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Recap: Broadly Deployed Security
Mechanisms

NX-bit = Prevent arbitrary code execution

Stack canaries = Detect and prevent stack overflows

ASLR - Introduce uncertainty on the location of injected
shellcode and existing code in a running program

They have raised the bar for attackers
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Shift in Target Selection

Clients Servers

S@IART HUB
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Shift in Target Selection

Clients Servers

ﬁl\leb browsers \

Flash Acrobat Reader

Ny
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Shift in Target Selection

Clients Why?

ﬁVeb browsers \
Software popularity

< Large and complex software
‘ g = More buggy

Dynamically translates and
executes Javascript

/ ! - = Attackers can run code on
\ 7 hdobe / target (even if in isolation)

Flash Acrobat Reader
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Recap: Code Injection in the Code
Cache

<html>
<body>
<script language='javascript'>

var myvar = unescap}('%u\4F43%u\4552' ;
CORE b’k

myvar += unescape( '%u\414C%u\214E'); //
LAN!
alert("allocation done");

</script> B e
</body>

</html> Code

Cache

 ASLR > Code cache location unknown EASCuion
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Heap Spraying

Attempt to place shellcode at a predictable location
Mechanisms:

Dynamically expand buffer by appending copies of the
shellcode

On the fly generate variables

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
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https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/

var vl = “myshellcode”;
var v2 = “myshellcode”;

var v3 = “myshellcode”;
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var vl = “myshellcode”;
var v2 = “myshellcode”;

var v3 = “myshellcode”;

var v4 = “myshellcode”;
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Large NOP Sleds
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Summary: Heap Spraying

May require multiple attempts

Can possibly defeat ASLR

Heap fragmentation is in play
= May be worse in concurrent systems
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Code/Data Separation in the Code

Cache

Native
code

JIT compiler

Static

data
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Bounded code cache size

Code

Cache

Execution

Dynamically allocated
data

Heap

Stevens Institute of Technology



ASLR + Code/data Separation
+ Finite Code Cache

$

No More Code Injection
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Chaining Functions with ret2libc

F1(cmd) F2(argl, arg2)

F1 fakeret

ESP
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Chaining Functions with ret2libc

F1(cmd) F2(argl, arg2)

fakeret

ESP
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Chaining Functions with ret2libc

F1(cmd) F2(argl, arg2)

F2 *cmd

ESP
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Chaining Functions with ret2libc

F1(cmd) F2(argl, arg2)

F2  *cmd arg2 argl

ESP
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Chaining Functions with ret2libc

F1(cmd) F2(argl, arg2) F3(arg3)

arg2 argl

ESP
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Chaining Functions with ret2libc

F1(cmd) F2(argl, arg2) F3(arg3)

arg2 argl

ESP
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Chaining Functions with ret2libc

We need small gadgets to unwind the stack pointer in a
controlled way

Stack F1 ret *cmd F2 ret arg2 argl

ESP




Chaining Functions with ret2libc

F1(cmd)

ret *cmd F2 ret arg2 argl

ESP
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Chaining Functions with ret2libc

F1(cmd)
pop eax; ret

F2 ret arg2 argl

ESP
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Chaining Functions with ret2libc

F1(cmd)
pop eax; ret
F2(argl, arg2)

F2 ret arg2 argl

ESP
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Chaining Functions with ret2libc

F1(cmd)

pop eax; ret
F2(argl, arg2)

add 0x8,esp; ret

arg2 argl

ESP
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Chaining Functions with ret2libc

F1(cmd)

pop eax; ret
F3(argl, arg2)

add 0x8,esp; ret

arg2 argl F3 fake

al

ESP

Fall 2018 Stevens Institute of Technology



Chaining Functions with ret2libc

F1(cmd)

pop eax; ret
F2(argl, arg2)

add 0x8,esp; ret
F3(arg3)

fake

al
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g 0x0804851c <+88>: leave //mov ebp, esp; pop ebp;
g’ 0x0804851d <+89>: ret //return

E

= 0xbffffOfo
<

3

£ 0xbffff0e0

system_arg

leave_ret

system_addr

fake_ebp2

leave_ret

fake_ebp0

<—— argv
<+——— argc

<«+—— Return Address
<+— EBP

<«+—— Alignment Space

<«+———— buf ends here

«+—— buf starts here

main() Stack Layout - Chained

with multiple libc functions
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| don’t like only
calling functions
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Enter Return-Oriented
Programming

Re-use parts of the application’s code (gadget) to perform
arbitrary computations

A Turing complete machine

Use the stack like a tape providing the data for the
computation and the instruction pointer



A Code Collage
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https://www.usenix.org/conference/usenixsecurity1l4/technical-sessions/presentation/carlini


https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini

mov (%rcx),%rbx

test %rbx,%rbx

je 41c523 <main+0x803>
mov %rbx,%rdi

callqg 42aboe

mov %rax,0x2cdadd(%rip)
cmpb $0x2d, (%rbx)

je 41c4ac <main+0x78c>

mov ©x2cda8d(%rip),%rax
ret

estT %IrbX, Arox
mov $0x4ab054,%eax
cmove %rax,%srbx
mov %rbx,0x2cda6a(%rip)
test %rdi,%rdi

je 41cOc2 <main+0x3a2>
mov $0x63b, %edx
mov $0x4ab0ld,%esi
callq 46cab@ <sh_xfree>
ret

Fall 2018

mov %rax,ex2d2945(%rip)
mov ©x2cdal6(%rip),%rax
test %rax,%rax

je 41c112 < S
movzbl (%ra

callg 41be4 Gadgets

mov Oxb8(%n
cmp OXC (% Sp L k=

R HTIX , 0x2d267(%rip
je 41c214 <maipfoxafa>
xchg %ax, %ax

(o)
iie 0 [) o (]

movslq %ril5d,%rax
mov (%rdx,%rax,8),%rl4

ret

je 41c214 <main+0x4f4>
cmpb $0x2d, (%ri4)

jne 41c214 <main+0x4f4>
movzbl Ox1(%rl4),%rl2d
movl $0x0,0x18(%rsp)
cmp $0x2d,%r12b
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je 41c440 <main+0x720>
xor %ebp,%ebp
mov $0x4c223a,%ebx
add $0x1,%ri14
jmp 41cla3 <main+0x483>
cmp (%rbx),%rl2b
mov %ebp,%rl3d
jne 41c188 <main+0x468>
mov %rbx,%rsi
ast %eax,keax
xchg e bax

l‘ /4 ats \.‘l AX A6
movslq %ebp,%rax
ret

) PYI X 'd"-. O ol "d X

je 41c461 <main+0x741>

mov (%rsp),%rcx

add $0x1,%ri15d

movslq %ri15d,%rdx

mov (%rcx,%rdx,8),%rdx

test %rdx,%rdx

je 41cefd <main+0x11dd>



An Example

Code

Oxb8800000 .
————_,——”—————' pop eaxX

ret
<xb8800@1@:
pop ebx

Payload
0x00
esp | Oxb8800000
Oxb8800010
Oxb8800020
Oxb8800010
Oxb8800030
Oxff

ret
Oxb8800020:

add ebx, eax

ret
Oxb8800030:

mov eax, [ebx]

ret

Fall 2018
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Actions
eax = 1
ebx = 2

eax += ebx
ebx = 0x400000

*ebx = eax



Current State of the Art

First-stage ROP code for bypassing NX
= Allocate/set W+X memory (VirtualAlloc, VirtualProtect, ...)
= Copy embedded shellcode into the newly allocated area

Second stage jumps to injected code

Pure-ROP exploits

= |n-the-wild exploit against Adobe Reader XI
= CVE-2013-0640
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Fine-Grained Code Randomization

Randomize the layout of the code within a
library/executable

Aims to defeat ROP-style attacks that rely on a memory
leak to de-randomize the base address of a code segment

= This allows using the gadgets within

Can be applied at different levels with increasing
overheads

= Function

= Basic block

" |nstruction



library
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The address of every instruction is known
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Function-level Randomization

library library

Order of functions is
randomly selected at
compile time

T
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Basic Block-level Randomization

library function
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Basic Block-level Randomization

Fall 2018

function

Order of basic blocks is
randomly selected at
compile time

T

Glue code may be inserted
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function




Instruction-level Randomization

Similar concept to function and BBL-level randomization

Instruction may be

= Moved within a block (e.g., by adding random number of
NOPs between them)

= Replaced with equivalent functionality
= Substituted to use different registers
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JIT-ROP

Just-In-Time ROP chain generation

Can bypass fine-grained randomization
= When a memory leak can be repeatedly triggered
= Example: Leaks that can be triggered from JS

Main idea:
Dynamically leak memory and locate gadgets for ROP

Construct ROP chain and exploit control-flow hijacking
vulnerability

https://cs.unc.edu/~fabian/papers/oakland2013.pdf
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https://cs.unc.edu/~fabian/papers/oakland2013.pdf
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Just-in-time Disassembly
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Attacker Modus Operandi

Find memory corruption bug
= Manipulate to take over program counter

Find ASLR bypass

= Leak memory layout
= Spray memory
= Weakly or non-randomized sections/memory

Inject ROP payload

= Break WAX semantics

Inject code

Fall 2018 Stevens Institute of Technology



Attacker Modus Operandi

Find memory corruption bug
= Manipulate to take over program counter

Control-flow Integrity aims to restrict the
arbitrary manipulation of the program counter



Control Flow Manipulation

Function calls my_ function(argl, arg2)
void (*fptr)(argl_type, arg2_type) = &my_function;
fptr(argl, arg2);
Function returns return; return 100;
If statements if (cond) {
} else {
}
Loops for () { } while { } do { } while
Break/continue while (true) { while (cond) {
if (cond) if (cond2)
break; continue;
} }
Switch statement switch (cond) {
vall: .. break;
val2: .. break;
}
goto statement goto labell;
Fall 2018 Labell: hnology




Control-Flow Hijacking Prone
Statements

Statements where
the target statement

switch (cond) {
cannot be known a vall: - bresk:

F)ri()ri } val2: .. break;

return; return 100;

* |ndirect control-
flow transfers

. void (*fptr)(argl_type, arg2_type) = &my_function;
Indirect calls, returns, | fotr(argl, arg2);

and some switches

Calls to virtual Class C {

. . . virtual void vcall(void);
functions are indirect |,
calls

C obj = new C();

obj->vcall():
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Easily Observable in Machine

Code

C Code

return;

return 100;

switch (cond) {
vall: .. break;
val2: .. break;

—
—

void (*fptr)(argl_type, arg2_type) = &my_function;

fptr(argl, arg2);

Class C {
virtual void vcall(void);

}

C obj =

new C();

obj->vcall():

Fall 2018
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Machine Code

ret

jmp *(%rax)

jmp *(%rax)

call *(%rax)

call *(%rax)




Function Call Graph (FCG)

call

call *

call ret

call
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FCG Enforcement

call

@unctiono

call

call
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Control-flow Graph (CFG)
Indirect flows only

call

call *

parent_function()
call ret

next_function():

I
jmp * — I

call

Fall 2018 Stevens Institute of Technology



CFl - CFG Enforcement

Fall 2018

call

next_function():

parent_function()

call

call *

]
Jmp*<

call

QL
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Extracting the CFG

With source COde static void (*fptr)(char *string, int len);
= More reliable void set_callback(void *ptr)
= Still not perfect { fptr = ptr;
= How to handle }
= Dynamically loaded void process_items()
libraries? { for v
. or (string *s : items
Callbacks fptr(s->c_str, s->len);
Without source code , :
= Requires accurate
disassembly
= Cannot accurately define
all paths

= Shared libraries are
easier to handle
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Working with an Imperfect CFG

Lets assume that we know/can learn
*= The location of every function
= The location of every indirect branch instruction

Coarse-grained CFl can enforce the following

" |ndirect calls should only transfer control to functions
=  Same for most jumps

= Returns should only transfer control to instructions following
a indirect call or jump
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Function_A:

Function_B:
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Function_A:

OK

Function_B:
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Function_A:

Function_B:

Function_C:
OK
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Function_A:

Function_B:
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