Modern Exploitation
and Defenses

CS-576 Systems Security

Instructor: Georgios Portokalidis
Fall 2018

Topics

Attackers shift towards client programs
Back to return-to-libc
Return-oriented programming

Fine-grained code randomization
JIT-ROP

Control-flow Integrity (CFl)
Attacks against CFl and more defenses

Fall 2018 Stevens Institute of Technology

Attacker Modus Operandi

Find memory corruption bug
= Manipulate to take over program counter

Find ASLR bypass

= Leak memory layout
= Spray memory
= Weakly or non-randomized sections/memory

Inject ROP payload

= Break WAX semantics

Inject code

Fall 2018 Stevens Institute of Technology

Attacker Modus Operandi

Find memory corruption bug
= Manipulate to take over program counter

Control-flow Integrity aims to restrict the
arbitrary manipulation of the program counter

Control-Flow Hijacking Prone
Statements

Statements where
the target statement

switch (cond) {
cannot be known a vall: - bresk:

F)ri()ri } val2: .. break;

return; return 100;

* |ndirect control-
flow transfers

. void (*fptr)(argl_type, arg2_type) = &my_function;
Indirect calls, returns, | fotr(argl, arg2);

and some switches

Calls to virtual Class C {

. . . virtual void vcall(void);
functions are indirect |,
calls

C obj = new C();

obj->vcall():

Fall 2018 Stevens Institute of Technology

Easily Observable in Machine

Code

C Code

return;

return 100;

switch (cond) {
vall: .. break;
val2: .. break;

—
—

void (*fptr)(argl_type, arg2_type) = &my_function;

fptr(argl, arg2);

Class C {
virtual void vcall(void);

}

C obj =

new C();

obj->vcall():

Fall 2018

Stevens Institute of Technology

Machine Code

ret

jmp *(%rax)

jmp *(%rax)

call *(%rax)

call *(%rax)

Non-fixed Pointer Arguments

Indirect branch instruction Pointer location
ret (%rsp)
jmp *%rax %rax

call *%rax

jmp *(%rax)
call *(%rax)

(%rax)

Fall 2018 Stevens Institute of Technology

Non-fixed Pointer Arguments

Indirect branch instruction Pointer location

(%rsp)

ret

CFl aims to restrict

jmp *%rax what these %rax
call *%rax instructions can
target

jmp *(%rax)

call *(%rax) (%rax)

Fall 2018 Stevens Institute of Technology

CFl 2 Enforce the Control-flow
Graph

A control flow graph (CFG) in computer science is a representation,
using graph notation, of all paths that might be traversed through a program

during its execution. --wikipedia
(a) (b)
(©) (d)
9

Fall 2018 Stevens Institute of Technology

Nodes are basic blocks (bbl)

Basic Blocks

In this case a bbl is a sequence of instructions with a
single entry and single exit

Execution can enter the bbl at the first instruction

Execution can leave the bbl at the last instruction

Note: asynchronous events (e.g., signal) can

temporarily transfer control flow elsewhere

Fall 2018 Stevens Institute of Technology

10

CFG Example

call

Fall 2018 Stevens Institute of Technology

ret

ret

CFG Example

call

Fall 2018 Stevens Institute of Technology

ret

ret

Extracting the CFG

With source code static void (*fptr)(char *string, int len);
= More reliable \{/oid set_callback(void *ptr)
= Cannot be fully } fptr = ptr;
reconstructed

void process_items()

= Resolving pointers is hard | ,

for (string *s : items) {
fptr(s->c_str, s->len);

}

Pointer aliasing. In computer programming, aliasing refers to
the situation where the same memory location can be accessed
using different names. For instance, if a function takes
two pointers A and B which have the same value, then the
name A[O] aliases the name B[0] .

Extracting the CFG

With source code
= More reliable

= Cannot be fully
reconstructed

= Resolving pointers is hard

Without source code

= Requires accurate
disassembly

= Cannot accurately define
all paths

= Shared libraries are
easier to handle

static void (*fptr)(char *string, int len);

void set_callback(void *ptr)

{
fptr = ptr;

}

void process_items()

{
for (string *s : items) {

fptr(s->c_str, s->len);

}

}

Fall 2018 Stevens Institute of Technology 14

Working with an Imperfect CFG

Lets assume that we know/can learn
*= The location of every function
= The location of every indirect branch instruction

Coarse-grained CFl can enforce the following
" |ndirect calls should only transfer control to functions
= Same for most jumps

= Returns should only transfer control to instructions following
a indirect call or jump

= More permissive than the actual (potentially unknown) CFG
but better than before

Fall 2018 Stevens Institute of Technology 15

What is Allowed

Indirect calls should only transfer control to functions

Function_A:

call *(%r

2

+_

%
ret

Fall 2018

O
Function_B:

ret

Stevens Institute of Technology 16

What is Allowed

Returns should only transfer control to instructions
following a indirect call or jump

Function_A:
call *(%rax)
g '\ Ok ret
oK Function_B:

' ret

Fall 2018 Stevens Institute of Technology

What is Not Allowed

Indirect calls/jumps cannot target
non function entry points

= But can target functions that could
be called through an indirect call

call *(%rax) — OK

NOT
OK

Fall 2018 Stevens Institute of Technology

Function_A:

ret

Function_B:

ret

Function_C:

pop %rax
ret

18

What is Not Allowed

Returns cannot target bytes not following a call/jump
= But can target valid bytes in functions that may have not

called them
Function_A:
call *(%rax)
g ret
Function_B:

VW

call *(%raxL OK

/ret
pop %rax NOT

ret OK

(VAVAVE-

Enforcing Through Embedded IDs

ID codes are embedded into the binary program to
identify acceptable targets

= 2-ID policy

Function_A:

=

ret

=

call *(%rax)

Function_B:

ret

Fall 2018 Stevens Institute of Technology

Enforcing Through Embedded IDs

Checks are introduced right before the control transfer

This is not an
instruction

Fall 2018

=

check [ID_1]

call *(%rax)

Function_A: This is not an
instruction

check [ID_2]
ret
— instruction

check [ID_2]
ret

Stevens Institute of Technology 21

Modifications for CFl Enforcement

Fall 2018

=

check [ID_1]

call *(%rax)

1B
E

Stevens

:

Function_A:F

/

check [ID_. 2]

Functio B

=

check [ID_2]
ret

Institute of Technology

22

Modifications for CFl Enforcement

Function_A:

=

check [ID_1]
call *(%rax)

—r This instruction Functio ;B:

does not have
§ an adverse

effects §
check [ID_2]
ret

check [ID_2]
ret

)

3E OF 18

Fall 2018 Stevens Institute of Technology 23

Control-flow integrity

Martin Abadi University of California, Santa Cruz and Microsoft Research,
Santa Cruz, CA

Mihai Budiu Microsoft Research

Ulfar Erlingsson Reykjavik University and Microsoft Research

Jay Ligatti University of South Florida, Tampa, FL

ACM Transactions on Information and System Security (TISSEC)

http://dl.acm.org/citation.cfm?id=1609960

Limitations:

e Code integrity must be ensured (no code injection)

* Incremental deployment is not supported (all or nothing)
* Only 2 IDs are supported for enforcing CFl

http://dl.acm.org/citation.cfm?id=1609960

Fall 2018

Practical Control Flow Integrity and Randomization for
Binary Executables

Chao Zhang

Tao Wei

Zhaofeng Chen

Lei Duan

Laszlo Szekeres
Stephen McCamant
Dawn Song

Wei Zou

Proceedings of the 2013 IEEE Symposium on Security and Privacy

http://dl.acm.org/citation.cfm?id=2498134

Stevens Institute of Technology

25

http://dl.acm.org/citation.cfm?id=2498134

CCFIR

Three IDs are used to restrict control flow

Function_A:

Sensitive_Function_A

Fall 2018 Stevens Institute of Technology

26

CCFIR

Three IDs are used to restrict control flow

§ Function A:
check [ID_1] —

call *(%rax) § H
§ (r:'g?:Ck [ID_2]

Sensitive_Function_A

Memory allocation

2] | § routines, changing

permissions, launching o3 |

processes, etc.

[ID_2|ID_3]

Fall 2018 Stevens Institute of Technology 27

CCFIR

Three IDs are used to restrict control flow

Function_A:

> 0. |

Fall 2018 Stevens Institute of Technology 28

Sensitive_Function_A

CCFIR

Three IDs are used to restrict control flow

§ Function A:
check [ID_1] —

call *(%rax) —> §

Prevents code-

Sensitive_Function_A

call Ox.... §
i g call Ox...

- reuse of sensitive
F'é‘?tc" [0_2] functions

check [ID_2 | ID_3]
ret

Fall 2018 Stevens Institute of Technology

29

Sensitive Functions Heuristic

Function_A:
check [ID_2] Sensitive_Function_A
ret § /
call Ox... Sensitive_Function_B

Prevents code- § / §
reuse of sensitive call Ox... check [ID_2 | 1D_3]

ret
«—

function parts

£

check [ID_2 | ID_3]
ret

Fall 2018 Stevens Institute of Technology 30

Each indirect
call is
redirected

through a
trampoline
using a direct
jump

Fall 2018

Direct control transfer

Indirect control transfer

e =

mov ecx,foo |— = < foo0:
|
|
|
|
call ecx -
back: <-|
Original L—== ret
Hardened 5y ecx, foo_sb foo: g
jmp back_sb-2
back:
r=— = ret
|
|
: r P foo_sb:
| [jmp foo
|
call ecx -—t-
back_sb: |
jmp back - ¢

M_F = 0x8000007

M_R = 0x800000f
or

M_R = 0xCO00000f

Stevens Institute of Technology

Targeted
functions are
called

indirectly
through
another
trampoline

31

mov ecx, foo

call ecx
back:

Original

foo:

ret

Hardened[5y ecx, foo_sb
test ecx,8

jz error

test ecx,M_F
jnz error

jmp back_sb-2
back:

'

foo: g

ret

call ecx

- en an an o o

- e o

back_sb:
jmp back

<.l

Direct control transfer

>

Indirect control transfer

e =

P foo _sb:

jmp foo

M_F = 0x8000007

M_R = 0x800000f
or

M_R = 0xCO00000f

Fall 2018 Stevens Institute of Technology

Function stubs are
carefully to

aligned to easily
perform checks

32

0x6800 0000-0x6fff ffff (27bit is 1)

pLL1 DLL 2
free code free code

DLL 1 DLL 2
springboard springboard

128MB

Function stub address
AND
M _F = 0x8000007

EXE
free code

128MB

EXE
springboard

Fall 2018 Stevens Institute of Technology

Ox6800 0000-0x6fff ffff (27bit is 1)

pLL1 DLL 2
free code free code

128MB

128M8B

segments

i DLL 1 DLL 2 o
Function st address T springboard | springboard %
—
M F = 0x8000007 0x6000 0000-0x67ff ffff (27bit is O)
aligned 0x3800 0000-0x3fff ffff (27bit is 1)
slots EXE 2
...... o0
free code S

EXE
springboard

0x3000 0000-0x37ff ffff (27bit is O)

128MB

Fall 2018 Stevens Institute of Technology

mov ecx,foo - = < foO:

call ecx —
back: <—l
Original == ret
rdened 5y ecx, foo_sb foo: g

test ecx,8

jz error

test ecx,M_F
jnz error

jmp back_sb-2

back:
—
F—= ret
|
|
: r P foo_sb:
| | jmp foo
call ecx — - —l
back_sb: |
jmp back -] 4
Direct control transfer M_F = 0x8000007
' M_R = 0x800000f
Indirect control transfer or
—_——— M_R = 0xC00000f

Fall 2018 Stevens Institute of Technology

mov ecx,foo - = < foO:

call ecx =
back: <—l
Original == ret

Hardened[5y ecx, foo_sb foo: g
test ecx,8
jz error
test ecx,M_F

jnz error
jmp back_sb-2

back: test [esp],M_R
> s jnz error
r—=— ret
|
|
: r P foo_sb:
j f
Return stubs are | : jmp foo
call ecx —— -

also aligned Back sb: |
jmp back - ¢

M_F = 0x8000007
) M_R = 0x800000f

Indirect control transfer or
—_——— M_R = 0xC00000f

Direct control transfer

Fall 2018 Stevens Institute of Technology

Original

mov ecx, foo

call ecx
back:

foo:

Hardened

'

mov ecx,foo_sb
test ecx,8

jz error

test ecx,M_F
jnz error

jmp back_sb-2
back:

Return stubs are

also aligned

call ecx

- en an an o o
- -y

back_sb:
jmp back

<.l

Return stub addre
AND
M R = Ox800000f

Direct control transfer

>

Indirect control transfer

e =

Fall 2018

M_F = 0x8000007
M_R = 0x800000f

or

M_R = 0xCO00000f

Stevens Institute of Technology

Direct calls to

functions also go

through

trampolines but
no checks
required

Fall 2018

foo:
call foo
back:
e -l -
Original L= = ret
Hardened foo:
>
jmp back_sb-5
back: test [esp]l,M_R
.. jnz error
f=_ret
|
|
|
|
|
call foo |
back_sb: |
jmp back - —

Direct control transfer

>

Indirect control transfer

I

M_F = 0x8000007

M_R = 0x800000f
or

M_R = 0xC00000f

Stevens Institute of Technology

38

Sensitive functions

address
AND
M R = OxCO000Of

16-byte

aligned

foo:

ret

slots

call foo

back_sb:
jmp back

Direct control transfer

Indirect control transfer

I

foo:

test [esp]l,M_R
jnz error
ret

Return stubs in
sensitive functions
require additional

alignment

M_F = 0x8000007

M_R = 0x800000f
or

M_R = 0xC00000f

Fall 2018 Stevens Institute of Technology

Microsoft’s Control-Flow Guard

Included in MS Visual Studio

Inserts control-flow checks before indirect calls during

compilation
A bitmap marks the allowed targets

Exe:

check bitmap[%rax]
call *(%rax)

. DII:
bitmap:

1 bit per 8 or 16-byte slot

Fall 2018 Stevens Institute of Technology

Compiled
with
CFG

40

Microsoft’s Control-Flow Guard

Included in MS Visual Studio

Inserts control-flow checks before indirect calls during
compilation

Exe:
A bitmap marks the allowed targets
check bitmap[%rax]
call *(%rax) Complled
DIl with
bitmap: CFG
. DI| Non-CFG
1 bit per 8 or 16-byte slot V library

Fall 2018 Stevens Institute of Technology 41

Topics

Attackers shift towards client programs
Back to return-to-libc

Return-oriented programming

Fine-grained code randomization
JIT-ROP

Control-flow Integrity (CFl)
Attacks against CFl and more defenses

Fall 2018 Stevens Institute of Technology

42

Reachable Targets Under CFI

Most instructions cannot be
targeted (> 98%)

Targetable locations
in code pages:

Without
CFlI

With
CFl

Fall 2018 Stevens Institute of Technology

43

What is Left

Call Sites (CS)

= Targetable by return instructions call ...
= (S gadgets §
= Return Oriented Programming (ROP) ret

Function Entry Points (EP)
= Targetable by indirect call and indirect jump instructions
"= EP gadgets Function_X:
= Call Oriented Programming (COP)

call *(rax)

Fall 2018 Stevens Institute of Technology 44

CS gadgets: Linking

\ call ...

:

ret

\ call ...
=

Fall 2018 Stevens Institute of Technology

call

ret

'

45

CS gadgets: Linking

gadget
address

Fall 2018 Stevens Institute of Technology

gadget
address

gadget
address

46

CS gadgets: Linking

Fall 2018 Stevens Institute of Technology a7

CS gadgets: Calling Functions

Function X:
\ call ...

:

ret

. call ...
.°
ret \

Fall 2018 Stevens Institute of Technology 48

CS gadgets: Calling Sensitive

Functions

CCFIR: No indirect
calls to sensitive APIs VirtualProtect:

\ call ...

ret

Fall 2018

@,
T
call ..
>

ret

Stevens Institute of Technology 49

CS gadgets: Calling Sensitive
Functions

VirtualProtect:

\ call ...

:

ret

Fall 2018 Stevens Institute of Technology

ret \

EP gadgets: Linking

Chaining is significantly harder

Function_X:

/ m Function_Y:
/ Function_Z:
call *(%rax) m

call *(%rax) / §

call *(%rax)

Fall 2018 Stevens Institute of Technology

EP gadgets: Calling Functions

memset:

Function_X:
—§ -
call *(%rax) /

Function_Q:

Function_Z:

2” *(%rax) /

Fall 2018 Stevens Institute of Technology 52

EP gadgets: Calling Functions

memset:

Function_L:

/ Fu§nctionx:

call *(%rax)

\ Function_Z:
§
call *(%rax) /

Function_Q:

Fall 2018 Stevens Institute of Technology 53

Switch Control: CS =2 EP

/

Fall 2018

call

ret

_

i cs
/%

Stevens Institute of Technology

Function_X:

> EB

call *(%rax)

54

Switch Control: EP 2> CS

Function_Y:
Function_X: . @

d

Fall 2018 Stevens Institute of Technology

55

Switch Control: EP 2> CS

Function_Y:
Function_X: . @

call *(%rax)

call ...

:

ret

Corrupt stack by
* breaking calling conventions
» Self-corrupting function (e.g., memcpy())

Fall 2018 Stevens Institute of Technology 56

Compromising Coarse-grained CFl
is Possible

https://www.cs.stevens.edu/~gportoka/files/outofcontrol
oakland14.pdf

Exploiting Internet Explorer 8
= Vulnerability: Heap Overflow (CVE-2012-1876)

= More info about vulnerability @
http://www.vupen.com/blog

Assume ASLR / DEP / CCFIR in place
First controlled indirect branch instruction: jmp edx
(EP = CS) + VirtualProtect + memcpy = Code Injection

Fall 2018 Stevens Institute of Technology 57

https://www.cs.stevens.edu/~gportoka/files/outofcontrol_oakland14.pdf

Finer-Grained CFI

Various approaches to improve CFl
= More accurate CFG and more checks

= Only allow calls to target the functions they actually were
intended to
= Better forward-edge CFI

Context-sensitive control flow enforcement

= For example, a function should return to its caller not any
caller

Fall 2018 Stevens Institute of Technology

58

Shadow Stacks

Regu|ar return
stack address

saved rbp

local
variables

return
address

saved rbp

local
variables

Fall 2018

return Shadow
address stack

return

address

Stevens Institute of Technology

call f|—

f:
ssp -= 8
*ssp = *sp

*Ssp == *rsp
if NZ then error
ret

59

Shadow Stacks

Regular
stack

Fall 2018

return
address

saved rbp

local
variables

return
address

saved rbp

local
variables

Fixed
offset

return Shadow
address stack
f:
return *(sp+off) = *sp
address .

*(sp+off) == *sp
if NZ then error
ret

Stevens Institute of Technology

60

Shadow vs (Un)safe Stacks

stack

local
variables

local
variables

Fall 2018

return Safe
address stack
return
address

Stevens Institute of Technology

61

Shadow Stack Limitations

Performance is the main obstacle for adoption
= The Performance Cost of Shadow Stacks and Stack Canaries

= https://people.eecs.berkeley.edu/~daw/papers/shadow-
asiaccs15.pdf

Intel announced that hardware support for shadow stacks
and CFl (called control-flow enforcement) will be made
available on their future CPUs

= http://www.theregister.co.uk/2016/06/10/intel control flo
w enforcement/

Fall 2018 Stevens Institute of Technology 62

https://people.eecs.berkeley.edu/~daw/papers/shadow-asiaccs15.pdf
http://www.theregister.co.uk/2016/06/10/intel_control_flow_enforcement/

Heuristics-based Approaches

kBouncer: Efficient and Transparent ROP Mitigation
= Vassilis Pappas et al. [Usenix Security ‘13]
= Winner of Microsoft’s Blue hat prize

Use HW debugging feature to detect abnormal control-
flow transfers

= Low overhead!

Last Branch Record (LBR)

CPU registers store last
branches taken by the

progra m Branch

Branch

= Ring-buffer structure

Holds last 16 entries
= Store source:destination

Branch

Configurable

Branch
= Example: Store only
indirect calls

Fall 2018 Stevens Institute of Technology 64

Detection Approach

1. Returns must target call sites

caII / call ...
ret ret

2. Alimited number of small code fragments can be
chained together

Max
gadget
size

pop rcx
pop rax
ret

/

Fall 2018

add rax, rcx
ret

/

pop rsi
pop rdi
ret

add rax, rsi
add rax, rdi
pop recx
ret

Max chain length

Stevens Institute of Technology

65

Fast Checks

The payload will eventually interact with the OS through
system calls

= Check for abnormal control transfers on system call entry

LBR check
kernel

>
time system call

Fall 2018 Stevens Institute of Technology

Detection Approach

1. Returns must target call sites

2. Alimite
chained

Max
gadget
size

| Max chain length

Fall 2018 Stevens Institute of Technology 67

Establishing The Parameters

Set max gadget size to 19 (<20)
Evaluate max chain length experimentally

100
— Protected API calls
All function calls

» detection
threshold

o

Y

0.01

103

LBR stack instances (%)

1074

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gadget chain length

Dataset: Internet Explorer, Adobe Reader, Flash Player, Microsoft Office (Word, Excel, Powerpoint)

Chosen Parameters

kBouncer

Approach similar to
kBouncer

ROPecker

Time-of-Check

Entry of Sensitive API

Entry of Sensitive APl +
during execution

Gadget Length

20 instructions

6 instructions

Inspect BH
instances

Detected max "benign"
gadget chain length: 5

Detected max "benign"
gadget chain length: 10

Gadget Chain
Length

8 gadgets

11 gadgets

Fall 2018

Stevens Institute of Technology

69

Why Picking Parameters Is Hard

Executing a legitimate program

%WWWWU

Max chain length

(o]

®
@

No alert,
all is good!

Fall 2018 Stevens Institute of Technology

Security
Check

70

Why Picking Parameters Is Hard

Executing a legitimate program

I0/W/ WI/I/I

Max chain length

Security
Check

Fall 2018 Stevens Institute of Technology 71

Why Picking Parameters Is Hard

l Executing a legitimate program

l/l/ l/l/l/l

Max chain length

Security
Check

Fall 2018 Stevens Institute of Technology 72

How to Avoid Detection>

Interpose longer gadgets in the exploit

I/l/ WI/I/I

Max chain length

(o]

®
@

No alert,
all is good!

Fall 2018 Stevens Institute of Technology

Security
Check

73

Using Long Gadgets

Long gadgets frequently:

= Use a high number of
registers

= Leave used registers dirty
at exit

= Require memory
preparations to avoid

crashing

= Have whacky code
seguences

Fall 2018 Stevens Institute of Technology

74

Such Defenses Are Also
Vulnerable

http://www.cs.stevens.edu/~gportoka/files/sizematters

usenixsecl4.pdf

Exploiting Internet Explorer 8 similar to CFl attack

Assumes kBouncer is in place
= Also applies to similar defenses like ROPecker [NDSS ‘13]

Multiple payloads
= kBouncer thresholds: Tc=6, T=20
= Stricter thresholds: Tc=2, T=27

Fall 2018 Stevens Institute of Technology

75

http://www.cs.stevens.edu/~gportoka/files/sizematters_usenixsec14.pdf

Per Application Thresholds

100000 T T 1 1
I Acrobat —+—
IE (Google) -~
K IE (YouTube) - "o
10000 - "-_‘ (Exce)l B
Word
? PowerPoint - --
8 1000 % WMPlayer - -
E %
()]
2 _
4 100 i
©
0 L
£ 10 |
Z .
1F
0-1 1 1 1 1
0 1 2 3 4

Gadget-chain length

Fall 2018 Stevens Institute of Technology

76

What if We Had the Perfect CFG

We know exactly which functions are called from an
indirect call

We know exactly the call sites where a function’s return is
supposed to return

But we still do not have a shadow stack

Control Flow Bending

https://www.usenix.org/sites/default/files/conference/pr
otected-files/secl15 slides carlini.pdf

Fall 2018 Stevens Institute of Technology 77

https://www.usenix.org/sites/default/files/conference/protected-files/sec15_slides_carlini.pdf

How to Exploit the memcpy()
Hotspot

Assume memcpy
is not buggy

memQ/

some_function:

memcpy(dst,src,N)
retaddr

Local
data

memcpy frame

Fall 2018 Stevens Institute of Technology

82

How to Exploit the memcpy()
Hotspot

memcpy(dst, src, N)

Fall 2018

‘ Attacker data \

Stevens Institute of Technology

retaddr

Local
data

83

dwedj Addowaw

Dispatcher Function

memcpy() acts as a dispatcher function
= Can be used to return to gadgets part of the CFG

Other hot functions can act as dispatcher functions, as
long as:

= They are commonly called

= Their arguments are under attacker control

= Can overwrite their own return address

Fall 2018 Stevens Institute of Technology

84

Summary

CFl is a powerful security primitive

Depends on the quality/accuracy of the CFG

Even in the ideal case, it might fall to code-reuse attacks

= Depends on the application
= Complexity of the CFG
= Availability of gadgets

Fall 2018 Stevens Institute of Technology

85

