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Abstract. A variety of attacks, including remote-code execution exploits, mal-
ware, and phishing, are delivered to users over the web. Users are lured to ma-
licious websites in various ways, including through spam delivered over email
and instant messages, and by links injected in search engines and popular benign
websites. In response to such attacks, many initiatives, such as Google’s Safe
Browsing, are trying to make the web a safer place by scanning URLs to auto-
matically detect and blacklist malicious pages. Such blacklists are then used to
block dangerous content, take down domains hosting malware, and warn users
that have clicked on suspicious links. However, they are only useful, when scan-
ners and browsers address the web the same way. This paper presents a study
that exposes differences on how browsers and scanners parse URLs. These dif-
ferences leave users vulnerable to malicious web content, because the same URL
leads the browser to one page, while the scanner follows the URL to scan another
page. We experimentally test all major browsers and URL scanners, as well as
various applications that parse URLs, and discover multiple discrepancies. In par-
ticular, we discover that pairing Firefox with the blacklist produced by Google’s
Safe Browsing, leaves Firefox users exposed to malicious content hosted under
URLs including the backslash character. The problem is a general one and affects
various applications and URL scanners. Even though, the solution is technically
straightforward, it requires that multiple parties follow the same standard when
parsing URLs. Currently, the standard followed by an application, seems to be
unconsciously dictated by the URL parser implementation it is using, while most
browsers have strayed from the URL RFC.

1 Introduction

The popularity of the web has made it the prime vehicle for delivering malicious content
to users, including browser exploits, malware, phishing, and web attacks, like cross-site
scripting (XSS) [32] and cross-site request forgery (CSRF) [17] attacks. Such attacks
are prevalent; Microsoft alone reported that more than 3.5 million computers visited a
website containing a web-based exploit in the first quarter of 2012 [35]. The prominence
of such attacks has lead to the development of many approaches [20,22,27,30,37] that
automatically detect pages containing malicious content, leading to free and commer-
cial tools [3–6,8–13,26,36] that can scan URLs and routinely crawl the web to identify
and filter, quarantine, warn, or take down malicious sites.

Users can reach malicious content by clicking on URLs, which have been injected
by attackers into legitimate sites or the results of search engines and spread through
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spam sent over email and messages. Services which scan pages for malicious content,
i.e., URL scanners, follow the same URLs to fetch content from servers and classify it
as malicious or benign. Thus, it is essential that when a scanner follows a URL, it visits
the same page that the user would visit through his browser or client application.

This paper presents an experimental study on how browsers and URL scanners parse
URLs. Our experiments reveal discrepancies on how URLs are parsed, with browsers
and URL scanners frequently following different standards and introducing their own
rules. As a result, including a character like the backslash in a URL can lead a browser
to one web page, while the scanner visits another. Essentially, attackers can hide their
malicious content from the scanner, while users can still access it. This constitutes a new
evasion strategy for attackers that want to avoid detection from URL scanners. While it
may not always be available to them, as certain scanner-browser pairs will treat URLs
the same way, this evasion strategy is powerful because it is not based on obfuscating
content, but simply requires the inclusion of a character in their URLs.

Looking at Google Safe Browsing, in particular, we show that it transforms back-
slashes contained in URLs to forward slashes before it accesses a URL, a behavior
which has been also noted by web developers in the past [2, 28]. On the other hand,
Firefox, which uses its malicious-URL database to warn users that are about to access-
ing malicious sites, does not. Instead, it encodes the backslash character using percent-
encoding (aka URL-encoding). As such, an attacker targeting Firefox browsers could
essentially hide his exploit from initiatives like Google’s Safe Browsing. We have dis-
closed the issue to both Google and Firefox, who are working on a solution.

The problem is a general one, as every URL scanner tested has exhibited a behavior
that creates opportunities for attackers. Technically, the solution to the problem is not a
hard one, however, it requires coordination and agreement among the involved parties
(i.e., browser and URL scanner developers). Unfortunately, it is also exacerbated by
the fact that various applications parse text and automatically create links, when they
identify URL patterns. We conducted tests with various applications and libraries, and
we discovered that there also discrepancies on what they consider as acceptable URL
patterns, leading to another instance of the same problem.

In summary, the contributions of this paper are the following:

– We identify a new evasion strategy made possible because browsers and URL scan-
ners do not parse URLs consistently

– We develop an experimental methodology to reveal discrepancies on how browsers
and scanners transform URLs

– We test all major browsers and URL scanners and show that the problem is general

– We test a variety of popular applications that dynamically create links for URL-like
text and also discover discrepancies

– We examine popular libraries used for parsing URLs and discover that they follow
different RFCs
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2 Background

2.1 URL Encoding and Canonicalization

A uniform resource locator (URL) is a generic way to access a resource over the Internet
and is most commonly used to access a service or page over the web. A URL is a
uniform resource identifier (URI) and it is an Internet standard with the latest RFC
describing it being RFC-3986 [1]. Its syntax is familiar and follows the format shown
below.

scheme:// [user:password@]domain:port︸ ︷︷ ︸
authority

/path?query#fragment

URLs aim to be generic so that they can be used for a variety of protocols and by a
variety of applications. However, as the web has increased in popularity, URLs are used
by an increasing number of applications and have been extended with new features (e.g.,
internationalization), causing some contemporary implementations to stray from the
RFC. The web Hypertext Application Technology Working Group (WHATWG), in an
attempt to provide a more current standard, has defined the URL Living Standard [45].
Below, we discuss some basic aspects of URLs and URL parsing.
Delimiter A generic URL consists of a hierarchical sequence of components referred
to as the scheme, authority, path, query, and fragment. Each component corresponds to
a piece of information that is necessary to locate a unique resource. Hence, identifying
components correctly when parsing a URL is critical for both browsers and servers.
Several delimiters are applied in the URL syntax to help separate components. These
are the colon (:), the at sign (@), the slash (/), the question mark (?), and the number
sign (#).
URL-Encoding or Percent-encoding is a mechanism for encoding information in a
URI to represent a data octet in a component, when the corresponding character of the
the octet is outside the allowed character set or is being used for a special purpose
such as the delimiter of, or within, the component. A percent-encoded character is a
character triplet, which consists of the percent character (%) and two hexadecimal digits
representing the octet’s numeric value. For example, %3F is the percent-encoding of
the question mark character (?). In percent-encoding format, the uppercase hexadecimal
digits and the corresponding lowercase digits are equivalent and exchangeable.
Canonicalization or normalization refers to the process of converting data from one
representation to a “standard” or canonical form. Generally, this is done to correctly
compare data for equivalence, enumerate distinct data values, improve various algo-
rithms, etc. On URLs, it is mainly done to determine, if two URLs are equivalent and
it can include operations such as removing the default HTTP port (i.e., 80), convert-
ing the domain to lowercase, and resolving a path that contains a dot or double dot.
Occasionally, applications introduce their own canonicalization rules, such as remov-
ing duplicate slashes (// → /), automatically completing incomplete IP address, deleting
extra leading dots in the authority part, etc.



4

2.2 URL Scanners

Because of the importance of web browsers and the multitude of attacks targeting them
or being delivered through them, several approaches [3–13, 20, 26, 36] have developed
URL scanners. A URL scanner is a service that analyzes a URL, enabling the identi-
fication of viruses, worms, trojans, phishing and other kinds of malicious content de-
tected by antivirus engines or website scanners. URL scanner services are commonly
accessed through an online web service, a browser extension, a third party library, or a
public web-based API.

Scanners have two main interfaces. The first, allows users to submit or report a URL
for immediate or later scanning [3, 4, 8–11, 13, 20]. The scanner will then retrieve the
content and scan it to determine maliciousness. Some scanners [4,10] also consult mul-
tiple third-party scanners to determine if the content is malicious. The second interface,
enables users to query whether a URL has been found to be malicious using the scan-
ner’s malicious-URLs database (blacklist). The database is queried looking for an exact
or partial match. Regarding the ownership of the blacklist, some scanners maintain their
own blacklist [5,6,26,36], while others use third-party blacklists [12]. Finally, scanners
can be divided into two categories: the ones that only check the content of submitted
URLs and the ones that follow links within the submitted page [3, 8, 11, 13, 26].

Among many URL scanners, there are two that are widely used in daily life, though
sometimes users may not be aware of them. The first one is Google Safe Browsing [26],
a Google service that helps applications check URLs against Google’s constantly up-
dated lists of suspected phishing, malware, and unwanted software pages. It is available
through a series of web-based APIs. Google Safe Browsing as a scanner service is in-
tegrated into Chrome and Firefox, and even Safari uses its database. The second one is
Microsoft’s SmartScreen filter [36], a malware and phishing filter that is integrated in
several Microsoft products including Internet Explorer and Hotmail. Any time a user
gets a warning when visiting a web page in these browsers, it means that the URL is in
one of the two scanners’ blacklist or both.

3 The Problem

Figure 1 depicts the process, where URLs, which have been submitted by users or ob-
tained by crawling the web, are scanned for malicious content. Links contained within
pages are usually also followed and scanned, and when a page is found to contain ma-
licious content, it is inserted into a database. That database can be later used by the
browser to prevent users from accessing malicious content. For example, before fetch-
ing any page, the browser first checks the URL of that page in the database. If an entry
does not exist, it proceeds to load and display the page to the user. If, however, an entry
for the URL is found in the database, the browser redirects the user to a page warn-
ing him that he is about to visit a page containing malicious content. Even though the
user can ignore the warning, research has shown that such warnings are effective in
protecting users [14, 23].

This process through which the user is protected from visiting malicious pages can
be undermined when scanners and browsers do not parse URLs consistently. There
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Fig. 1. Modern browsers utilize databases of known malicious URLs, populated by offline URL
scanners, to warn and protect users.

may be many reasons that two programs do not parse a URL the same way. It may be
consciously, because their developers chose to support a different standard, or because
one of them has adopted additional standards and guidelines. It can also be because of
program bugs that cause inconsistent behavior when parsing certain, otherwise legit-
imate, URLs. Independently of the reason, if the database utilized by a browser was
produced by a scanner that treats certain URLs differently than the browser, the user is
left exposed to malicious content, which would be otherwise detected and filtered.

The mechanics of such an attack are shown in Fig. 2. An attacker aware of dis-
crepancies in URL parsing can place his malicious content under a URL that brings
them about, e.g., BADURL. When the scanner processes a page containing this URL,
the sought after behavior is triggered causing the scanner to transform the URL to
BADURL′ before accessing it and scanning it. The attacker is essentially able to hide
his malicious page from the scanner, so it can never be entered in the database, later
used by the browser. It is interesting to note that even if the attacker for some reason
placed malicious content under BADURL′, causing it to be logged in the database,
the browser would actually check BADURL instead, which would not match any of
the logged entries. The problem is symmetric, in the sense that if the browser is the
entity transforming the URL before accessing it, then the attacker can still hide mali-
cious content by placing it under BADURL′ while putting innocuous content under
BADURL.

This problem, which we name What You Scan Is Not What I Visit (WYSISNWIV), is
not limited to browsers, but it can affect any application that creates links for displayed
URLs. For example, instant messengers and various web applications, like web mail,
do create links for URLs identified in text. Concurrently, there are various products that
filter malicious URLs based on databases created by public and proprietary scanners [5,
24,38,42]. Each application-scanner pair, where the two do not process URLs the same
way, can leave the user exposed to malicious content.
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Fig. 2. A scanner parsing URLs differently from a browser allows hiding malicious content from
the first, using a carefully crafted URL, while the latter follow it to malicious content.

4 Experimental Methodology

To detect discrepancies on how URLs are parsed, we design experiments that will drive
browsers and URL scanners with various test inputs. This section describes how we
generate the test inputs and the experiments run with browsers and URL scanners.

4.1 Generating Test Inputs

To generate the URL inputs used for testing, we follow a structured approach build-
ing on domain knowledge. In particular, we manually examine the following sources
to identify high-level patterns of inputs, based on which we generate inputs for test-
ing. The three following resources are used to identify high-level patterns for testing:
i) the RFC 3986 document, ii) the code base of the Chromium and Mozilla Firefox web
browsers, and iii) the unit tests that come with these browsers. The RFC 3986 specifica-
tion broadly defines what is allowed, what may be allowed, but also what must be disal-
lowed when a URL is constructed. However, it allows browsers to implement their own
policies for “maybe allowed” characters. Thus, based on the study of the URL specifi-
cation and two open-source web browsers, it would be possible to have discrepancies
in some special cases, such as when encountering control characters, special Unicode
characters, the backslash character, and encoded delimiters included in the URL path.
Furthermore, unit tests provide key examples that web browsers and services should
be able to successfully parse for compatibility reasons. Table 1 lists all the test inputs
constructed based on the above sources.
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Table 1. Inputs used for testing browsers and scanners.

Description of transformation Generated Tests
Convert the scheme and host to
lower case

Equivalence of HTTP://WWW.EXAMPLE.ORG/PATH and
http://www.example.org/path

Decode percent-encoded octets
of unreserved characters

URL with sampled character from range %41-%5A (‘A’-‘Z’)
and %61-%7A (‘a’-‘z’)

Remove default port Equivalence of http://www.example.org:80/path and
http://www.example.org/path

Add trailing ‘/’ Equivalence of http://www.example.org/path/ and
http://www.example.org/path

Removing dot-segments (‘.’) Equivalence of http://www.example.org/path/././index.html
and http://www.example.org/path/index.html (Number of ‘.’
in the range of 1-5)

Removing the end fragment
‘#frag’

Equivalence of http://www.example.org/path/index.html#frag
and http://www.example.org/path/index.html

Replacing IP with domain name Equivalence of http://www.example.org/path and
http://10.0.0.1/path

Limiting protocols Equivalence of https://www.example.org/path and
http://example.org/path

Removing duplicate slashes Equivalence of https://www.example.org/path//index.html and
http://example.org/path/index.html

Unicode character handling Multiple URLs with characters sampled from \x00-\xffffff
Printable characters that need to
be percent-encoded

Double quote character http://www.example.org/path”path

Backslash character (‘\’) https://www.example.org/path\index.html
Non–ASCII characters that neeed
to be percent-encoded

Multiple URLs with character sampled from range %C0 -
%FF

Control characters URLs including characters \a, \b, \e, \n, \t, \0, \v, \f, \r
Encoded delimiters URLs including percent-encoded delimiters ‘#’, ‘?’, and ‘/’ in

the path
Leading dots http://...www.example.org (Number of ‘.’ in the range of 1-5)
Whitespace/Tab http://www.example.org/pa th and

http://www.example.org/path%a0path
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4.2 The Experiments

Our first experiment aims to discover differences on how browsers parse and transform
URLs, before submitting a request to the server. We developed a browser driver, as a
bash script, which launches a browser and requests a URL from the set of test inputs.
The browser then performs canonicalization and transformations on the URL and estab-
lishes a connection to our server, where it sends the request including the transformed
URL. The server was developed using Python on top of the werkzeug library and ac-
cepts every URL request, logs it, and responds with a default web page. After the page
is loaded at the browser, we also extract the URL that was requested from the browser’s
history database. The URLs requested, received by the server, and stored in the his-
tory database are compared to identify discrepancies. To facilitate comparison, we use
a unique path prefix on each request that allows us to compare the appropriate URLs.

The second experiment means to evaluate how online URL scanners deal with
URLs reported as being malicious, and for scanners that also follow links within the
reported pages, discover how they treat the URLs contained within those pages. The
latter test serves to establish how a scanner’s internal algorithms parse and transform
URLs, which reveals how it operates when or if it is used to crawl the web for mali-
cious content. For the first part of this experiment, we manually submit URLs pointing
to malicious content to the scanners using the interface provided, most commonly an
HTML form. For the latter, we submit URLs pointing to benign pages, which do not
directly contain malicious content, but do include URLs pointing to malicious content.
All URLs point to our own server that logs information like the remote IP address,
other information like the user-agent included in the request, and the timestamp of the
request. We also use unique paths in each case to differentiate between scanners.

In the our final experiment, we focus on browsers and URL scanners that work in
synergy, such as Chrome and Firefox using Google’s Safe Browsing malicious-URLs
database. In this test, we submit both benign and malicious websites located in differ-
ent URL paths, using characters and patterns discovered in the previous experiment to
“hide” malicious content from the scanner. The aim is to confirm that we can construct
URLs that will point the scanner to safe content, while a browser following the URL
will visit malicious content instead.

5 Results

5.1 Browsers

We tested four browser families on three desktop operating systems (OS). We tested
Firefox v35.0.1, Chrome v40.0.2214.115, and Opera v27.0.1689.69 on Ubuntu v14.04
LTS, Mac OS X v10.10.2, and Windows 7 SP1. We also tested Safari v8.0.3 on Mac
OS X, and Safari v5.1.7 and Internet Explorer (IE) 8.0. 7601.17514 on Windows 7.
Our results show that Firefox URL-encodes backslashes to (\ → %5C), while ev-
ery other browser canonicalizes the URL replacing backlashes with forward slashes
(\ → /). We also tested three mobile OS: Android v4.4.2 with Firefox v38.0.5, Chrome
v43.0.2357.78, and Opera Mini v29.1, iOS 8 with Chrome v43.0.2357.51, Safari v8.3,
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Table 2. The URL scanners considered during testing. All, except Wepawet, scan for both Phish-
ing and malware sites. Some of the scanners, such as VirusTotal, also use third-party databases
and scanners.

URL Scanners Available Actions Uses Third-party
Scan URL Query URLs DB Report URL Database/Scanner

Wepawet !

Google Safe Browsing ! !

Virustotal ! !

Sucuri Sitecheck !

gred !

Online Link Scan ! !

urlQuery !

PhishTank ! !

Scumware ! !

WebInspector !

Zscaler Zulu !

SmartScreen Filter ! !

ScanURL ! !

stopbadware ! ! !

and Opera Mini , and Windows Mobile 8.1 with IE and Opera Mini. Once again, Fire-
fox URL-encodes backslashes. Interestingly, Opera Mini on iOS leaves the backslash
character unchanged, while every other browser replaces them with slashes. These mod-
ifications occur both when a user types a URL in the address bar and when clicking on
a link. As a result, browsers doing canonicalization can never access pages hosted on
URLs containing a backslash as a legitimate character.

5.2 URL Scanners

Table 2 lists all the URL scanners we considered in our experiments. We selected sev-
eral state-of-the-art URL scanners, including products of academic research and freely-
accessible production systems. For example, Wepawet [20] is a product of academic
research, while VirusTotal [10], Sucuri SiteCheck [8], gred [3], Online Link Scan [4],
urlQuery [9], ScanURL [12], PhishTank [5], Scumware [6], WebInspector [11], and Zs-
caler Zulu URL Risk Analyzer [13] are mature products. We focused our experiments
on Google Safe Browsing [26] and Microsoft’s SmartScreen Filter [36], as the first is
being used by Chrome, Firefox, and Safari, and the latter from IE, for protecting users
from malicious URLs. Most scanners permit us to submit URLs (e.g., through a web
form) for scanning, returning a report on their state (e.g., whether it is malicious). Oth-
ers, offer a way to check whether a URL is contained in their database of malicious
URL, while, finally, some allow us to report URLs, which will be later checked.

From the scanners listed in Table 2, we tested all that allowed us to submit a URL
for scanning or report URLs. We also tested ScanURL, which, after submitting a URL
query, provides feedback on the actual URL being searched in the database, granting us
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Table 3. The tested URL scanners handle certain characters differently from browsers. Pairs
of browsers and scanners that have such discrepancies leave users exposed when the particular
scanner is used to filter URLs, as the scanner does not process the same page the browser will
visit (e.g., the pairs Chrome/Firefox and Google Safe Browsing).

Scanners Transformations
Manual submission Injection in submitted page

\ %3F (?) %23 (#) \ %3F (?) %23 (#)
Wepawet %5C‡ %3F %23 N/A
VirusTotal %5C‡ ?? #? N/A
gred deleted? %3F , %253F %23, %2523 error? %3F %23

Online Link Scan \\? %3F %23 N/A
urlQuery %5C‡ %3F %23 N/A
ScanURL deleted? %3F %23 N/A
PhishTank \\? %3F %23 N/A
Scumware deleted? %3F %23 N/A
WebInspector /† %3F %23 %5C‡ %3F %23

Zscaler Zulu /† %3F %23 /† %3F %23

Google Safe Browsing varies?• ?? %23 /† %3F %23

Sucuri SiteCheck deleted? error? error? error? error? %23

?Affects pairing with all browsers.
†Affects pairing with browsers that URL encode backslash.
‡Affect pairing with browsers that transform backslash to forward slash.
• Handling of the backslash depends on the character following it.

this way an indication on the transformations it performs on URLs. There was no way
to test stopbadware or SmartScreen Filter. The first did not provide a way to expose
how it handles URLs, while the latter is integrated into IE, where the user can use the
graphical interface to manually check and report URLs. Because both the URL submis-
sion process and filtering is handled by the browser, we cannot test for discrepancies in
a meaningful way.

From all the tested URL patterns, we discovered three transformations that can
cause problems when a scanner’s database is coupled with a browser to filter malicious
URLs (e.g., like Chrome and Firefox using the Google Safe Browsing database). The
patterns are: the backslash character (\), and the URL encoded characters ? (%3F ) and
# (%23). Interestingly, the handling of the backslash character is not well defined in
RFC-3986, while ? and # are delimiters in the URL format. The results are summarized
in Table 3 and further discussed below.
URL-encoded Delimiters The characters ? and # are delimiters for URLs and need
to be URL-encoded or percent-encoded, if they are present in other parts of the URL,
where they are allowed. This way the characters are escaped. Our results show that
certain scanners unescape these characters, unintentionally transforming the URL, like
in the example illustrated below with ? (%3F ):

http://www.example.org/path%3Fdistorted→ http://www.example.org/path?distorted
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Table 4. Examples of URL transformations caused by handling backslash (\) differently.

Original URL http://www.example.org/path\distorted

’\’ is
URL-encoded http://www.example.org/path%5Cdistorted
canonicalized http://www.example.org/path/distorted
dropped http://www.example.org/pathdistorted
backslash escaped http://www.example.org/path\\distorted

The underlined part is actually the path requested from the server at www.example.org
in each case. As indicated by Table 3, Google Safe Browsing and VirusTotal do such a
transformation and, as a result, check a different path, than the one the browser visits.
Even worse, Sucuri SiteCheck does not accept %3F at all, treating URLs including it
as invalid. Similarly, for %23, the encoded version of #, Sucuri SiteCheck does also
not accept it, while VirusTotal unescapes it. Interestingly, when gred encounters either
of the two percent-encoded delimiters, it checks two links: the original link, treating the
encoded character as an encoded character, and a link where the percent character (%)
is itself escaped to %25. gred seems to be very careful in handling form input in this
case, accounting for both eventualities, even though no browser seems to treat the %
character that way.
Backslash Handling Backslash (\) is the character handled in the most inconsistent
way among different scanners. We have identified four different transformations that the
backslash character is submitted to in our tests: it can be URL-encoded to %5C, canon-
icalized to (i.e., replaced by) a forward slash (/), simply dropped from the URL, or es-
caped using another backslash (\\). Examples of these URL transformations are listed
in Table 4. Three scanners, Wepawet, Virustotal, and urlQuery escape it by percent-
encoding it to %5C. This behavior is akin to the encoding done by Firefox, and as a
result pairing any of these scanners with any browser, aside Firefox, would enable an
attacker to hide malicious content from the scanner. The reverse happens with Zscaler
Zulu that replaces the character with a forward slash, which makes it a bad fit for using
with Firefox. ScanURL and Scumware will always completely drop the backslash URL,
while Online Link Scan and PhishTank will escape the character using another back-
slash. In both these cases, using the scanner would expose the user to attacks through
such URLs regardless from the browser he is using.
Intra-scanner Backslash Handling Discrepancies Certain scanners like WebInspec-
tor, gred, Google Safe Browsing, and Sucuri SiteCheck, handle the backslash differently
depending on how they obtain the URL they are scanning. For example, gred and Su-
curi SiteCheck drop it, when we manually submit a URL, while when the URL is in a
link within the submitted page, obtained after parsing the submitted page and following
the links within, they do not accept it and consider the URL invalid. We establish this
by injecting various links within the submitted page and observing that only the ones
containing a backslash are not accessed by the scanner. On the other hand, WebInspec-
tor canonicalizes backslashes on manual submission, while links injected in pages are
URL-encoded. Finally, Google Safe Browsing treats the percent-encoded ‘?’ differently
based on how the URL is obtained, while backslashes in manually submitted URLs are
processed in a more elaborate way, than when in URLs in pages, where they are trans-
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Table 5. Examples of how Google Safe Browsing transforms the backslash character when man-
ually reporting URLs.

# Reported URL Visited URL
1 http://www.example.org/path\ndistorted

→

http://www.example.org/pathdistorted
2 http://www.example.org/path\adistorted http://www.example.org/path%07distorted
3 http://www.example.org/path\0distorted http://www.example.org/path
4 http://www.example.org/path\x50distorted http://www.example.org/pathQdistorted
5 http://www.example.org/path\x96distorted http://www.example.org/path%96distorted
6 http://www.example.org/path\x0110distorted http://www.example.org/path
7 http://www.example.org/path\Qdistorted http://www.example.org/path

formed to forward slashes. We further discuss Google Safe Browsing below, due to its
importance.
Google Safe Browsing The backslash character is treated in many different ways by
Google Safe Browsing, when a URL is manually reported, which we list below:

1. A backslash specifies a control character, when it is followed by one of the follow-
ing characters: t, n, a, b, 0, and e. Depending on the control character, the URL is
transformed in three different ways:
‘\t’ ‘\n’ The control character is deleted and the strings before and after it are

joined together, as in example 1 in Table 5.
‘\a’, ‘\b’ The control character is converted to the corresponding URL-encoded

character (%07 and %08 respectively), as in example 2 in Table 5.
‘\0’, ‘\e’ The control character and all trailing characters in the URL are deleted,

as in example 3 in Table 5.
2. A backslash escapes a unicode character when it is followed by the character ‘x’

(\x). In this case, the characters trailing ‘x’ are retrieved and interpreted as a Uni-
code character code in hexadecimal. The following sub-cases are possible:
Character does not require encoding The ASCII representation of the character

replaces it, as in example 4 in Table 4.
Character requires percent-encoding The percent-encoded form of the charac-

ter replaces it, as in example 5 in Table 4.
Invalid character If the Unicode character is not allowed in the URL, for exam-

ple, because it requires two percent-encoded bytes like in the case of \0110 →
%C4%90, it is dropped along with all trailing characters, as in example 6 in
Table 4.

3. When a backslash is followed by any other character, it is treated as an invalid
character and it is dropped along with all trailing characters, as in example 7 in
Table 4.

5.3 Backslash in Other Applications

Applications, such as instant messengers (IMs), web email, and email clients, dynami-
cally create links when they identify text that resembles a URL. If the information ex-
changed by such an application is intercepted to scan for potentially malicious URLs [24,
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Table 6. How various other applications transform the backslash character.

Program Transformations of backslash (\) in URLs.
URL cropped at \ Encoded (%5C) Canonicalized (\ → /) Preserved (\)

In
st

an
tM

es
se

ng
er

s

Skype !(Mac) !(Windows) !(Android)
Hangouts !(Android) !(iOS)
QQ !(iOS, Android) !(Mac) !(Windows)
WeChat !(iOS, Android)
Facebook

!(Android) !(iOS)Messenger
Line !(Android) !(iOS)
iMessage !(Mac, iOS)
WhatsApp !(Android) !(iOS)
Viber !(Android, iOS)

W
eb

m
ai

l

GMail !

Outlook.com !

Yahoo! Mail !

Roundcube
!Webmail

E
m

ai
lc

lie
nt

s

Opera Mail !(Mac, Windows)
Thunderbird !(Mac, Windows)
Outlook !(Windows,Mac)
Zimbra Desktop !(Mac, Windows)
eM client !(Windows)
Inky !†(Windows, Mac)
Claws Mail !(Windows)

Po
pu

la
rS

ite
s Facebook !

Twitter !

LinkedIn !

Tumblr !

† The entire path part of the URL and part of the domain is cropped.
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38, 42], any transformation applied by the application, introduces another point that
could be exploited by an attacker (e.g., to bypass URL scanners when performing
a spear phishing campaign). We tested various applications with URLs including the
backslash character and report our results in Table 6. We focused our efforts on popular
operating systems and platforms, such as Mac and Windows on desktops/laptops and
iOS and Android on smartphones. Email clients were tested on both Windows and Mac
platforms, if available (e.g., eM client and Claws Mail do not have a Mac version). IMs
with the exception of Skype and QQ were tested on mobile platforms, since there is a
broader variety and are more commonly used on these platforms. Skype and QQ were
also tested on Windows and Mac. We do not list Skype’s case on iOS, since it does not
not create links for the tested URLs, essentially failing to recognize URLs with am-
biguous characters. Web mail cases and popular sites were tested on both Windows and
Mac using Internet Explorer, Chrome, and Firefox.

Most of the tested applications handle backslashes more strictly than browsers and
stop processing when a backslash is encountered [45], essentially cropping the URL.
However, since no scanner performs such a transformation, stricter is not safer in this
case. The remainder of the tested applications either canonicalize URLs, transform-
ing backslashes to forward slashes, preserve them, or URL- encode them. An inter-
esting finding is that most of the applications on Android cropped the URL before
the first backslash and most of the applications on iOS platform encoded the back-
slash. Through further investigation, we found that there is a build-in library for find-
ing URLs in plain text, namely android.util.Patterns.WEB URL, which ter-
minates URL pattern matching when it encounters a backslash. On iOS, the build-in
library dataDetectorWithTypes:NSTextCheckingTypeLink encodes the
backslash automatically while searching for URLs. Email clients exhibit more diver-
gence on handling URLs, which indicates that developers create their own URL parser
or utilize different libraries to parse URLs. Our results indicate that the standard fol-
lowed by applications may be unconsciously dictated by the platform and libraries
used, some times causing the same application to handle URLs differently based on
its platform version.

5.4 Backslash Handling by Different Libraries

Based on the findings presented in the previous section, we further investigate how
platforms and libraries handle the backslash character in URLs. We chose some of
the most commonly used languages, as reported by IEEE Spectrum [19], and widely
used libraries for URL processing used when developing in these languages. The re-
sults are presented in Table 7. We observe that different libraries indeed diverge by
essentially adhering to different URL RFCs. In libcurl ’s specifications both RFC 2396
and RFC 3986 are listed, and the library preserves the character. The cpp-netlib library
obeys RFC 3987, while libraries part of python 2.6 do not refer to a particular RFC and,
interestingly, they handle the character differently. Oracle’s Java platform follows the
RFC 2396 specification, but when using the URI class, the backslash character is not
accepted. The google-http-java-client library follows RFC 3986. Finally, Ruby’s library
net/http uses RFC 2396. These results indicate that applications may implicitly adopt
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Table 7. How various libraries handle the backslash character. We provide URLs from standard
input, parse them using the corresponding libraries, and print the parsed URL to standard output.

Library Transformations of backslash (\) in URLs.
Deleted Encoded Canonicalized Preserved Error

libcurl v7.44.0 (C) !

cpp-netlib 0.11.1 (C++) !

Python v2.6.8 – httplib !

Python v2.6.8 – urllib !

Java v1.8.0 31 – java.net (URI class) !

Java v1.8.0 31 – java.net (URL class) !

google-http-java-client v1.20.0 (Java) !

C# v4.6.00079 – System.Net !

Ruby v2.2.2p95 – net/http !

and RFC for handling URLs based on the libraries used and the platform a developer
develops for.

6 Discussion

6.1 The Problematic Backslash Character

Web developers have noticed the differences in how different browsers handle the back-
slash character before us. In a stackoverflow post a developer reports that the handling
of backslashes from Chrome prevents him from using it legitimately [2]. The response
from another user is enlightening: ‘The unified solution to deal with backslash in a URL
is to use %5C. RFC 2396 did not allow that character in URLs at all (so any behavior
regarding that character was just error-recovery behavior). RFC 3986 does allow it,
but is not widely implemented, not least because it’s not exactly compatible with exist-
ing URL processors.’. More recently, a Google+ user and web developer also identified
the discrepancy and pointed that it could lead to another type of vulnerability [28]. In
particular, changing the URL can affect the verification of the message origin when us-
ing postMessage(). They had to update their web application to account for backslash
transformations. It is clear that it is unclear which standard each browser and URL scan-
ner adheres to. Moreover, attempts to auto-correct user typos, such as typing a backslash
instead of a slash, have been widely adopted by graphical programs, such as browsers.
On the other hand, only a few URL scanners seem to be aware of such schemes.

6.2 Impact and Responsible Disclosure

Our results show that there is a clear gap on the use of Google Safe Browsing from
Firefox. That is, because an attacker can create URLs including backslashes, which can
be followed by Firefox but transformed by Google before checking them for malware.
We disclosed the problem to both Google’s Safe Browsing team and Mozilla. They
have acknowledged it and are working towards a solution. At the moment of writing,
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the solution is not clear cut due to multiparty involvement. Firefox could adopt canon-
icalization as the rest of the main stream browsers. Until that happens Google may be
looking out for backslashes in encountered URLs. A member of the Google Safe Brows-
ing team has confirmed that such URLs (not the ones submitted by us) are present in
their malicious-URLs database, despite our inability to get such URLs scanned. This
confirms that even within Google backslash handling is not uniform. Based on our re-
sults with various scanners and applications, we suspect that other solutions based on
different URL scanners to filter or block malicious URLs are suffering from the same
issue.

6.3 Remediation

Adhering Strictly to a Single Standard The obvious solution to the problem would
be that every URL parser implementation adheres to the same standard and be bug-free.
Unfortunately, experience has showed that this is probably not a realistic solution. Just
recently a bug in how Skype for Windows parses URLs caused it to crash when it parsed
the string “http://:” [39]. Browser developers have been devising ways for years to auto-
correct common errors made by web developers and display pages that would not be
parsed by a strict HTML parser. HTTP, the protocol running the web, is also frequently
incorrectly implemented, as a quick search for “ incorrect HTTP handling” reveals.

Using Multiple URL Scanners Our results show that for all tested scanners and browsers,
there is no single scanner that could be adopted by any browser and have no discrep-
ancies that leave room for attacks. However, combining multiple scanners could solve
the problem, as they would cover different links. As these scanners may already be
exchanging data, we designed a test to evaluate whether they already do. More specif-
ically, we checked whether Google Safe Browsing utilizes other scanners’ databases.
For this test, we created unique URLs that point to a malicious executable file and sub-
mit them to each scanner through the appropriate interface. After five days, we check
whether the link is stored inside the corresponding scanner’s database. We could do
this for VirusTotal, Scumware, WebInspector, and Zscaler Zulu that offer a database
query interface. Then we access these links through Chrome to check whether they are
blocked. Unfortunately, none of them was, indicating that the scanners do not share
data.

Broader Scanning and URL Collection The most viable solution seems to be that
when URLs are found to contain characters or patterns, which may be interpreted dif-
ferently by a client that the scanner checks all possible variations. If such patterns are
not broadly used by benign websites, then the additional overhead imposed on the scan-
ner will be relatively small. Our results show that the gred URL scanner already does
something like this for %3F (?) and %23 (#). Another option is that scanners take the
URLs actually sent by the browser to web servers as-is and use them for scanning.
However, this option may violate a user’s privacy, as the URL may contain private in-
formation and exposes the sites the user visits.
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7 Related Work

Identifying malicious web sites before the user visits them to block them, take them
down, etc. has been a popular area of research. A score of techniques are used to identify
malicious content, using both dynamic and static analysis techniques. While not being
exhaustive, we attempt to discuss some of the most prominent works here. Note that
the security problem highlighted in this paper does not relate to the techniques and
methods used to detect malicious content, such as malware, exploits, and phishing sites.
Instead, it has to do with they way users and security systems obtain and parse URLs.
That is, security issues arise because an attacker can use a URL to hide his malicious
content from a security system, while the client, usually a browser, reaches malicious
content through the same URL. Some of the works described below do involve the
URL in the classification of web pages used to detect malicious content. It is possible
that these approaches could be extended to include heuristics that identify problematic
URL patterns as potentially malicious, however, the effectiveness of such measures also
depends on how frequently such patterns are encountered on benign sites.

Cova et al. [20] present JSand, a dynamic analysis system that visits web sites using
an instrumented browser, collecting run-time events as the browser executes the web-
site. Anomaly detection methods are applied on features extracted from the events to
classify websites and identify malicious ones. JSand is part of the Wepawet scanner,
which we tested in this work, and utilizes Mozilla’s Rhino interpreter. This is probably
the reason it processes backslashes in a Firefox-like manner. Prophiler [18] later im-
proves JSand by accelerating the process of scanning web pages by allowing for benign
pages to be quickly identified and filtered out. Features extracted from page content,
the URL, and information about the host of the page are used to quickly identify benign
pages. EvilSeed [29] follows the reverse direction and begins from known malicious
websites, which it uses as seeds to search the web more efficiently for malicious con-
tent. This is accomplished by extracting terms that characterize the known-to-be mali-
cious sites and using them to query search engines, hence, obtaining results more likely
to be malicious or compromised.

In 2007, Google researchers introduced a system for identifying all malicious pages
on the web that attempt to exploit the browser and lead to drive-by downloads [41].
Based on the fact that Google already crawls a big part of the web, the researchers
begun an effort to extract a subset of suspicious pages that can be more thoroughly
scanned. Simple heuristics are used to greatly reduce the number of pages that need to
be checked. In a later paper, Provos et al. [40] present results showing the prevalence of
drive-by download attacks, using features such as out-of-place inline frames, obfuscated
JavaScript, and links to known malware distribution sites to detect them. Their findings
estimate that 1.3% of search queries made to Google returned at least one URL labeled
as malicious.

Dynamic analysis techniques that scan the web to identify malicious pages, fre-
quently employ client honeypots. That is, a modified collection of programs that act
as a user operating a browser to access a web site. Moshchuk et al. [44] developed
Strider HoneyMonkeys, a set of programs that launch browsers with different patch
levels, concurrently accessing the same URL, to detect exploits. The approach is based
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on detecting the effects of a compromise, like the creation of new files, alteration of
configuration files, etc.

Some recent works that aim to improve the detection of malicious websites include
JStill [47], which performs function invocation-based analysis to extract features from
JavaScript code to statically identify malicious, obfuscated code. Kapravelos et al. [30]
also focused on detecting JavaScript that incorporates techniques to evade analysis. An-
other approach, Delta [16], relies on static analysis of the changes between two versions
of the same web site to detect malicious content.

Some other works have focused on aspects of the URL itself to detect malicious
sites. ARROW [48] looks at the redirection chains formed by malware distribution net-
works during a drive-by download attack. Garera et al. [25] classify phishing URLs
using features that include red-flag keywords in the URL, as well as feature based on
Google’s page rank algorithm. Statistical features and lexical and host-based features of
URLs have been also used in the past to identify malicious URLs with the help of ma-
chine learning [33, 34, 46]. Malicious URLs are frequently hidden by using JavaScript
to dynamically generate them on-the-fly. Wang et al. [43] employ dynamic analysis to
be extracted such hidden URLs.

Besides the URL scanners mentioned in this paper, there exist another type of scan-
ner called Web Application Scanners. The Web Application Scanner is a kind of scan-
ner that is fed with a URL or a set of URLs, retrieves the pages that URLs pointed
to, follows the links inside until identifying all the reachable pages in the application
(under a specific domain), analyze the pages with crafted inputs if necessary, and figure
out whether this site is vulnerable to some web-specific vulnerabilities (e.g., Cross-Site
Scripting, SQL injection, Code Injection, Broken Access Controls). Doupé et al. [21]
presents an thorough evaluation of eleven this kind of web application scanners by con-
structing a vulnerable web site and feeding this website to scanners. Khoury et al. [31]
evaluate three scanners against stored SQL injection. Bau et al. [15] analyze eight web
application scanners and evaluate their effectiveness against vulnerabilities. For this
kind of scanners, they are out of the scope of this paper. In our paper, we assume that
the web site is controlled by the attacker and the attacker can planted any malicious
content into any link belongs to this site while the web application scanners are target-
ing the benign sites that may potentially be exploited. The web application scanners
usually are not capable of detecting malicious content and phishing pages as well.

8 Conclusions

The procedure of developing a common URL parser framework or enforcing a stan-
dardization model can be a hard and challenging task for both application and service
vendors, due to expeditious changes in the technology field, and variations and gaps
among multiple web services.

In this work, we experimentally test all major browsers and URL scanners, as well
as various applications that parse URLs. We expose multiple discrepancies on how they
actually parse URLs. These differences leave users vulnerable to malicious web content
because the same URL leads the browser to one page, while the scanner follows the
same URL to scan another page.
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As far as we are aware of, this is the first time browsers and URL scanners have
been cross-evaluated in this way. The current work can be used as a reference to anyone
interested in better understanding the facets of this fast evolving area. It is also expected
to foster research efforts to the development of fully-fledged solutions that put emphasis
mostly to the technological, but also to the standardization aspect.
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