prunes [5, 6] those that
are included in such arrays but are never used or taken by live
(i.e., actually used) program code. When symbols are available, the
analysis can calculate the boundaries of data objects using symbol
information and consider only the AT functions that are in objects

used by the application. This process is performed iteratively to find
objects and AT functions actually used by the program. If symbols
are not available, any program address pointing to a section of the
binary leads to the inclusion of all AT functions found in it.

4.4 Refining the FCG

Prior works [5, 6, 13] operating on binaries had to rely on the
above method of over-approximating the FCG, by assuming that
all indirect calls can target any AT function, to ensure soundness.
To increase the precision of the FCG, SysPart implements data-
flow analysis for constants (i.e., value-flow analysis or VFA), and
incorporates TypeArmor, a binary-analysis system that aims to
reduce the number of possible targets for indirect call sites.

4.4.1 Forward Value-Flow Analysis: SysPart employs forward VFA
to determine where each function pointer flows and eliminate it,
if possible, from the list of AT functions obtained in § 4.3.2. If the
pointer is only used as the target of an indirect call, it is removed
from the list of AT functions and an edge between the indirect call
and pointed function is also added to the FCG. If the pointer is not
passed as an argument to a function, nor stored in memory nor
returned as the value of a function, then it is removed from the list
of AT functions. For a function to be completely eliminated from
the list, all of its pointers need to be resolved in this manner.

The example in Listing 1 shows such a case from Nginx, where
a pointer to the ngx_http_upstream_init_round_robin() (lo-
cated at 0x7e1d(%rip)) is taken on line 6 and is later used by the
indirect call in line 3. The only use of the function pointer is as
target of the indirect call and hence can be removed from the AT
list.

1 bbl2:
2 movq %r12, %rdi
3 call *%rax
4 ...
5 bbl1:
6 leaq 0x7e1d(%rip), %rax ; <ngx_http_upstream_init_round_robin>
7 jmp 0x6b2d2 ; <bbl2>

Listing 1: Flow of function pointer in the Nginx server.

Likewise, the pointer to RedisModuleCommandDispatcher()
in Listing 2 is only used in a compare instruction in line 3. We can
safely remove it from the AT list, because it cannot be the target of
any indirect call.

1 bbl1:
2 leaq -0x21c9(%rip), %rbp <RedisModuleCommandDispatcher>
3 cmpq %rbp, 8(%rax)
4 (JUMP jne) 0xb1948

Listing 2: Flow of function pointer in the Redis server.

We implement VFA using Egalito’s use-def chains. Use-def analy-
sis, tracks the uses and definitions of a register or memory location.
A register or memory location is defined when a value is written to
it, and it is considered used whenever its value is read. The use-def
chains, provided by Egalito, also maintain the locations in succes-
sor basic blocks where a register or memory location is later used,
and the locations in predecessor blocks where it was previously
defined. For example in Listing 3, use-def analysis determines that
the instruction at address 0x0002a7aa, defines register rdx and

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Vidya Lakshmi Rajagopalan, Konstantinos Kleftogiorgos, Enes Göktaş, Jun Xu, and Georgios Portokalidis

uses rcx. Use-def chains also inform us that rcx was previously de-
fined by the instruction at 0x0002a72c and rdx is later used by the
instruction at 0x0002a7b1. Even though Egalito does not maintain
use-def chains across function calls, our VFA is inter-procedural
as it tracks values passed (forward) to functions through registers
(e.g., as arguments).

1 0x0002a72c: movl 8(%rdi), %rcx
2 0x0002a7aa: movl %rcx, %rdx
3 0x0002a7b1: addl %rdx, %rdi

Listing 3: Use-def information provided by Egalito.

4.4.2 Backward Value-Flow Analysis: SysPart leverages use-def
chains to perform backward value-flow analysis starting from in-
direct calls to determine the possible values of the operand of the
indirect call instruction. If a path points to a value that is a function
pointer, an edge to it is added from the function containing the
indirect call. If all paths lead to values from function pointers, the
indirect call is no longer assumed to target all the functions in the
AT list, considerably improving the precision of the FCG. However,
even if one path leads to a memory load the analysis for that indi-
rect call terminates. This analysis is also partially inter-procedural,
as the forward one.

The example in Listing 4 shows such a case, where two func-
tions, lines 1 and 5, call ngx_sort, passing a function pointer as
an argument, through the rcx register. This call now has exactly
two possible targets that it can call into. Our backward VFA starts
from line 11 to determine the value of register r15. Register r15
is referenced in line 10 and its value is defined to be loaded from
rcx. Since rcx is an argument register, inter-procedural analysis is
performed to find all invokations of ngx_sort(). From the usedef
information at the call sites of ngx_sort() (lines 3 and 7), the
analysis determines that register rcx is referenced at line 2 and
line 6, respectively. The analysis terminates at lines 2 and 6, where
a function address is loaded into rcx. Hence, the analysis is able to
completely resolve the indirect call target at line 11.

1 ngx_resolver_process_response:
2 leaq -0x59a5(%rip), %rcx ; <ngx_resolver_cmp_srvs>
3 call 0x25a33 ; <ngx_sort>
4 ...
5 ngx_http_block/bb+5407:
6 leaq -0x1d43(%rip), %rcx ; <ngx_http_cmp_conf_addrs>
7 call 0x25a33 ; <ngx_sort>
8 ...
9 ngx_sort:
10 movq %rcx, %r15
11 (CALL*) *%r15
12 ...

Listing 4: Resolving all possible values of an indirect call in

the Nginx server.

4.4.3 TypeArmor: SysPart uses TypeArmor [55] to further prune
the number of targets for each indirect-call site. TypeArmor is
a static analysis tool for binaries that aims to refine the set of
functions that can be targeted by indirect function calls. It does
so by detecting the signature of call sites and functions. For each
indirect call, it calculates the number of arguments prepared and
whether it expects a return value. For each function, it calculates the
maximum number of arguments it expects and whether it returns

a value. Call sites with 𝑛 arguments are matched to AT functions
that expect ⪕ 𝑛 arguments and similar return behaviors (value vs.
no value returned).

4.5 Dynamically-Loaded Libraries Analysis

In many servers, optional, non-core functionality is sometimes
activated at run time, depending on the presence of a library on the
system or configuration options. When such functionality requires
additional libraries, those are loaded using dlopen(), which loads
the library with filename into the address space. Interfaces to
DLLs are obtained through dlsym(), that takes as input the handle
returned by dlopen() and the name of a symbol, which could be
an exported function or global variable. Function pointers returned
by dlsym() can be called through an indirect call and may perform
system calls, hence, it is necessary to resolve the libraries loaded
and symbols queried through these two functions.

SysPart employs static analysis to recover this information. To
handle cases where the static analysis fails to resolve all possible
values, we use dynamic training by running the application with a
desired configuration and common workloads.

4.5.1 Static Analysis: SysPart uses two approaches to statically
discover this information: backward VFA and a heuristic.
Backward VFA: We leverage this type of analysis again to find the
filename and symbol arguments used in dlopen() and dlsym(),
respectively. If the application is using constant strings, we can find
pointers to those strings flowing to the first and second argument,
respectively. In x86-64 Linux, these correspond to registers rdi and
rsi.
Heuristic: The interfaces queried using dlsym() are frequently
hard-coded in applications, while the names of the libraries to
be loaded are provided in configuration. For example, the Bind
server includes a plugin for accessing Samba Active Directory (AD)
databases. The interface to this plugin includes a set of functions
(dlz_*) which are constant. However, depending on the AD data-
base in use, the user can load a different plugin version with a
configuration like the following.

dlz "AD DNS Zone" {
For BIND 9.16.x
database "dlopen /usr/local/samba/lib/bind9/dlz_bind9_16.so";

};

Listing 5: Bind configuration file specifying plugin.

Based on this observation, when we are able to resolve all pos-
sible values flowing into dlsym() call sites, but not to dlopen(),
we use the first to search the system for libraries exporting any of
resolved symbols. We consider all matching libraries as potential
inputs to dlopen() and include them in our analysis.

4.5.2 Dynamic Analysis: To discover the libraries loaded at run
time, we run applications with desired configuration options and
common workloads, and intercept calls to dlopen() and dlsym()
to record their arguments. We use function interposition to redirect
calls to our functions, which record their arguments and proceed
to call the original functions. This is done by creating a shared
library defining these two functions and pre-loading it through the

SysPart: Automated Temporal System Call Filtering for Binaries CCS ’23, November 26–30, 2023, Copenhagen, Denmark

LD_PRELOAD environment variable on Linux, when launching the
application.

4.5.3 Incorporating Results: SysPart considers any libraries found
in this step as additional dependencies and resolved symbols are
marked as taken at the call site of the corresponding dlsym().
Finally, the static analysis described in §4.4.1 is reapplied to again
prune the list of AT functions and indirect-call targets.

4.6 Handling execve
The execve syscall allows a process to load and execute a new
program, so it needs special handling. Similar to how we deal with
DLLs, SysPart combines static analysis and dynamic analysis to
collect the arguments passed to execve—in particular the path of
the new program to be executed. First, SysPart runs static, back-
ward VFA to find the arguments of execve. Second, SysPart traces
the execution of the application under desired configurations and
common workloads to learn the arguments passed to execve, with
the help of Pin. SysPart also offers users the option to add the list
of programs that can be executed through execve.

Based on the above analyses and user input, any new programs
that may be launched by execve during the serving phase will
be further analyzed to gather the syscalls they require. The analy-
sis results can be applied in two ways. First, the newly identified
syscalls will be added to the allowed list and the entire list will be
propagated to the new program. Second, we start with the extended
allowed list for the initial program but further reduce the list every
time execve is invoked to only keep those syscalls needed by the
new program. This approach is inspired by sysfilter [13].

4.7 System-Call Set Generation

Computing the complete set of system calls reachable from the
transition point is crucial to determine the correct system-call filter
for the serving phase, as erroneous filters can lead to program
termination. In order to determine the system calls of each serving
phase, first we compute the system calls which are invoked by each
function within the FCG. Next, the code which is reachable from
the transition point of that serving phase is determined. Finally, we
collect all system calls which are invoked from the reachable code.

4.7.1 Finding System Calls Reachable from Each Function of the
FCG: A system call is represented by a system-call number and
may or may not have arguments. Applications can invoke system
calls by invoking libc wrapper functions, which in turn invoke the
system call (for example, open() invokes the corresponding open
syscall), use the syscall() libc function, or use inline assembly
and the syscall instruction.

SysPart uses Egalito’s FindSyscalls() which is run on all
the functions in the server and its dependent libraries to find all
system calls that are invoked directly from these functions. The
pass parses each instruction within a function and searches for
syscall instructions. If one is found, it employs backward VFA to
determine the value of the register rax that contains the system-
call number to be executed. Similarly, backward VFA is used for
calls to syscall() to find the value of the argument specifying
the syscall number (e.g., the register rdi in x86-64 Linux systems).

Algorithm 2 An algorithm to find all system calls reachable from
all functions in FCG rooted at main()
Input: FCG; Map M(S, L) where L is a list of functions which directly invoke syscall S
Output: Map fsyscalls(F, L) where L is the list of syscalls reachable from function F
1: function syscalls_function(FCG,S)
2: for Each (s, flist) in M do

3: for Each f in flist do

4: Push (f,f) onto stack S
5: processed← []
6: while stack S is not empty do

7: (cur,cur_child)← top of stack S
8: Pop from stack S
9: if cur is in processed then

10: continue
11: processed← processed ∪ cur
12: pp← Parents of cur in FCG
13: for Each parent in pp do

14: Push (parent,cur) onto stack S
15: if cur == cur_child then

16: continue
17: Insert s into fsyscalls[cur]

return func_syscalls

The set of system calls reachable from each function is com-
puted using algorithm 2, which works by combining the set of
system calls directly invoked by the function with those that are
reachable from its child functions in the FCG. It is a graph traversal
algorithm that begins at each function that invokes system calls
directly, and iteratively propagates the value of the system call to
its parents.

Algorithm 3 An Algorithm to find system calls reachable from the
transition point located at address entry_addr within function f
Input: Address entry_addr, Function f, FCG rooted at main()
Output: Set SC, which contains system calls reachable from entry_addr
1: function syscalls_partition(entry_addr,f,FCG)
2: noreturnFns = Find all noreturn functions
3: threadFns = Find all thread start functions
4: Push (entry_addr, f) to stack S
5: SC← []
6: while stack S is not empty do

7: (addr,fun)← top of stack S
8: B← basic block at address addr
9: Pop from stack 𝑆
10: result← syscalls_invoked_at_instruction(addr, fun)
11: CFG← CFG of fun
12: visited← []
13: Insert B into visited
14: for Each successor succ of B in CFG do

15: Push succ to stack SS
16: result← []
17: while Stack SS is not empty do

18: T← top of stack SS
19: Pop from stack SS
20: Insert T into visited
21: for Each instruction i with address iaddr in T do

22: cur← []
23: if i is a call instruction then

24: for c in call target set CT of i do

25: cur← cur ∪ reachable_syscalls(c)
26: else

27: cur← syscalls_invoked_at_instruction(iaddr, fun)
28: result← result ∪ cur
29: for Each successor succ of T do

30: if succ is not in visited then

31: Push succ to stack SS
32: SC← SC ∪ result
33: if fun is in noreturnFns then

34: continue
35: if fun is in threadFns then

36: continue
37: P← Parents of fun in FCG
38: for Each p in P do

39: calladdr← address at which p invokes fun
40: Push (calladdr, p) to the stack S

return SC

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Vidya Lakshmi Rajagopalan, Konstantinos Kleftogiorgos, Enes Göktaş, Jun Xu, and Georgios Portokalidis

4.7.2 Finding System Calls Reachable from Transition Point: The
transition point of the serving phase is the start address of the
main loop which can be represented by a tuple (f, addr), where
f is the function containing the main loop and addr is the start
address of the main loop. Algorithm 3 describes the algorithm
which determines the code reachable from (f, addr) and the
system calls invoked from the reachable code. The algorithm starts
with non-returning functions analysis and computing thread start
functions which are described below.
Non-returning Functions Analysis: We improved the no-return
analysis pass in Egalito to find all non-returning functions. A func-
tion f starting from basic block B is non-returning, only if all paths
from B in the CFG of f is non-returning.
Computing Thread Start Functions: Threads are created by
invoking the pthread_create() function, with the thread start
function specified as the third argument, which is the function
executed as soon as the thread is spawned. SysPart checks if
pthread_create() function is a part of the FCG, and all invo-
cations of pthread_create() are determined. Then, backward
VFA (4.4) is employed at these callsites to find the third argument
passed to the function (register rdx).
Syscall-Set Computation: In order to find all system calls reach-
able from instruc- tion i with address addr of function f, all code
reachable from i has to be determined. To start with, we find all
basic blocks within f which are reachable from instruction i. Next,
we consider all functions which are invoked fromwithin these basic
blocks and get all system calls which are reachable from all these
functions (computed in section 4.7.1). Next, if f returns, then all
callsites (f’, addr’) which invoke function f() are found. Next,
the analysis recursively proceeds to find all the system calls which
are reachable from (f’,addr’). The algorithm stops when main()
is reached or a thread start function is reached or if function is
non-returning. In this way SysPart computes all code which are
reachable from the serving phase which also includes the code that
the function returns back to, which is not considered by TSP.

4.8 Enforcing System-Call Filters at the

Partition Boundary

4.8.1 Filter Policy: We enforce a policy that aims to only allow
syscalls used in the application’s main loop. This policy has signif-
icant and immediate security benefits: (i) attacking payloads are
unable to utilize dangerous but blocked syscalls and (ii) compro-
mised applications cannot attack the operating system kernel using
blocked syscalls. While further restricting syscall arguments could
additionally enhance security, it poses challenges with Seccomp-
BPF and is susceptible to TOCTOU attacks [36]. Note that previous
work [37] has explored argument restriction for library APIs.

4.8.2 Seccomp-BPF Filter Generation: The list of allowed system
calls of the serving phase obtained in §4.7.2 is used to create a
C function which uses Seccomp-BPF, as in sysfilter [13], to in-
stall a filter that will be enforced by the kernel. The generated
function, install_filter(), is compiled into a shared library
(libsyspart.so).

4.8.3 Filter Insertion: We developed a tool using Egalito that links
against the generated library and inserts call to install_filter
at the transition point and generates a hardened binary. The server
binary, the transition point represented by the tuple (f, addr),
and libsyspart.so is fed as input to the tool. libsyspart.so
is parsed using Egalito. The CFG of f is generated and traversed
to determine a basic block B such that B precedes the basic block
with address addr and B is not a part of the main loop. A new
Egalito pass SyspartPass is then used to insert a function call to
install_filter() after basic block B. A new hardened binary
with the installed filter is generated using Egalito mirrorgen out-
put generation mode.

5 Evaluation

To evaluate SysPart and compare it with prior work, we apply it to
the same benchmark applications used by TSP [20]: Bind 9.15.8 (incl.
libuv-1.34.0 and OpenSSL-1.1.1f), Httpd 2.4.39 (incl. apr-1.7.0 and
apr-util-1.6.1), Lighttpd 1.4.54, Memcached 1.5.21 (incl. SASL-2.0.25
and libevent-2.1.11-stable) and Nginx 1.17.1 (incl. OpenSSL-1.1.1f),
and Redis 5.0.7. All the dependent libraries used by the applications
are fromUbuntu 18.04.6 LTS, which is also adopted in the evaluation
of TSP. We note that Ubuntu 18.04.6 uses glibc-2.27 by default while
TSP runs its static analysis on glibc-2.24. To stay aligned, we also
use glibc-2.24 for static analysis but glibc-2.27 for dynamic library
profiling (the older version cannot run). All the experiments were
performed on a 4-core Intel Core i7 8550U 1.80GHz CPU with 16GB
of RAM, running Ubuntu 18.04.6 LTS (kernel version 5.4.0-150).

5.1 Serving Phase Detection

We first evaluate SysPart’s ability to automatically detect the be-
ginning of the serving phase. To dynamically profile each server, we
used its default configuration. The algorithm is designed to identify
the dominant top-level loop in each thread, excluding the loops
used in initialization and cleanup, so even with some configuration
or workload changes, the main loop remains the same.

Simply launching the servers and letting them wait was suffi-
cient to correctly identify the serving phase with all servers, as
it is common behavior for servers to wait within their main loop.
However, to ensure the main loop is entered we assume that the
desired workload is sent to the tested server. For the evaluation,
we used the following workloads: 10k HTTP requests for Httpd,
Lighttpd, and Nginx; 10k store/set requests of randomly generated
key-value pairs, followed by a retrieve/get request for each pair for
Redis and Memcached; and 10k IP address queries using the utility
dig against Bind.

In certain cases, the server can be set up to run in different modes,
which correspond to different main loops. For instance, Nginx can
be configured as a proxy or cache server instead of a web server (the
default configuration). To capture the main loops of these different
servers within Nginx, the user only needs to profile it with the
appropriate configuration. Once properly configured, our approach
automates the detection of different main loops, relieving the user
from the burden of code review. In our evaluation, we did not test
Nginx as a proxy or cache server.

Table 1 summarizes the results of the experiment. SysPart is able
to automatically detect the main loop corresponding to the serving

SysPart: Automated Temporal System Call Filtering for Binaries CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 1: Results of serving phase detection in SysPart comparedwith TSP. In red, we highlight the caseswhere TSP demonstrably

creates wrong filters. “←↪” indicates that the returning functions lead to errors in TSP. “Size Δ” stands for the number of more

instructions in SysPart’s main loop than that in TSP’s serving-phase function. “# of Other Loops” is the number of extra loops

detected by SysPart for auxiliary server threads. “Concurrency” shows the number of processes (P) / threads (T) used by each

server application, where “*” means one or more.

Application TSP SysPart

Name Concurrency Serving Function Main Loop Size Δ # of Other Loops
Bind 1/* ←↪isc_app_ctxrun main+0xe01 +2.5K 4
Httpd */* child_main child_main+0x598 +0.3K 5
Lighttpd 1/1 ←↪server_main_loop main+0x84 +83K 0
Memcached 1/* worker_libevent event_base_loop+0xbb +1K 6
Nginx */1 ngx_worker_process_cycle ngx_worker_process_cycle+0xbb +0.3K 1
Redis 1/* ←↪aeMain aeMain+0x10 +0.2K 1

process/thread of each server, whose results are summarized in Ta-
ble 11. We further compared the main loops with the serving-phase
function manually identified by TSP developers. In three applica-
tions (Httpd, Nginx, Redis), SysPart identifies the main loop in the
TSP’s serving-phase function. In the case of Memcached, the main
loop runs inside a child function of TSP’s serving-phase function
(worker_libevent()→ event_base_loop()). In the other two
applications (Bind and Lighttpd), the situation is reversed. TSP’s
serving-phase function is invoked inside the main loop identified
by SysPart.

/* Returning function */
isc_result_t isc_app_ctxrun(isc_appctx_t *ctx) {
 /* Start of TSP serving phase */
 ...
 if (isc_bind9 && ctx != &isc_g_appctx)
 return (ISC_R_SUCCESS); /* Viable path */
 while (atomic_load_acquire(&ctx->want_shutdown) == false)
 {
 ...
 }
 ...
 return (ISC_R_SUCCESS); /* Viable path */
 /* End of TSP serving phase */
}

int main(int argc, char *argv[]) {
 ...
 do { /* Start of SYSPART serving phase */
 /* isc_app_run() -> isc_app_ctxrun) */
 result = isc_app_run();
 /* Code that reloads configuration file */
 ...
 if (result == ISC_R_RELOAD) {
 named_server_reloadwanted(named_g_server);
 } else if (result != ISC_R_SUCCESS) {
 ...
 }
 } while (result != ISC_R_SUCCESS);
 ...
 /* Cleanup code */
 /* cleanup() -> …. -> epoll_ctl */
 cleanup();
 ...
} Syscall epoll_ctl

missed by TSP.

Figure 3: Advantage of SysPart’s automatic detection of

serving phase over TSP’s manual approach.

Quantitatively, the size of the serving phase detected by SysPart
is only slightly larger than TSP except for Lighttpd. The increase of
size—including the case of Lighttpd—is mainly because we consider
the code following the return of the serving phase function (if it
returns) and the finalization functions while TSP does not con-
sider these. Our choice is desired as ignoring the post-serving code
can omit system calls needed for reloading configuration data or
cleanup before termination. This can potentially lead to issues like
corrupting server data and leaking operating systems resources.
One such example from Bind is shown in Figure 3. TSP identi-
fies isc_app_ctxrun() as the serving-phase function. When it
returns, the cleanup code attempts to performs an epoll_ctl sys-
tem call, which is filtered by TSP since it doesn’t include it within
its serving phase and leads to abrupt server termination.

Another advantage of SysPart is its ability to identify the serving
phase for auxiliary server threads(Table 11). For five applications,

SysPart detects at least one auxiliary serving phase. In the case of
Memcached, the number of auxiliary serving phases increases to
six. This enables us to filter out a safe but also tight set of system
calls for each server thread.

5.2 Filtered System Calls

In this experiment, we compare the system calls allowed by Sys-
Part with the ones generated by TSP and sysfilter. As TSP and
sysfilter do not resolve dynamically-loaded libraries, we ignore
them in this experiment. We consider four different code partitions.
➀ main() includes all the code after the main function is entered.
➁ Serving refers to TSP’s serving phase. ➂ Main loop corresponds
to SysPart’s serving phase. ➃ All includes all code from the time a
process is spawned (used by sysfilter) not including NSS.

During the experiment, we discovered a variety of suspicious
differences with TSP. Upon thorough investigation, we found a
series of issues in TSP that are rooted in coding bugs, incomplete
algorithms, and its inherent inability to handle inline assembly.
We confirmed all the problems by consulting with the authors of
TSP [20] and list all of them below. Because of them, TSP can miss
required system calls or include unused ones. To obtain a more
representative comparison, we fixed all problems aside #11, which
requires modifications to TSP’s algorithm. We use TSPfixed to refer
to the version of TSP with all our fixes incorporated.
TSP Issues Leading to Missing Required System Calls (refer
to Appendix A.1 for more details):
(1) Cannot handle certain inline assembly constructs.
(2) Does not handle syscall function.
(3) Does not handle certain function aliases in glibc.
(4) Ignores AT functions in initialization and dynamic-linker code.
(5) Does not handle function pointers passed to library functions.
(6) Does not handle glibc NSS libraries [41].
(7) Library not considered due to missing CFG.
TSP Issues Leading toAdditional Allowed SystemCalls (Refer
to Appendix A.2 for more details):
(8) Source-code analysis (Egypt) cannot differentiate betweenmul-

tiple libraries in the same directory and merges all of them in
the resulting FCG.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Vidya Lakshmi Rajagopalan, Konstantinos Kleftogiorgos, Enes Göktaş, Jun Xu, and Georgios Portokalidis

Table 2: Number of system calls allowed with SysPart (binary), compared to TSP (source code) and sysfilter (binary). “TSP”

refers to the publicly available prototype, and the numbers in parentheses correspond to the results in the paper. TSP
fixed

stands for the version of TSP with our fixes incorporated (the fixes used are indicated by the subscript on each application).

The entries highlighted in red indicate a confirmed error occurred in TSP’s definition of the serving phase.

Application sysfilter TSP TSP
fixed

SysPart

All main() Serving main() Serving main() Serving Main loop AT Functions
Bind 1, 2, 7, 8, 9, 10, 11 119 100 (99) 86 (85) 100 83 112 103 103 102
Httpd 1, 3, 4, 8, 9, 11 98 94 (94) 79 (79) 94 80 92 92 92 92
Lighttpd 1, 3, 6, 8, 9 99 95 (95) 76 (76) 95 76 95 80 93 74
Memcached 1, 3, 4, 8, 9, 11 104 99 (99) 84 (84) 100 85 98 82 85 82
Nginx 1, 2, 3, 5, 8, 9, 11 115 106 (104) 97 (97) 109 100 108 104 104 104
Redis 1, 3, 8, 9 104 90 (90) 82 (82) 91 83 92 85 85 85

(9) Implementation erroneously considers certain null nodes in
glibc callgraph as actual functions and uses them during anal-
ysis.

(10) TSP includes all exported functions as AT functions in cases
where callgraph of libraries are not present.

(11) Algorithm fails to prune certain inaccessible AT functions.
Table 2 summarizes the comparison results. In summary, Sys-

Part performs closely to TSP. On average, we allow 8.33% more
system calls compared to TSP. We manually inspected the differ-
ences and found that they are mainly attributed to the availability
of source code to TSP. With source code, TSP can perform point-to
analysis to resolve indirect calls more accurately (more details in
section A.3). In contrast, SysPart only assumes binary code and our
VFA powered FCG refining still results in an inflated function-call
graph. In the last column of Table 2, we list the number of system
calls that are reachable from AT functions through direct edges. It
indicates that our approach represents the best efforts unless better
methods that can track values through global and heap memory
are available to resolve indirect calls in binary code.

5.3 Security Benefits

5.3.1 Kernel Attack Surface Reduction: This experiment evaluates
the effectiveness of SysPart in reducing kernel attack surface using
the 36 kernel vulnerabilities also used by prior work [13, 20]. We
count the number of applications where sysfilter, TSP, and Sys-
Part filter the system calls required to trigger each vulnerability.
The evaluation results are summarized in Table 3. SysPart per-
forms either better or the same as sysfilter, regardless of which
vulnerability we consider. Compared to TSP, SysPart performs
better or the same for 24 vulnerabilities but worse in 12 execve-
based ones. Fundamentally, SysPart allows execve in those cases
because it is reachable from AT functions stored in global data. Our
VFA cannot track their propagation and, thus, cannot rule them
out from indirect call targets.

5.3.2 Exploit Mitigation and Hindrance: We also evaluate the ef-
fectiveness of SysPart in thwarting exploit shellcode. Specifically,
we reuse the 535 shellcodes involved in the evaluation of TSP and
consider a shellcode to be stopped if at least one needed system
call is filtered. Considering that certain Linux system calls provide
interchangeable functionalities and adversaries could easily adapt
the shellcode to use alternative system calls, we deem a payload

to be stopped only when all equivalent system calls are filtered.
The list is shown in table 4. To identify equivalent system calls, we
follow the same rules as proposed in the TSP paper [20].

We summarize the results in Table 5. Unsurprisingly, SysPart
outperforms sysfilter by a large margin but stops fewer shellcodes
than TSP for most applications (again because of the execve system
call). In the case of Memcached, SysPart outperforms TSP. The
reason is that SysPart can filter out getsockopt and setsockopt,
while TSP cannot due to issue 11 discussed in §5.2.
Security-Sensitive System Calls We further narrow down our
attention to security-sensitive systems calls (or in TSP’s definition,
system calls frequently used in payloads because of their usefulness
to attackers). Table 6 presents our findings. Out of 102 cases (17
system calls in 6 applications), TSP outperforms SysPart in 10 cases
(9.8%). This is due to the over-approximation of indirect call targets
by SysPart and the gains delivered to TSP by its points-to analysis.
In two cases (2%), SysPart outperforms TSP. Specifically, listen
in Nginx and recvfrom in Bind are not filtered by TSP due to
issue 11. In all other cases, SysPart and TSP are similar. Compared
to sysfilter, SysPart performs better in 24 cases (23.5%).

5.4 Dynamically Loaded Libraries

We propose dynamic library profiling in §4.5 to resolve the libraries
loaded at runtime. In this evaluation, we measure the accuracy
and the necessity of this approach. We run the servers with both
the default configuration and customized configurations where
different modules are enabled. For Redis and Lighttpd, we use the
test cases shipped with the respective packages. For Nginx and
Httpd, we use nginx-tests [42] and Apache-Test-1.4.3 [8] as
test cases, respectively.

By analyzing the outcomes of the evaluation above, we unveil
that the arguments to dlopen() and dlsym() are either hard-
coded, read from a configuration file, or constructed dynamically
by concatenating strings. In Table 7, we show how well we can
resolve those arguments. Given Redis and Memcached, our static
analysis—combing VFA and heuristics—can resolve all dlopen()
and dlsym(). For Bind and Nginx, we can resolve all but one
dlopen() and two dlsym(). The unresolved cases are due to limi-
tations of VFA when handling dynamically generated arguments
in the libcrypto library. These callsites are not observed during
runtime too. In the cases of Httpd and Lighttpd, our analysis cannot

SysPart: Automated Temporal System Call Filtering for Binaries CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 3: Mitigated kernel vulnerabilities. SF and SP stand for

sysfilter and SysPart, respectively.

CVE System Calls SF SP TSP/TSP
fixed

2018-18281 execve(at), 0 0 4/4mremap
2016-3672

execve(at) 0 2 4/4

2015-3339
2015-1593
2014-9585
2013-0914
2012-4530
2010-4346
2010-3858
2008-3527
2018-14634
2012-3375 epoll_ctl 0 0 1/1

2011-1082
epoll_ctl,

0 0 1/1epoll_pwait,
epoll_wait

2010-4243 uselib, execve(at) 0 2 4/4

2019-11815 clone 0 2 1/2unshare
2013-1959 write 0 0 0/0
2015-8543 socket 0 0 0/0

2017-17712 sendto 0 0 0/0sendmsg

2013-1979 recvfrom 0 0 0/0recvmsg
2016-4998

setsockopt 0 1 0/02016-4997
2016-3134

2017-18509 setsockopt, 0 1 0/0getsockopt
2017-14954 waitid 6 6 6/6
2014-5207 mount 6 6 6/6
2018-12233 setxattr 6 6 6/6
2016-0728 keyctl 6 6 6/62014-9529
2019-13272 ptrace 6 6 6/62018-1000199
2014-4699 fork, clone, ptrace 0 2 1/2
2014-7970 pivot_root 6 6 6/6
2019-10125 io_submit 6 6 6/6
2017-6001 perf_event_open 6 6 6/6
2016-2383 bpf 6 6 6/6
2018-11508 adjtimex 6 6 6/6

resolve any case because the arguments are loaded from configura-
tion files. SysPart presents a better accuracy in resolving dlopen
and dlsym arguments when compared with sysfilter. Out of 12
dlopen() cases, SysPart can resolve 8 while sysfilter resolves
none. Out of 16 dlsym() cases, SysPart can handle 9, but sysfilter
only tackles 6.

We further count the system calls used by the dynamically loaded
libraries and explore their impacts. In four applications (Httpd,
Lighttpd, Memcached, and Nginx), the dynamic libraries require
additional system calls. In those cases, it is essential to resolve the
dynamic libraries. Otherwise, the system-call filter can break the

Table 4: List of equivalent system calls.

execve execveat
accept accept4
dup dup2, dup3
eventfd eventfd2
chmod fchmodat
recv recvfrom, read
send sendto, write
open openat
select pselect6, epoll_wait, epoll_wait_old, poll,

ppoll, epoll_pwait

normal functionality. As expected, taking the dynamically loaded
libraries into account can reduce the security benefits. By further
allowing the system calls listed in Table 7, we observe a 2.77% drop
in kernel vulnerability mitigation on all configurations of Httpd
and Lighttpd and a 5.47% drop when considering Memcached with
the default configuration.

5.5 execve System Call

During the evaluation, SysPart statically identifies that execve is
used to launch “/bin/sh” by Httpd and Lighttpd. The binary or shell
script further executed by “/bin/sh” cannot be resolved statically.
SysPart also finds that execve is used in Nginx and Redis while
the arguments cannot be determined statically. Further running dy-
namic analysis under the default configurations, however, SysPart
observes no use of execve by those four programs.

After a closer look via manual analysis, we find that our static
analysis is not wrong. The four programs only invoke execve under
special configurations. Specifically:
• Lighttpd: when configured to load CGI modules via mod_cgi, it
invokes execve to run CGI scripts.
• Httpd: it can also be configured to launch CGI scripts via execve.
• Nginx: when requested to upgrade the server binary upon special
signals, it uses execve to launch a new version of the server. This
occurs outside the main loop1 and does not impact our filter.
• Redis: when configured to run in the debug mode, it uses execve
to restart the server upon request. Also, when configured to
run in the sentinel mode, it uses execve to run pending scripts.
These occur outside of the main loop1 and does not happen in
the default release mode. Thus, it has no impact on our filter.
To sum up, servers can use execve under certain configurations.

To determine the arguments of execve in those cases, SysPart
will need the users’ help with setting up the desired configurations
for its dynamic analysis.

5.6 Robustness and Efficiency

5.6.1 Compilers and Optimizations: The compiler and optimiza-
tions used to build an application affect the resulting binary. We
evaluate the effects those on SysPart, by building our benchmarks
using both GCC-7.5.0 and CLANG-6.0.0 under varying optimization
settings. We apply SysPart on the resulting binaries and count the

1SysPart cannot filter execve in this case because the function calling execve is
determined as an AT function. Due to approximation, SysPart considers that the AT
function can be called by indirect calls inside the main loop.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Vidya Lakshmi Rajagopalan, Konstantinos Kleftogiorgos, Enes Göktaş, Jun Xu, and Georgios Portokalidis

Table 5: Percentage of shellcodes (total 535) stopped by SysPart (SP), sysfilter (SF), and TSP (original and after fixes). Subscripts

With andWithout indicate whether we consider equivalent system calls or not, respectively.

Application SF𝑊𝑖𝑡ℎ SP𝑊𝑖𝑡ℎ TSP𝑊𝑖𝑡ℎ TSP
fixed 𝑊𝑖𝑡ℎ SF𝑊𝑖𝑡ℎ𝑜𝑢𝑡 SP𝑊𝑖𝑡ℎ𝑜𝑢𝑡 TSP𝑊𝑖𝑡ℎ𝑜𝑢𝑡 TSP

fixed 𝑊𝑖𝑡ℎ𝑜𝑢𝑡

Bind 20.37 67.85 67.47 71.96 33.45 71.40 76.82 73.45
Httpd 36.82 41.68 78.13 78.13 46.16 52.89 83.92 83.92

Lighttpd 32.14 58.69 60.37 60.37 34.01 60.37 62.05 62.05
Memcached 16.63 77.1 72.89 73.08 38.50 78.50 74.39 74.57

Nginx 12.89 30.28 45.42 47.85 34.95 53.83 68.22 68.41
Redis 33.08 49.53 49.15 49.53 38.31 65.23 65.98 65.23

Table 6: Security-sensitive system calls filtered by SysPart,

TSP
fixed

, and sysfilter.

Syscall B
i
n
d

H
t
t
p
d

L
i
g
h
t
t
p
d

M
e
m
c
a
c
h
e
d

N
g
i
n
x

R
e
d
i
s

accept ✗ ✓ ✗ ✗ ✗ ✗

accept4 ✗ ✗ ✗ ✗ ✗ ✓

bind ✗ ○␣ ○␣ ✗ ✗ ✗

chmod ○␣ ✓ è ✓ ✗ è
clone è ✗ ✗ ✗ è ✗

connect ✗ ✗ ✗ ✗ ✗ ✗

execve è ○␣ ✗ è ○␣ ✗

execveat ✓ ✓ ✓ ✓ ✓ ✓

fork ✓ ✓ ✓ ✓ ✓ ✓

listen ✗ ○␣ è ✗ ○ è
mprotect ✗ ✗ ✗ ✗ ✗ ✗

ptrace ✓ ✓ ✓ ✓ ✓ ✓

recvfrom ○ è ✗ ✗ ✗ è
setgid ○␣ ○␣ è è ✗ è
setreuid è è è è è è
setuid ○␣ ○␣ è è ✗ è
socket ✗ ✗ ✗ ✗ ✗ ✗

✗: Filtered by none; ✓: Filtered by all;è: Filtered by all but
sysfilter;○␣: Filtered only by TSPfixed;○: Filtered only by
SysPart.

number of allowed syscalls in the main loop. The evaluation results
are presented in Table 8.

Overall, GCC and CLANG lead to nearly identical results. Only
in the case of Redis, SysPart identifies one more syscall given GCC-
compiled binaries. Throughout further analysis, we find that this is
because GCC (since version 4.0) enforces -D_FORTIFY_SOURCE=1
at optimization level O1 and above [2]. This will transform longjmp
to a checked version __longjmp_chk, and the latter additionally
needs the sigaltstack syscall. In contrast, CLANG does not set up
-D_FORTIFY_SOURCE by default, avoiding the use of sigaltstack.
We want to note that Redis compiled by GCC under O0 does not
include sigaltstack. However, it presents one extra dummy AT
function, which leads to the inclusion of the creat syscall. This is
why that binary under O0 has the same amount of syscalls.

The optimization levels present no impact except for the cases
of Memcached and Redis. Given Memcached compiled under opti-
mization level O0 (with both GCC and CLANG), SysPart detects 13

more syscalls that are needed for the main loop. The reason—based
on our inspection—is that the O1-O3 optimization levels more ag-
gressively eliminate unreachable code, inline functions, and unroll
loops, etc. These lead to a more accurate analysis by SysPart (in
particular fewer AT functions) and thus, reduce the number of
dummy syscalls. The detail about Redis has been discussed above.

5.6.2 Binary-only Software: To evaluate SysPart, we use open-
source software so that we can verify the correctness of the results.
To further assess its ability to handle binaries, we apply SysPart
on a proprietary, closed-source web server, the Abyss Web Server
v2.16 from Aprelium [1]. Unlike modern binaries, Abyss is not
compiled as position-independent code (PIC)—which is necessary
for benefiting from basic defenses like ASLR. This forces further
over-approximation of AT functions and possibly inflates the num-
ber of required syscalls. This also breaks Egalito’s functionality to
correctly rewrite Abyss and inject the code setting up the Seccomp-
BPF filter. To inject the filter, we use another static binary rewriter
e9patch [16]. e9patch minimally alters the Abyss binary to add a
trampoline to the Seccomp-BPF filter program before the main loop
entrance. To make it work, we include the definition of prctl()
to the libc tailored by e9patch. To run dynamic analysis, we profile
Abyss with the default configurations and 10k HTTPD requests.

The evaluation finds that Abyss spawns six threads at startup
for different services. SysPart detects a main loop for each thread,
and we summarize the details in Table 9. SysPart reports that the
main() of the server only requires 86 syscalls for correct opera-
tion, filtering security-sensitive syscalls including accept4, chmod,
execveat, ptrace, setreuid, and fork. Narrowing down to the
serving phase (i.e., the main loop), SysPart further filters out 4 more
syscalls (pipe, dup2, setsid, and execve) for two threads and
one more syscall (setsid) for the main thread. To further validate
the stability of the server after the Seccomp-BPF filter is inserted,
we rerun the patched server with the aforementioned 10k HTTP
requests. It shows that the server works without exceptions.

We also inspect the CGImodules of Abyss.When enabled, similar
to Lighttpd and Httpd, Abyss calls execve to launch “/bin/sh” for
executing the CGI scripts. This explains why SysPart cannot filter
execve for Abyss’ request-processing thread.

5.6.3 Analysis Speed: We compare the execution times of the static
analysis phase (call-graph construction and system-call set genera-
tion) between SysPart and TSP in Table 10. In all cases, SysPart
runs at least 81% faster than TSP.

SysPart: Automated Temporal System Call Filtering for Binaries CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 7: Results of dynamic library analysis. For each application, we list the configuration tested and the number of

dlopen()/dlsym() call sites that we statically resolved fully, partially, or not at all. The numbers in parentheses indicate

the call sites that were also observed dynamically. We also list the number of additional syscalls added by the analysis for each

configuration. The footnotes annotate the reasons why full resolution is not achieved.

Application Configuration dlopen() dlsym() +Syscalls

Full Partial Unres. Full Partial Unres.

Bind Default 4 (3)‡ 0 (0) 1 (0)⋄ 3 (3) 0 (0) 2 (0)⋄ 0
+DLZ module 4 (3)‡ 0 (0) 1 (0)⋄ 3 (3) 0 (0) 2 (0)⋄ 0

Httpd Default 0 (0) 0 (0) 1 (1)† 0 (0) 0 (0) 1 (1)† 3
+mod_ssl 0 (0) 0 (0) 1 (1)† 0 (0) 0 (0) 1 (1)† 14

Lighttpd Default 0 (0) 0 (0) 1 (1)† 0 (0) 0 (0) 1 (1)† 1
+mod_(cgi) 0 (0) 0 (0) 1 (1)† 0 (0) 0 (0) 1 (1)† 1

Memcached Default (w/SASL) 0 (0) 1 (1)⋄‡ 0 (0) 0 (0) 1 (1)†⋄ 0 (0) 13

Nginx Default 2 (1)‡ 0 (0) 1 (0) ⋄ 3 (3) 0 (0) 2 (0) ⋄ 0
+ngx_http_image_filter_module 2 (1)‡ 0 (0) 1 (0) ⋄ 3 (3) 0 (0) 2 (0) ⋄ 20

Redis Default 1 (1)‡ 0 (0) 0 (0) 3 (1) 0 (0) 0 (0) 0
+redis_cell 1 (1)‡ 0 (0) 0 (0) 3 (1) 0 (0) 0 (0) 0

†Read from configuration file. ⋄Limitations of VFA. ‡Through heuristic based on dlsym() resolved symbols.

Table 8: Allowed system calls when building the benchmarks

with different compilers and optimization levels. The under-

lined values correspond to the configurations tested in §5.2.

B
i
n
d

H
t
t
p
d

L
i
g
h
t
t
p
d

M
e
m
c
a
c
h
e
d

N
g
i
n
x

R
e
d
i
s

G
C
C

O0 103 92 93 98 104 85
O1 103 92 93 85 104 85
O2 103 92 93 85 104 85
O3 103 92 93 85 104 85

C
L
A
N
G

O0 103 92 93 98 104 84
O1 103 92 93 85 104 84
O2 103 92 93 85 104 84
O3 103 92 93 85 104 84

Table 9: Main loops detected in the Abyss web server and the

number of syscalls required by them. Partition 0 is the main

process and Partitions 1 to 5 are threads of child process.

Thread in partition 3 spawns new threads to handle requests.

main() requires 86 syscalls.

Partition Address Main Loop Filtered

ID Function Main Loop syscalls syscalls

0 0x443da0 0x443dca 85 setsid
1 0x42edd0 0x42efea 82 pipe,dup2,execve, setsid
2 0x493330 0x4933e8 82 pipe,dup2,execve, setsid
3 0x466740 0x466771 86 –
4 0x405960 0x405970 86 –
5 0x459000 0x45906a 86 –

Table 10: Analysis time (in seconds) of SysPart and TSP.

Application TSP SysPart

Bind 562 4.06 (-99.27%)
Httpd 17 0.73 (-95.68%)
Lighttpd 3 0.56 (-81.10%)
Memcached 3 0.45 (-85.00%)
Nginx 83 5.01 (-93.95%)
Redis 23 1.23 (-94.63%)

5.6.4 FCG Improvements over Egalito: Comparing with Egalito, our
FCG refinement using VFA and TypeArmor achieved a reduction in
FCG edges of 8.34%, 6.68%, 2.36%, 3.93%, 6.74% and 10.36% in Bind,
Httpd, Lighttpd, Memcached, Nginx and Redis, respectively.

6 Related Work

6.1 System-Call Interposition

System-call interposition [18, 23, 26] is an early research direction
to restrict system calls. It interposes at interfaces between the ap-
plication and the OS kernel to enforce security policies. Janus [23]
leverages ptrace to dynamically monitor and restrict system calls
that an application can perform. In contrast, Ostia [18] sandboxes
an application and runs a delegate program to make system calls
on behalf of the application according to a user-specified security
policy. Besides intercepting system calls through a pair of kernel
database and a user-space daemon, Systrace [48] further automates
the generation of security policies using dynamic analysis.

6.2 System-Call Filtering

System-call filtering represents a more recent method to limit sys-
tem calls. The idea is to identify the set of system calls required by
the application and filter the unneeded ones at runtime through
mechanisms like Seccomp-BPF. Constructing and mounting the

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Vidya Lakshmi Rajagopalan, Konstantinos Kleftogiorgos, Enes Göktaş, Jun Xu, and Georgios Portokalidis

filters is trivial. Thus, research in this line primarily focuses on
determining the list of required system calls. Abhaya [43], Chest-
nut [9], Confine [19], and sysfilter [13] all rely on static analysis to
over-approximate the set of system calls. Notably, Abhaya and sys-
filter both consider the dependent libraries, with sysfilter being
binary only. sysfilter also employs dynamic library profiling using
static VFA, but our VFA with heuristics performs better in resolving
dlopen and dlsym callsites as mentioned in section 5.4. In contrast,
SIT [58] runs best-effort static analysis to get an initial allow-list of
system calls and incorporates runtime monitoring to compensate
for false negatives. BASTION [27] introduces the concept of “in-
tegrity” to system-call filtering. With BASTION, syscall invocations
are bound by call type integrity, control-flow integrity and argu-
ment integrity. Adopting a similar principle, Shredder [37] derives
the expected argument values of system APIs and specializes the
APIs to only allow those values.

TSP [20] advances system-call filtering to be temporal. Instead
of viewing an application as a whole, TSP separates the execution
of the application into an initialization phase and a serving phase.
It tailors different filter rules for different phases. As described
in §3.3, TSP presents several major limitations to achieve practical
temporal system-call filtering. Our system SysPart, overcoming
those limitations, offers the first solution to provide automated,
binary-only, and robust temporal system-call filtering.

6.3 Code Debloating

Code debloating removes code not required by an application or
its libraries during runtime, which can help reduce the attack sur-
face. RAZOR [49] utilizes a set of test cases and control-flow-based
heuristics to perform code reduction for deployed binaries, preserv-
ing only the essential code needed to support user-expected func-
tionalities. Chisel [25] also reduces unneeded code from the applica-
tion, but using machine learning with a high-level specification of
the desired functionality. In contrast, CodeFreeze [40], Nibbler [6],
BlankIt [47], and configuration-driven software debloating [32] fo-
cus on debloating library code, using static analysis and/or dynamic
analysis. Specifically, CodeFreeze and Nibbler remove unused code
from dynamic libraries at loading time, while configuration-driven
software debloating [32] identifies the required libraries based on
the configurations and disable the remaining by not loading them.
BlankIt [47] uses a more fine-grained strategy by only loading the
library functions that will be used at each call site at runtime. Differ-
ent from these works, Piece-wise [50] combines compilation-time
analysis and loading-time enforcement to only load code needed by
the program, offering support for both applications and libraries. It
combines a static and training based approach to resolve arguments
to dlopen and dlsym, although no evaluation results are provided
for this analysis.

7 Conclusion

We presented SysPart, a semi-automatic system-call filtering sys-
tem for binary-only server programs. SysPart identifies the serving
phases of applications threads, computes the set of system calls
required by each, and installs an efficient Seccomp-BPF filter that
disallows other system calls. We implemented SysPart on x86-64

Linux and evaluated it on six popular server applications. The re-
sults demonstrate that SysPart accurately locates the point where
serving phase begins and performs comparably to prior source-code-
based work [20], but without errors. Moreover, SysPart only allows
8.33% more syscalls overall, while it filters as many security-critical
syscalls in 88.23% of cases. Unsurprisingly, it also outperforms prior
work [13] on binaries that does not consider execution phases. In
terms of security, SysPart is successful in blocking exploit payloads
and preventing kernel vulnerabilities with success rates ranging
from 53.83% to 78.5% and 36.11% to 77.77%, respectively, for the ones
tested. Finally, SysPart surpasses prior work [13] in soundly re-
solving instances of dlopen() and dlsym() by 58.33% and 18.75%,
respectively.

Acknowledgments

We thank the anonymous reviewers for their valuable comments
and time. This work was supported by the Office of Naval Research
(ONR) awards N00014-17-1-2788, N00014-22-1-2643, and N00014-
17-1-2787, DARPA award D21AP10116-00, and National Science
Foundation (NSF) awards CNS-2213727 and OAC-2319880. Any
opinions, findings, and conclusions or recommendations expressed
herein are those of the authors and do not necessarily reflect the
views of the US government, ONR, DARPA, or NSF.

References

[1] [n. d.]. Aprelium. https://aprelium.com/.
[2] [n. d.]. FORTIFY_SOURCE Semantics. https://hockeyinjune.medium.com/fortify-

source-semantics-de54ca4bbe12.
[3] 2018. Navy - Protocol Feature Identification and Removal. https://www.navysbir

.com/n18_A/N18A-T018.htm.
[4] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-Flow

Integrity. In Proceedings of the ACM Conference on Computer and Communications
Security. 340–353.

[5] Ioannis Agadakos, Nicholas Demarinis, Di Jin, Kent Williams-King, Jearson
Alfajardo, Benjamin Shteinfeld, David Williams-King, Vasileios P. Kemerlis, and
Georgios Portokalidis. 2020. Large-Scale Debloating of Binary Shared Libraries.
Digital Threats: Research and Practice (DTRAP) 1, 4, Article 19 (Dec. 2020), 28 pages.
https://dl.acm.org/doi/pdf/10.1145/3414997

[6] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis, and Geor-
gios Portokalidis. 2019. Nibbler: Debloating Binary Shared Libraries. In Proceed-
ings of the Annual Computer Security Applications Conference (ACSAC) (San Juan,
Puerto Rico).

[7] Starr Andersen and Vincent Abella. 2004. Changes to Functionality in Microsoft
Windows XP Service Pack 2, Part 3: Memory Protection Technologies, Data
Execution Prevention. Microsoft TechNet Library–http://technet.microsoft.com/
en-us/library/bb457155.aspx.

[8] Apache-Test. [n. d.]. Test suite for Apache. https://metacpan.org/dist/Apache-
Test.

[9] Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz. 2021. Au-
tomating Seccomp Filter Generation for Linux Applications. In Proceedings of the
2021 on Cloud Computing Security Workshop (Virtual Event, Republic of Korea)
(CCSW ’21). Association for Computing Machinery, New York, NY, USA, 139–151.
https://doi.org/10.1145/3474123.3486762

[10] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, et al. 1998.
StackGuard: Automatic adaptive detection and prevention of buffer-overflow
attacks. In Proceedings of the 7th USENIX Security Symposium, Vol. 81. 346–355.

[11] National Vulnerability Database. 2019. BlueKeep Vulnerability (CVE-2019-0708).
NIST. https://nvd.nist.gov/vuln/detail/CVE-2019-0708

[12] Bjorn De Sutter, Ludo Van Put, and Koen De Bosschere. 2007. A Practical Inter-
procedural Dominance Algorithm. ACM Trans. Program. Lang. Syst. 29, 4 (aug
2007), 19–es. https://doi.org/10.1145/1255450.1255452

[13] Nicholas DeMarinis, KentWilliams-King, Di Jin, Rodrigo Fonseca, and Vasileios P.
Kemerlis. 2020. sysfilter: Automated System Call Filtering for Commodity Soft-
ware. In 23rd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2020). USENIX Association, San Sebastian, 459–474. https:
//www.usenix.org/conference/raid2020/presentation/demarinis

https://aprelium.com/
https://hockeyinjune.medium.com/fortify-source-semantics-de54ca4bbe12
https://hockeyinjune.medium.com/fortify-source-semantics-de54ca4bbe12
https://www.navysbir.com/n18_A/N18A-T018.htm
https://www.navysbir.com/n18_A/N18A-T018.htm
https://dl.acm.org/doi/pdf/10.1145/3414997
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx
https://metacpan.org/dist/Apache-Test
https://metacpan.org/dist/Apache-Test
https://doi.org/10.1145/3474123.3486762
https://nvd.nist.gov/vuln/detail/CVE-2019-0708
https://doi.org/10.1145/1255450.1255452
https://www.usenix.org/conference/raid2020/presentation/demarinis
https://www.usenix.org/conference/raid2020/presentation/demarinis

SysPart: Automated Temporal System Call Filtering for Binaries CCS ’23, November 26–30, 2023, Copenhagen, Denmark

[14] Solar Designer. [n. d.]. Getting around non-executable stack (and fix). https:
//seclists.org/bugtraq/1997/Aug/63.

[15] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization.
In IEEE Symposium on Security and Privacy (S&P). 128–142.

[16] Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury. 2020. Binary Rewriting
without Control Flow Recovery. In Proceedings of the 41st ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI). 151–163.

[17] Charles N. Fischer. [n. d.]. Finding Loops in Control Flow Graphs. https://pages.
cs.wisc.edu/~fischer/cs701.f14/finding.loops.html.

[18] Tal Garfinkel, Ben Pfaff, Mendel Rosenblum, et al. 2004. Ostia: A Delegating
Architecture for Secure System Call Interposition.. In NDSS.

[19] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-
chronakis. 2020. Confine: Automated SystemCall Policy Generation for Container
Attack Surface Reduction. In 23rd International Symposium on Research in At-
tacks, Intrusions and Defenses (RAID 2020). USENIX Association, San Sebastian,
443–458.

[20] SeyedhamedGhavamnia, Tapti Palit, ShacheeMishra, andMichalis Polychronakis.
2020. Temporal System Call Specialization for Attack Surface Reduction. In 29th
USENIX Security Symposium (USENIX Security 20). USENIX Association, 1749–
1766. https://www.usenix.org/conference/usenixsecurity20/presentation/ghav
amnia

[21] Enes Göktaş, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.
Out Of Control: Overcoming Control-Flow Integrity. In Proceedings of the IEEE
Symposium on Security and Privacy (San Jose, CA, USA). 575–589.

[22] Enes Göktaş, Robert Gawlik, Benjamin Kollenda, Elias Athanasopoulos, Georgios
Portokalidis, Cristiano Giuffrida, and Herbert Bos. 2016. Undermining Entropy-
based Information Hiding (AndWhat to do About it). In Proceedings of the USENIX
Security Symposium (Austin, TX, USA). 105–119.

[23] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. 1996. A Secure
Environment for Untrusted Helper Applications Confining the Wily Hacker. In
Proceedings of the 6th Conference on USENIX Security Symposium, Focusing on
Applications of Cryptography - Volume 6 (San Jose, California) (SSYM’96). USENIX
Association, USA, 1.

[24] Norm Hardy. 1988. The Confused Deputy: (Or Why Capabilities Might Have
Been Invented). SIGOPS Oper. Syst. Rev. 22, 4 (oct 1988), 36–38.

[25] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
Program Debloating via Reinforcement Learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (Toronto, Canada)
(CCS ’18). Association for Computing Machinery, New York, NY, USA, 380–394.
https://doi.org/10.1145/3243734.3243838

[26] K. Jain and R. C. Sekar. 2000. User-Level Infrastructure for System Call Inter-
position: A Platform for Intrusion Detection and Confinement. In Network and
Distributed System Security Symposium.

[27] Christopher Jelesnianski, Mohannad Ismail, Yeongjin Jang, Dan Williams, and
Changwoo Min. 2023. Protect the System Call, Protect (Most of) the World with
BASTION. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3 (Vancouver,
BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New York,
NY, USA, 528–541. https://doi.org/10.1145/3582016.3582066

[28] Vasileios P. Kemerlis. 2015. Protecting Commodity Operating Systems through
Strong Kernel Isolation. Ph. D. Dissertation. Columbia University.

[29] Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D. Keromytis. 2014.
ret2dir: Rethinking Kernel Isolation. In USENIX Security Symposium (SEC). 957–
972.

[30] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D. Keromytis. 2012.
kGuard: Lightweight Kernel Protection against Return-to-user attacks. In USENIX
Security Symposium (SEC). 459–474.

[31] The kernel development community. [n. d.]. Seccomp BPF (SECure COMPuting
with filters). https://www.kernel.org/doc/html/v4.19/userspace-api/seccomp_fil
ter.html. ([n. d.]).

[32] Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis Polychronakis. 2019.
Configuration-Driven Software Debloating. In Proceedings of the 12th European
Workshop on Systems Security (Dresden, Germany) (EuroSec ’19). Association
for Computing Machinery, New York, NY, USA, Article 9, 6 pages. https:
//doi.org/10.1145/3301417.3312501

[33] Yiwen Li, Brendan Dolan-Gavitt, Sam Weber, and Justin Cappos. 2017. Lock-in-
Pop: Securing Privileged Operating System Kernels by Keeping on the Beaten
Path. In USENIX Annual Technical Conference (ATC). 1–13.

[34] Edward S. Lowry and C. W. Medlock. 1969. Object Code Optimization. Commun.
ACM 12, 1 (jan 1969), 13–22. https://doi.org/10.1145/362835.362838

[35] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood. 2005. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proc of the Conference on Programming Language
Design and Implementation (PLDI). 190–200.

[36] LWN.net. 2020. Seccomp and deep argument inspection. https://lwn.net/Articles
/822256/.

[37] Shachee Mishra and Michalis Polychronakis. 2018. Shredder: Breaking Exploits
through API Specialization. In Annual Computer Security Applications Conference
(ACSAC). 1–16.

[38] MITRE. 2013. CVE-2013-1858. https://nvd.nist.gov/vuln/detail/CVE-2013-1858.
[39] MITRE. 2013. CVE-2013-2028. https://cve.mitre.org/cgi-bin/cvename.cgi?name

=cve-2013-2028.
[40] Collin Mulliner and Matthias Neugschwandtner. 2015. Breaking Payloads with

Runtime Code Stripping and Image Freezing. https://www.blackhat.com/us-
15/brief ings.html#breaking-payloads-with-runtime-code-stripping-and-
image-freezing.

[41] Network Service Switch. [n. d.]. Linux manual page. https://man7.org/linux/man-
pages/man5/nss.5.html.

[42] nginx-tests. [n. d.]. Test suite for Nginx. https://github.com/nginx/nginx-tests.
[43] Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig. 2020. Automated

Policy Synthesis for System Call Sandboxing. Proc. ACM Program. Lang. 4,
OOPSLA, Article 135 (nov 2020), 26 pages. https://doi.org/10.1145/3428203

[44] PaX Team. 2003. Address Space Layout Randomization (ASLR). https://pax.grse
curity.net/docs/aslr.txt.

[45] Marios Pomonis, Theofilos Petsios, Angelos D. Keromytis, Michalis Polychron-
akis, and Vasileios P. Kemerlis. 2017. kRˆX: Comprehensive Kernel Protection
against Just-In-Time Code Reuse. In European Conference on Computer Systems
(EuroSys). 420–436.

[46] Marios Pomonis, Theofilos Petsios, Angelos D. Keromytis, Michalis Polychron-
akis, and Vasileios P. Kemerlis. 2019. Kernel Protection against Just-In-Time Code
Reuse. ACM Transactions on Privacy and Security (TOPS) 22, 1 (2019), 1–28.

[47] Chris Porter, Girish Mururu, Prithayan Barua, and Santosh Pande. 2020. BlankIt
Library Debloating: Getting What You Want Instead of Cutting What You Don’t.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (London, UK) (PLDI 2020). Association for Computing
Machinery, New York, NY, USA, 164–180. https://doi.org/10.1145/3385412.3386
017

[48] Niels Provos. 2003. Improving Host Security with System Call Policies.. InUSENIX
Security Symposium. 257–272.

[49] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim,
and Wenke Lee. 2019. RAZOR: A Framework for Post-deployment Software
Debloating. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 1733–1750. https://www.usenix.org/conference/
usenixsecurity19/presentation/qian

[50] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software through
Piece-Wise Compilation and Loading. In Proceedings of the 27th USENIX Confer-
ence on Security Symposium (Baltimore, MD, USA) (SEC’18). USENIX Association,
USA, 869–886.

[51] Ganesan Ramalingam. 1994. The Undecidability of Aliasing. ACM Transactions
on Programming Languages and Systems (TOPLAS) 16, 5 (1994), 1467–1471.

[52] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming:
On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In IEEE
Symposium on Security and Privacy (S&P). 745–762.

[53] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86). In ACM SIGSAC Conference on
Computer and Communications Security (CCS). 552–561.

[54] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal
War in Memory. In IEEE Symposium on Security and Privacy (S&P). 48–62.

[55] Victor van der Veen, Enes Göktaş, Moritz Contag, Andre Pawoloski, Xi Chen,
Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giuffrida. 2016. A Tough Call: Mitigating Advanced Code-Reuse Attacks at the
Binary Level. In 2016 IEEE Symposium on Security and Privacy (SP). 934–953.
https://doi.org/10.1109/SP.2016.60

[56] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Pat-
terson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P. Kemerlis.
2020. Egalito: Layout-Agnostic Binary Recompilation. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). As-
sociation for Computing Machinery, New York, NY, USA, 133–147. https:
//doi.org/10.1145/3373376.3378470

[57] Yves Younan, Wouter Joosen, and Frank Piessens. 2012. Runtime Countermea-
sures for Code Injection Attacks against C and C++ Programs. ACM Computing
Surveys (CSUR) 44, 3 (2012), 1–28.

[58] Qiang Zeng, Zhi Xin, Dinghao Wu, Peng Liu, and Bing Mao. 2014. Tailored
Application-specific System Call Tables. Technical Report.

https://seclists.org/bugtraq/1997/Aug/63
https://seclists.org/bugtraq/1997/Aug/63
https://pages.cs.wisc.edu/~fischer/cs701.f14/finding.loops.html
https://pages.cs.wisc.edu/~fischer/cs701.f14/finding.loops.html
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3582016.3582066
https://www.kernel.org/doc/html/v4.19/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.19/userspace-api/seccomp_filter.html
https://doi.org/10.1145/3301417.3312501
https://doi.org/10.1145/3301417.3312501
https://doi.org/10.1145/362835.362838
https://lwn.net/Articles/822256/
https://lwn.net/Articles/822256/
https://nvd.nist.gov/vuln/detail/CVE-2013-1858
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-2028
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-2028
https://www.blackhat.com/us-15/briefings.html#breaking-payloads-with-runtime-code-stripping-and-image-freezing
https://www.blackhat.com/us-15/briefings.html#breaking-payloads-with-runtime-code-stripping-and-image-freezing
https://www.blackhat.com/us-15/briefings.html#breaking-payloads-with-runtime-code-stripping-and-image-freezing
https://man7.org/linux/man-pages/man5/nss.5.html
https://man7.org/linux/man-pages/man5/nss.5.html
https://github.com/nginx/nginx-tests
https://doi.org/10.1145/3428203
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://doi.org/10.1145/3385412.3386017
https://doi.org/10.1145/3385412.3386017
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://doi.org/10.1109/SP.2016.60
https://doi.org/10.1145/3373376.3378470
https://doi.org/10.1145/3373376.3378470

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Vidya Lakshmi Rajagopalan, Konstantinos Kleftogiorgos, Enes Göktaş, Jun Xu, and Georgios Portokalidis

A Appendix

A.1 TSP Issues Leading to Missing Required

System Calls

A.1.1 Cannot handle certain inline assembly constructs : In glibc,
inline assembly code is used to invoke system calls using syscall
instruction. In most cases, macro INLINE_SYSCALL is used to in-
voke the system calls which is recognized by TSP. But there are
some patterns which are not recognized by TSP due to which the
system calls are missed by TSP.

A.1.2 Does not handle syscall() function : System calls can be
invoked using the syscall() function. The first argument to the
syscall() function is the system call number that identifies the
system call. TSP detects syscall() but cannot determine the sys-
tem call number and hence misses the corresponding system call.

A.1.3 Does not handle certain function aliases in glibc : Glibc uses
internal alias functions. The glibc callgraph produced by TSP using
Egypt tool has callpaths which are incomplete. This causes TSP to
miss the following system calls.

For example, in the glibc callgraph generated by TSP, luaL_-
loadfile() invokes freopen(), which invokes *__GI__dup3().
dup3() invokes __dup3() which invokes dup3 system call. But
there is no outgoing edge for *__GI__dup3() in TSP glibc callgraph
and hence the path to dup3 system call is missed by TSP in Redis.

A.1.4 Ignores AT functions in initialization and dynamic-linker code :
TSP doesn’t consider the functions which are AT in the initialization
section of the application or libraries as well as in the dynamic linker.
This causes it to miss certain system calls that are reachable from
these AT functions.

A.1.5 Does not handle function pointers passed to library functions :
In TSP, the callgraphs of the application and the shared libraries are
generated separately. Hence, in cases where there are AT functions
which are passed as arguments to shared libraries, the callgraph
generation algorithm of TSP doesn’t generate any outgoing edges
for those AT functions as a result of which the functions that are in-
voked from those AT functions aremissed by TSP. An example is sig-
nal handler functions that are passed as argument to sigaction().
In Nginx, ngx_signal_handler is a signal handler function that is
passed as argument to sigaction(). ngx_signal_handler has
a callpath leading to the system call wait4, which is missed by TSP.

A.1.6 Does not handle glibc NSS libraries : TSP doesn’t resolve NSS
functions and hence misses out on the system calls reachable from
these functions. An example is sendmmsg in Lighttpd.

A.1.7 Library not considered due to missing CFG : In certain cases
when CFG of a library is not already generated, TSP tries to find
the exported symbols of the library. But if the library is not present
in the system at all, then it misses out on all the system calls which
are reachable from functions in that library.

A.2 TSP Issues Leading to Additional Allowed

System Calls

A.2.1 Source-code analysis (Egypt) cannot differentiate between
multiple libraries in the same directory and merges all of them in the

resulting glibc FCG : The glibc callgraph produced by Egypt in TSP
includes functions from unused modules. This results in including
callpaths which are not necessarily accessible. For example, glibc
containsmalloc/memusage.c, withinwhich function interposition is
used to invoke malloc(), calloc(), free() etc for memory
profiling. This is compiled into libmemusage.so, and the functions
within this shared library can be invoked only if this library is
preloaded by setting the environmental variable LD_PRELOAD. TSP
callgraph contains this callpath,
malloc()->me()->creat64()->creat()-> syscall(85)
This causes the system call creat to be included by TSP whenever
malloc() is used by an application or shared library, while this
callpath will only be invoked if libmemusage.so is enabled, which
is not used by any of the servers.

A.2.2 Implementation erroneously considers certain null nodes as
actual functions and uses them during analysis : In the glibc callgraph
used by TSP there are outgoing NULL edges and incoming NULL
edges. This cause their traversal algorithm to traverse parts of glibc
callgraph which are not actually reachable.

System calls arch_prctl and set_tid_address are included
by TSP in all servers due to the following paths from the glibc
callgraph.

_pthread_cleanup_push -> NULL
NULL -> __pthread_initialize_minimal_internal
__pthread_initialize_minimal_internal -> __libc_setup_-
tls
__libc_setup_tls -> arch_prctl (syscall)

_pthread_cleanup_push -> NULL
NULL -> __pthread_initialize_minimal_internal
__pthread_initialize_minimal_internal -> set_tid_address
(syscall)

A.2.3 TSP including all exported functions as AT functions in cases
where callgraph of libraries are not present : If the callgraph of
libraries are not present, TSP includes all exported functions within
the library as AT functions.

A.2.4 Inefficient Pruning Algorithm : TSP employs a pruning al-
gorithm to prune out function pointers which are address taken
in functions which are inaccessible from main. But the list of AT
functions that are used as input for this algorithm is incomplete and
doesn’t include all the AT functions used to generate the callgraph,
as a result of which the algorithm misses out on pruning certain AT
functions which are not reachable frommain, and thereby including
the system calls from these AT functions.

A.3 Pruning of Indirect-Call Targets in TSP :

TSP uses SVF implementation of Andersen’s algorithm to produce
callgraphs of applications. SVF Andersen’s considers the number of
arguments while resolving indirect call targets. TSP further refines
the callgraph bymatching the indirect callsites with functions based
on argument types, more specifically struct argument types. Also,
it prunes those indirect call edges to those AT functions which are
address taken in paths which are inaccessible from main. These
pruned edges causes TSP to remove some system calls which are
accessible using these edges.

SysPart: Automated Temporal System Call Filtering for Binaries CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 11: All main loops detected by SysPart, including the ones for auxiliary threads/processes.

Application Server in Partitions detected by

Default config SysPart (No: of Syscalls)

Bind Single-process main + 0x13701 (103)
Multi-threaded netthread + 0x105 (112)

nm_thread + 0x99 (112)
run + 0x358† (112)
run + 0x119∗ (112)

Httpd Multi-process ap_build_config + 0x402 (92)
Multi-threaded ap_run_mpm + 0x103 (92)

child_main + 0x5170 (92)
listener_thread + 0x274 (92)
start_threads + 0x360 (92)
worker_thread + 0x388 (92)

Lighttpd Single-process main + 0x306 (93)
Single-threaded

Memcached Single-process main + 0x26742 (85)
Multi-threaded logger_thread + 0x100 (82)

event_base_loop + 0x391 (85)
assoc_maintenance_thread + 0x50 (82)

item_crawler_thread + 0x276 (82)
lru_maintainer_thread + 0x579 (82)
slab_rebalance_thread + 0x100 (82)

Nginx Multiple-process ngx_master_process_cycle + 0x5456 (106)
Single-threaded ngx_worker_process_cycle + 0x391 (104)

Redis Single-process aeMain + 0x22 (85)
Multi-threaded bioProcessBackgroundJobs + 0x581 (85)

†: isc/timer.c, ∗: isc/task.c

A.4 All Main Loops Detected by SysPart

Table 11 lists all the main loops detected by SysPart.

A.5 Extensions to Egalito

Besides identifying and fixing bugs, we incorporated the following
extensions into Egalito to support our needs.
(1) Added loop identification (§4.2).
(2) Added VFA analysis for the following :

(a) To resolve indirect-branch targets (§4.4) for callgraphs.
This completely resolved an additional 2.84% of indirect
branches in the evaluated servers (a 4.24% reduction in
FCG edges).

(b) To resolve arguments for dlopen, dlsym, execve (§4.5).
(c) To identify thread start functions (§4.7.2).

(3) Improved non-returning function detection (§4.7.2), discover-
ing an average of 41% more such functions.

(4) Added a new pass to insert the syscall filter before the main
loop’s start (§4.8.3).

	Abstract
	1 Introduction
	2 Threat Model
	3 Background and Motivation
	3.1 Filtering System Calls using Seccomp-BPF
	3.2 Automating Filter Generation in Binaries
	3.3 Temporal System-Call Filtering

	4 Design and Implementation
	4.1 Overview
	4.2 Serving Phase Detection
	4.3 Call Graph Construction
	4.4 Refining the FCG
	4.5 Dynamically-Loaded Libraries Analysis
	4.6 Handling execve
	4.7 System-Call Set Generation
	4.8 Enforcing System-Call Filters at the Partition Boundary

	5 Evaluation
	5.1 Serving Phase Detection
	5.2 Filtered System Calls
	5.3 Security Benefits
	5.4 Dynamically Loaded Libraries
	5.5 execve System Call
	5.6 Robustness and Efficiency

	6 Related Work
	6.1 System-Call Interposition
	6.2 System-Call Filtering
	6.3 Code Debloating

	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 TSP Issues Leading to Missing Required System Calls
	A.2 TSP Issues Leading to Additional Allowed System Calls
	A.3 Pruning of Indirect-Call Targets in TSP :
	A.4 All Main Loops Detected by SysPart
	A.5 Extensions to Egalito

