Modern Exploitation
and Defenses

CS-576 Systems Security

Instructor: Georgios Portokalidis
Fall 2018

Recap: Broadly Deployed Security
Mechanisms

NX-bit = Prevent arbitrary code execution

Stack canaries = Detect and prevent stack overflows

ASLR - Introduce uncertainty on the location of injected
shellcode and existing code in a running program

They have raised the bar for attackers

Fall 2018 Stevens Institute of Technology

Topics

Attackers shift towards client programs
Back to return-to-libc
Return-oriented programming

Fine-grained code randomization
JIT-ROP

Control-flow Integrity (CFl)
Attacks against CFl and more defenses

Fall 2018 Stevens Institute of Technology

Topics

Attackers shift towards client programs
Back to return-to-libc

Return-oriented programming

Fine-grained code randomization
JIT-ROP

Control-flow Integrity (CFl)
Attacks against CFl and more defenses

Fall 2018 Stevens Institute of Technology

Shift in Target Selection

Clients Servers

S@IART HUB

Fall 2018 Stevens Institute of Technology

Shift in Target Selection

Clients Servers

ﬁl\leb browsers \

Flash Acrobat Reader

Ny

Fall 2018 Stevens Institute of Technology

Shift in Target Selection

Clients Why?

ﬁVeb browsers \
Software popularity

< Large and complex software
‘ g = More buggy

Dynamically translates and
executes Javascript

/ ! - = Attackers can run code on
\ 7 hdobe / target (even if in isolation)

Flash Acrobat Reader

Fall 2018 Stevens Institute of Technology

Recap: Code Injection in the Code
Cache

<html>
<body>
<script language='javascript'>

var myvar = unescap}('%u\4F43%u\4552' ;
CORE b’k

myvar += unescape('%u\414C%u\214E'); //
LAN!
alert("allocation done");

</script> B e
</body>

</html> Code

Cache

 ASLR > Code cache location unknown EASCuion

Fall 2018 Stevens Institute of Technology

Heap Spraying

Attempt to place shellcode at a predictable location
Mechanisms:

Dynamically expand buffer by appending copies of the
shellcode

On the fly generate variables

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/

Fall 2018 Stevens Institute of Technology

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/

var vl = “myshellcode”;
var v2 = “myshellcode”;

var v3 = “myshellcode”;

Fall 2018 Stevens Institute of Technology

var vl = “myshellcode”;
var v2 = “myshellcode”;

var v3 = “myshellcode”;

var v4 = “myshellcode”;

Fall 2018 Stevens Institute of Technology

Large NOP Sleds

Fall 2018

Variable n

Variable 3

Variable 2

Variable 1

G 255 = W COTE ZeE

shellcode

shellcode

Stevens Institute of Technology

High Address

Low Address

Before spray After spray

200 MR

yww.corelan.be

cC
Q
2
n
[
=4
@
=
ol
n
e
-

- Sprayed (Used)

Fall 2018 Stevens Institute of Technology

Summary: Heap Spraying

May require multiple attempts

Can possibly defeat ASLR

Heap fragmentation is in play
= May be worse in concurrent systems

Fall 2018 Stevens Institute of Technology

Code/Data Separation in the Code

Cache

Native
code

JIT compiler

Static

data

Fall 2018

Bounded code cache size

Code

Cache

Execution

Dynamically allocated
data

Heap

Stevens Institute of Technology

ASLR + Code/data Separation
+ Finite Code Cache

$

No More Code Injection

Topics

Attackers shift towards client programs
Back to return-to-libc

Return-oriented programming

Fine-grained code randomization
JIT-ROP

Control-flow Integrity (CFl)

Attacks against CFl and more defenses

Fall 2018 Stevens Institute of Technology

Chaining Functions with ret2libc

F1(cmd) F2(argl, arg2)

F1 fakeret

ESP

Fall 2018 Stevens Institute of Technology

Chaining Functions with ret2libc

F1(cmd) F2(argl, arg2)

fakeret

ESP

Fall 2018 Stevens Institute of Technology

Chaining Functions with ret2libc

F1(cmd) F2(argl, arg2)

F2 *cmd

ESP

Fall 2018 Stevens Institute of Technology

Chaining Functions with ret2libc

F1(cmd) F2(argl, arg2)

F2 *cmd arg2 argl

ESP

Fall 2018 Stevens Institute of Technology

Chaining Functions with ret2libc

F1(cmd) F2(argl, arg2) F3(arg3)

arg2 argl

ESP

Fall 2018 Stevens Institute of Technology

Chaining Functions with ret2libc

F1(cmd) F2(argl, arg2) F3(arg3)

arg2 argl

ESP

Fall 2018 Stevens Institute of Technology

Chaining Functions with ret2libc

We need small gadgets to unwind the stack pointer in a
controlled way

Stack F1 ret *cmd F2 ret arg2 argl

ESP

Chaining Functions with ret2libc

F1(cmd)

ret *cmd F2 ret arg2 argl

ESP

Fall 2018 Stevens Institute of Technology

Chaining Functions with ret2libc

F1(cmd)
pop eax; ret

F2 ret arg2 argl

ESP

Fall 2018 Stevens Institute of Technology

Chaining Functions with ret2libc

F1(cmd)
pop eax; ret
F2(argl, arg2)

F2 ret arg2 argl

ESP

Fall 2018 Stevens Institute of Technology

Chaining Functions with ret2libc

F1(cmd)

pop eax; ret
F2(argl, arg2)

add 0x8,esp; ret

arg2 argl

ESP

Fall 2018 Stevens Institute of Technology

Chaining Functions with ret2libc

F1(cmd)

pop eax; ret
F3(argl, arg2)

add 0x8,esp; ret

arg2 argl F3 fake

al

ESP

Fall 2018 Stevens Institute of Technology

Chaining Functions with ret2libc

F1(cmd)

pop eax; ret
F2(argl, arg2)

add 0x8,esp; ret
F3(arg3)

fake

al

Fall 2018

Stevens Institute of Technology

ESP

S~

O

2

S 0xbffff230
= 0xbffff22¢c
= Oxbffff228
kS

£ 0xbffff224
©

G Oxbffff220
&

Z Oxbffff21c
5 Oxbffff218
x

C

& 0xbffff214
2 0xbffff210
% OxbFfff20c
& 0xbffff208
L

3 Oxbffff204
)

= 0xbffff200
% 0xbffffifc
8 Oxbffff1f8
a

Q

o

=

g 0x0804851c <+88>: leave //mov ebp, esp; pop ebp;
g’ 0x0804851d <+89>: ret //return

E

= 0xbffffOfo
<

3

£ 0xbffff0e0

system_arg

leave_ret

system_addr

fake_ebp2

leave_ret

fake_ebp0

<—— argv
<+——— argc

<«+—— Return Address
<+— EBP

<«+—— Alignment Space

<«+———— buf ends here

«+—— buf starts here

main() Stack Layout - Chained

with multiple libc functions

Fall 2018 Stevens Institute of Technology

Topics

Attackers shift towards client programs
Back to return-to-libc
Return-oriented programming

Fine-grained code randomization
JIT-ROP

Control-flow Integrity (CFl)
Attacks against CFl and more defenses

Fall 2018 Stevens Institute of Technology

| don’t like only
calling functions

Fall 2018 Stevens Institute of Technology

Enter Return-Oriented
Programming

Re-use parts of the application’s code (gadget) to perform
arbitrary computations

A Turing complete machine

Use the stack like a tape providing the data for the
computation and the instruction pointer

A Code Collage

Fall 2018

Re

- @he New W

Sahuday, Jonay 6, 2007

Daily Blog Tips aw

ed th

Laft]week Darren Ese, the Daily Blog Tips is Ren
from the ampus atEc a vast augierjce foll
Problogger blyg, of | blogxers] |who |are 1mp
anndqufpiced the winners pf looking to ove their
latest Group Wity blogs. Whin|as abjout The
glect called "Reviewy\ the 1N\Ylog that
and Peedictions'/ Amon el ¢ et a rela
tha
ur n o r |ien |ted Pro|g|ra |mm |ing

Stevens Institute of Technology

https://www.usenix.org/conference/usenixsecurity1l4/technical-sessions/presentation/carlini

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini

mov (%rcx),%rbx

test %rbx,%rbx

je 41c523 <main+0x803>
mov %rbx,%rdi

callqg 42aboe

mov %rax,0x2cdadd(%rip)
cmpb $0x2d, (%rbx)

je 41c4ac <main+0x78c>

mov ©x2cda8d(%rip),%rax
ret

estT %IrbX, Arox
mov $0x4ab054,%eax
cmove %rax,%srbx
mov %rbx,0x2cda6a(%rip)
test %rdi,%rdi

je 41cOc2 <main+0x3a2>
mov $0x63b, %edx
mov $0x4ab0ld,%esi
callq 46cab@ <sh_xfree>
ret

Fall 2018

mov %rax,ex2d2945(%rip)
mov ©x2cdal6(%rip),%rax
test %rax,%rax

je 41c112 < S
movzbl (%ra

callg 41be4 Gadgets

mov Oxb8(%n
cmp OXC (% Sp L k=

R HTIX , 0x2d267(%rip
je 41c214 <maipfoxafa>
xchg %ax, %ax

(o)
iie 0 [) o (]

movslq %ril5d,%rax
mov (%rdx,%rax,8),%rl4

ret

je 41c214 <main+0x4f4>
cmpb $0x2d, (%ri4)

jne 41c214 <main+0x4f4>
movzbl Ox1(%rl4),%rl2d
movl $0x0,0x18(%rsp)
cmp $0x2d,%r12b

Stevens Institute of Technology

je 41c440 <main+0x720>
xor %ebp,%ebp
mov $0x4c223a,%ebx
add $0x1,%ri14
jmp 41cla3 <main+0x483>
cmp (%rbx),%rl2b
mov %ebp,%rl3d
jne 41c188 <main+0x468>
mov %rbx,%rsi
ast %eax,keax
xchg e bax

l‘ /4 ats \.‘l AX A6
movslq %ebp,%rax
ret

) PYI X 'd"-. O ol "d X

je 41c461 <main+0x741>

mov (%rsp),%rcx

add $0x1,%ri15d

movslq %ri15d,%rdx

mov (%rcx,%rdx,8),%rdx

test %rdx,%rdx

je 41cefd <main+0x11dd>

An Example

Code

Oxb8800000 .
————_,——”—————' pop eaxX

ret
<xb8800@1@:
pop ebx

Payload
0x00
esp | Oxb8800000
Oxb8800010
Oxb8800020
Oxb8800010
Oxb8800030
Oxff

ret
Oxb8800020:

add ebx, eax

ret
Oxb8800030:

mov eax, [ebx]

ret

Fall 2018

Stevens Institute of Technology

Actions
eax = 1
ebx = 2

eax += ebx
ebx = 0x400000

*ebx = eax

Current State of the Art

First-stage ROP code for bypassing NX
= Allocate/set W+X memory (VirtualAlloc, VirtualProtect, ...)
= Copy embedded shellcode into the newly allocated area

Second stage jumps to injected code

Pure-ROP exploits

= |n-the-wild exploit against Adobe Reader XI
= CVE-2013-0640

Fall 2018 Stevens Institute of Technology

Topics

Attackers shift towards client programs
Back to return-to-libc

Return-oriented programming
Fine-grained code randomization
JIT-ROP

Control-flow Integrity (CFl)

Attacks against CFl and more defenses

Fall 2018 Stevens Institute of Technology

Fine-Grained Code Randomization

Randomize the layout of the code within a
library/executable

Aims to defeat ROP-style attacks that rely on a memory
leak to de-randomize the base address of a code segment

= This allows using the gadgets within

Can be applied at different levels with increasing
overheads

= Function

= Basic block

" |nstruction

library

Fall 2018 Stevens Institute of Technology

The address of every instruction is known

Fall 2018 Stevens Institute of Technology

Function-level Randomization

library library

Order of functions is
randomly selected at
compile time

T

Fall 2018 Stevens Institute of Technology

Basic Block-level Randomization

library function

Fall 2018 Stevens Institute of Technology

Basic Block-level Randomization

Fall 2018

function

Order of basic blocks is
randomly selected at
compile time

T

Glue code may be inserted

Stevens Institute of Technology

function

Instruction-level Randomization

Similar concept to function and BBL-level randomization

Instruction may be

= Moved within a block (e.g., by adding random number of
NOPs between them)

= Replaced with equivalent functionality
= Substituted to use different registers

Topics

Attackers shift towards client programs
Back to return-to-libc
Return-oriented programming

Fine-grained code randomization
JIT-ROP

Control-flow Integrity (CFl)
Attacks against CFl and more defenses

Fall 2018 Stevens Institute of Technology

JIT-ROP

Just-In-Time ROP chain generation

Can bypass fine-grained randomization
= When a memory leak can be repeatedly triggered
= Example: Leaks that can be triggered from JS

Main idea:
Dynamically leak memory and locate gadgets for ROP

Construct ROP chain and exploit control-flow hijacking
vulnerability

https://cs.unc.edu/~fabian/papers/oakland2013.pdf

Fall 2018 Stevens Institute of Technology

https://cs.unc.edu/~fabian/papers/oakland2013.pdf

Fall 2018 Stevens Institute of Technology

Fall 2018 Stevens Institute of Technology

Fall 2018 Stevens Institute of Technology

Just-in-time Disassembly

Fall 2018 Stevens Institute of Technology

Topics

Attackers shift towards client programs
Back to return-to-libc
Return-oriented programming

Fine-grained code randomization
JIT-ROP

Control-flow Integrity (CFl)
Attacks against CFl and more defenses

Fall 2018 Stevens Institute of Technology

Attacker Modus Operandi

Find memory corruption bug
= Manipulate to take over program counter

Find ASLR bypass

= Leak memory layout
= Spray memory
= Weakly or non-randomized sections/memory

Inject ROP payload

= Break WAX semantics

Inject code

Fall 2018 Stevens Institute of Technology

Attacker Modus Operandi

Find memory corruption bug
= Manipulate to take over program counter

Control-flow Integrity aims to restrict the
arbitrary manipulation of the program counter

Control Flow Manipulation

Function calls my_ function(argl, arg2)
void (*fptr)(argl_type, arg2_type) = &my_function;
fptr(argl, arg2);
Function returns return; return 100;
If statements if (cond) {
} else {
}
Loops for () { } while { } do { } while
Break/continue while (true) { while (cond) {
if (cond) if (cond2)
break; continue;
} }
Switch statement switch (cond) {
vall: .. break;
val2: .. break;
}
goto statement goto labell;
Fall 2018 Labell: hnology

Control-Flow Hijacking Prone
Statements

Statements where
the target statement

switch (cond) {
cannot be known a vall: - bresk:

F)ri()ri } val2: .. break;

return; return 100;

* |ndirect control-
flow transfers

. void (*fptr)(argl_type, arg2_type) = &my_function;
Indirect calls, returns, | fotr(argl, arg2);

and some switches

Calls to virtual Class C {

. . . virtual void vcall(void);
functions are indirect |,
calls

C obj = new C();

obj->vcall():

Fall 2018 Stevens Institute of Technology

Easily Observable in Machine

Code

C Code

return;

return 100;

switch (cond) {
vall: .. break;
val2: .. break;

—
—

void (*fptr)(argl_type, arg2_type) = &my_function;

fptr(argl, arg2);

Class C {
virtual void vcall(void);

}

C obj =

new C();

obj->vcall():

Fall 2018

Stevens Institute of Technology

Machine Code

ret

jmp *(%rax)

jmp *(%rax)

call *(%rax)

call *(%rax)

Function Call Graph (FCG)

call

call *

call ret

call

Fall 2018 Stevens Institute of Technology

FCG Enforcement

call

@unctiono

call

call

Fall 2018 Stevens Institute of Technology

Control-flow Graph (CFG)
Indirect flows only

call

call *

parent_function()
call ret

next_function():

I
jmp * — I

call

Fall 2018 Stevens Institute of Technology

CFl - CFG Enforcement

Fall 2018

call

next_function():

parent_function()

call

call *

]
Jmp*<

call

QL

Stevens Institute of Technology

Extracting the CFG

With source COde static void (*fptr)(char *string, int len);
= More reliable void set_callback(void *ptr)
= Still not perfect { fptr = ptr;
= How to handle }
= Dynamically loaded void process_items()
libraries? { for v
. or (string *s : items
Callbacks fptr(s->c_str, s->len);
Without source code , :
= Requires accurate
disassembly
= Cannot accurately define
all paths

= Shared libraries are
easier to handle

Fall 2018 Stevens Institute of Technology

Working with an Imperfect CFG

Lets assume that we know/can learn
*= The location of every function
= The location of every indirect branch instruction

Coarse-grained CFl can enforce the following

" |ndirect calls should only transfer control to functions
= Same for most jumps

= Returns should only transfer control to instructions following
a indirect call or jump

Fall 2018 Stevens Institute of Technology

Function_A:

Function_B:

Fall 2018 Stevens Institute of Technology

Function_A:

OK

Function_B:

Fall 2018 Stevens Institute of Technology

Function_A:

Function_B:

Function_C:
OK

Fall 2018 Stevens Institute of Technology

Function_A:

Function_B:

Fall 2018 Stevens Institute of Technology

