
Early Defenses
and

More Attacks
CS-576 Systems Security

Instructor: Georgios Portokalidis
Spring 2018

Spring 2018 Stevens Institute of Technology

Topics
Recap: Control-flow hijacking and code injection attacks
Non executable stack (and heap)
Early code-reuse attacks/return-to-libc
ASCII armored space
Stackguard & Stackshield
Heap protections
ASLR
Bypassing ASLR

Spring 2018 Stevens Institute of Technology

Recap: Control-flow Hijacking
Attacks
Attacks that take over control flow…
…by leveraging bugs like…

§ Stack and heap overflows
§ Format string
§ Use-after-free
§ Type confusion
§ Integer overflows

…to corrupt a pointer in memory
§ Function pointers on the heap or stack
§ Return addresses on the stack
§ Virtual table pointers

Spring 2018 Stevens Institute of Technology

RIP

Malicious code (shellcode) is injected into
attacker controlled, executable memory

The controlled instruction pointer is
directed to injected code

Spring 2018 Stevens Institute of Technology

Recap: Code Injection
S T A C Kbuf + 0x14

AAAA

AAAA

AAAA

AAAA

\0???

SH
EL

LC
O

DE

Non-Executable Stack
(and data segments)

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

Virtual Memory
Virtual memory Physical memory

The Memory Management Unit

Used in all modern servers, laptops, and smart phones

One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

Page Permissions

r
r

rw
rw
rw

r
r

rw

Virtual memory Physical memory

For many years the read
permission implied execute

as well

Heap

Libraries

Stack

Non-executable Memory (PaX)
PaX stands for PageEXec

Introduced in 2000

A Linux kernel patch protection emulating Non-
Executable memory

PaX refused code execution on writable pages

Spring 2018 Stevens Institute of Technology

Each page is associated
with a supervisor bit

§ Access only allowed from
the kernel

PaX set that bit and kept
track of PaX-protected
pages
Page-fault handler
intercepted to check for
PaX-protected pages

Spring 2018 Stevens Institute of Technology

Emulating Non-Executable
Memory

r
r

rwS
rwS
rwS

r
r

rwS

Virtual memory

Heap

Libraries

Stack

Each page is associated
with a supervisor bit

§ Access only allowed from
the kernel

PaX set that bit and kept
track of PaX-protected
pages
Page-fault handler
intercepted to check for
PaX-protected pages

Spring 2018 Stevens Institute of Technology

Emulating Non-Executable
Memory

r
r

rwS
rwS
rwS

r
r

rwS

Virtual memory

Heap

Libraries

Stack

Read
OK

Write
OK

Execute
Crash

NX-bit
Processor manufacturers introduced a new bit in page
permissions to prevents code injections
Coined No-eXecute or Execute Never
The NX-bit (No-eXecute) was introduced first by AMD to
resolve such issues in 2001

§ Asserting NX, makes a readable page non-executable
§ Frequently referred to as Data Execution Prevention (DEP) on

Windows

Marketed as antivirus technology

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

Adoption

A non-executable stack was not immediately adopted

The OS occasionally needed to place code in the stack
§ For example, trampoline code for handling UNIX signals

Spring 2018 Stevens Institute of Technology

W^X Policy
Data-execution prevention lead to a more generic
security policy

The Write XOR Execute (W^X) policy mandates that in a
program there are no memory pages that are both
writable and executable

Spring 2018 Stevens Institute of Technology

Malicious code (shellcode) is injected into
attacker controlled, executable memory

The controlled instruction pointer is
directed to injected code

Spring 2018 Stevens Institute of Technology

No More Code Injection
S T A C Kbuf + 0x14

AAAA

AAAA

AAAA

AAAA

\0???

SH
EL

LC
O

DE

Unless You Are a Browser…
Very popular software

§ Probably installed on every client device

Large and complex software

Execute JavaScript

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

How Does JavaScript Run

ParserSource
code AST Bytecode

generator Bytecode Interpreter

Execution

Spring 2018 Stevens Institute of Technology

JS Engines Family Tree

http://creativejs.com/2013/06/the-race-for-speed-part-1-the-javascript-engine-family-tree/index.html

Spring 2018 Stevens Institute of Technology

How Does JavaScript Run

ParserSource
code AST Bytecode

generator Bytecode

Interpreter

Execution

JIT compiler

Native
code

Code
Cache

JITed code

Execution

Spring 2018 Stevens Institute of Technology

How Does JavaScript Run

ParserSource
code AST JIT compiler

Code
Cache

Execution

• Google V8 designed specifically to execute at speed.
• Bytecode generation skipped
• Directly emit native code
• Overall JavaScript execution improved by 150%

Native
code

JITed code and code cache
have interesting properties
from the perspective of the
attacker

§ Code is continuously
generated

§ Code needs to be
executable

Violates the W^X policy

Spring 2018 Stevens Institute of Technology

Code Cache

Code
Cache

JITed code

Execution

JITed code and code cache
have interesting properties
from the perspective of the
attacker

§ Code is continuously
generated

§ Code needs to be
executable

Violates the W^X policy

Spring 2018 Stevens Institute of Technology

Code Cache

Code
Cache

JITed code

Execution

How can an
attacker place

shellcode in the
code cache?

From JS to Code Cache
JS code is JITed and placed in the code cache
Some JS engines do not separate data and code

Spring 2018 Stevens Institute of Technology

<html>
<body>
<script language='javascript'>

var myvar = unescape('%u\4F43%u\4552'); // CORE
myvar += unescape('%u\414C%u\214E'); // LAN!
alert("allocation done");

</script>
</body>
</html>

Bypassing PaX and NX

Spring 2018 Stevens Institute of Technology

Return-to Attacks
What can I do if I control the return address when I
cannot inject code?

Spring 2018 Stevens Institute of Technology

Return-to Attacks
What can I do if I control the return address when I
cannot inject code?
Return to an existing function (e.g., a libc function)

Spring 2018 Stevens Institute of Technology

Process

.text

Application
code

libc

C library
(defines system call wrappers,
memory management routines,
and other basic facilities)

other
lib

other
lib

Spring 2018 Stevens Institute of Technology

$ ldd /bin/ls
linux-vdso.so.1 (0x00007ffc83b62000)
libselinux.so.1 => /lib/x86_64-linux-gnu/libselinux.so.1 (0x00007f9edfdf1000)
libacl.so.1 => /lib/x86_64-linux-gnu/libacl.so.1 (0x00007f9edfbe8000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f9edf83d000)
libpcre.so.3 => /lib/x86_64-linux-gnu/libpcre.so.3 (0x00007f9edf5cf000)
libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f9edf3cb000)
/lib64/ld-linux-x86-64.so.2 (0x00007f9ee0016000)
libattr.so.1 => /lib/x86_64-linux-gnu/libattr.so.1 (0x00007f9edf1c6000)
libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f9edefa9000)

Return-to-libc (ret2libc) on 32-bits
Replace return address with the
address of an existing function

Example: system() executes an a
program in a new process

Spring 2018 Stevens Institute of Technology

S T A C K

&system

AAAA
AAAA
AAAA
AAAA

Libraries

system()

Shell Using ret2libc
Locate system libc call

§ int system(const char *command);

Set return address to the address of system()

Prepare one argument for system()

Spring 2018 Stevens Institute of Technology

$ readelf -s /lib/i386-linux-gnu/libc-2.19.so |grep system
1442: 0003de80 56 FUNC WEAK DEFAULT 12 system@@GLIBC_2.0

Spring 2018 Stevens Institute of Technology

080483fb <main>:
80483fb: 8d 4c 24 04 lea 0x4(%esp),%ecx
80483ff: 83 e4 f0 and $0xfffffff0,%esp
8048402: ff 71 fc pushl -0x4(%ecx)
8048405: 55 push %ebp
8048406: 89 e5 mov %esp,%ebp
8048408: 51 push %ecx
8048409: 83 ec 04 sub $0x4,%esp
804840c: 83 ec 0c sub $0xc,%esp
804840f: 68 c0 84 04 08 push $0x80484c0
8048414: e8 b7 fe ff ff call 80482d0 <system@plt>
...

int main(void)
{

system("/bin/shell");
return 0;

}

Spring 2018 Stevens Institute of Technology

Preparing the Stack

Stack

804840f: 68 c0 84 04 08 push $0x80484c0
8048414: e8 b7 fe ff ff call 80482d0 <system@plt>

ESP

EIP

Spring 2018 Stevens Institute of Technology

Preparing the Stack

Stack *cmd

804840f: 68 c0 84 04 08 push $0x80484c0
8048414: e8 b7 fe ff ff call 80482d0 <system@plt>

ESP

EIP

Spring 2018 Stevens Institute of Technology

Preparing the Stack

Stack *cmd

804840f: 68 c0 84 04 08 push $0x80484c0
8048414: e8 b7 fe ff ff call 80482d0 <system@plt>

ESP

EIP 0003de80 <__libc_system>:
3de80: 53 push %ebx

ret

Spring 2018 Stevens Institute of Technology

Preparing the Stack

Stack *cmd

804840f: 68 c0 84 04 08 push $0x80484c0
8048414: e8 b7 fe ff ff call 80482d0 <system@plt>

ESP

EIP 0003de80 <__libc_system>:
3de80: 53 push %ebx

ret

The stack needs to look like this
when system() is entered

Preparing the Stack
Add a fake return address and a
pointer to the command we want
to execute on the stack

Spring 2018 Stevens Institute of Technology

S T A C K

&system

AAAA
AAAA
/sh\0
/bin

Libraries

system()

Fake return
address

*cmd

Return-to-libc on 64-bits
Arguments are passed using registers

§ First 6 integer or pointer arguments are passed in registers
RDI, RSI, RDX, RCX, R8, and R9

RBP, RBX, and R12–R15 are callee saved

RAX used for function return

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

0000000000400506 <main>:
400506: 55 push %rbp
400507: 48 89 e5 mov %rsp,%rbp
40050a: bf a4 05 40 00 mov $0x4005a4,%edi
40050f: e8 cc fe ff ff callq 4003e0 <system@plt>

...

int main(void)
{

system("/bin/shell");
return 0;

}
How to load an argument to

a register (e.g., rdi)?

Code-reuse Attacks
Any code that already exists in the process can be
executed

For example, the following sequence
0x0000000000405255 : pop rdi ; ret

Such short instructions sequences are referred to as
gadgets

Spring 2018 Stevens Institute of Technology

Redirect control to gadget

Spring 2018 Stevens Institute of Technology

Return-to-libc on 64-bit

Stack

RSP

g1

g1 : pop rdi
g1+1 : ret

Redirect control to gadget
Load argument on register

Spring 2018 Stevens Institute of Technology

Return-to-libc on 64-bit

Stack

RSP

g1

g1 : pop rdi
g1+1 : ret

RIP

*cmd

Redirect control to gadget
Load argument on register
Redirect control to libc
function

Spring 2018 Stevens Institute of Technology

Return-to-libc on 64-bit

Stack

RSP

g1

g1 : pop rdi
g1+1 : retRIP

*cmd

f1 <__libc_system>:
f1 : push rbp

f1

Redirect control to gadget
Load argument on register
Redirect control to libc
function

Spring 2018 Stevens Institute of Technology

Return-to-libc on 64-bit

Stack

RSP

g1

g1 : pop rdi
g1+1 : ret

RIP

*cmd

f1 <__libc_system>:
f1 : push rbp

f1

Redirect control to gadget
Load argument on register
Redirect control to libc
function
Get shell!!

Spring 2018 Stevens Institute of Technology

Return-to-libc on 64-bit

Stack

RSP

g1

g1 : pop rdi
g1+1 : ret

*cmd

f1 <__libc_system>:
f1 : push rbp

f1

RIP

ASCII Armored Address Space

Spring 2018 Stevens Institute of Technology

Shellcode Limitations

S T A
 C Kbuf + 0x14

AAAA

AAAA

AAAA

AAAA

\0???

SH
EL

LC
O

D
E

Injected shellcode cannot include a
null byte because of strcpy()

Shellcode needs to be carefully crafted to avoid
disallowed bytes

Spring 2018 Stevens Institute of Technology

The injected return address cannot contain a zero byte!

Spring 2018 Stevens Institute of Technology

ASCII Armored Address Space

Stack arg1

ESP

fake
ret arg2

ret
(libc
func)

Stack

RSP

g1 *cmd f1

Spring 2018 Stevens Institute of Technology

ASCII Armored Address Space

Stack arg1

ESP

fake
ret arg2

ret
(libc
func)

Stack

RSP

g1 *cmd f1

Attacker needs to
inject an address
and then some

ASCII Armored Address Space
strcpy() stops copying on the first null byte!

Spring 2018 Stevens Institute of Technology

Process
.text libc other

lib
other

lib

Load libraries in addresses where the first
byte is 0x00 (0x00xxxxxx)

Spring 2018 Stevens Institute of Technology

ASCII Armored Address Space

Stack arg1

ESP

fake
ret arg2

ret
(libc
func)

Stack

RSP

g1 *cmd f1

Cannot overwrite enough
bytes

Problems
Other methods of copying data may not have the same
limitation: memcpy(), gets(), read(), fread(), custom copy
routines, etc.

Spring 2018 Stevens Institute of Technology

Stackguard & Stackshield

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

Detecting Corrupted Return
Addresses

S T A C K

&system

AAAA
AAAA
/sh\0
/bin

Libraries

system()

Fake return
address

*cmdAttacks can reuse existing
code

How about preventing the
use of corrupted data to
influence RIP?

StackGuard
Insert special values, called canaries,
between local variables and function
return address

Canary values are inserted on function
entry

Canaries are verified before a function
returns

§ Program stops if the canary has changed

Spring 2018 Stevens Institute of Technology

retaddr

canary
local var

ST
AC

K
ST

AC
K

local var

Stack Overflow With Canary

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top

RETADDR

buf
buf
buf
buf

./mytest AAAAA

Spring 2018 Stevens Institute of Technology

canary

Stack Overflow with Canary

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

Low address/stack top

AAAA

AAAA
AAAA
AAAA
AAAA

./mytest AAAAAAAAAAAAAAAAAAAAAAA

\0???
High
address/stack
bottom

Spring 2018 Stevens Institute of Technology

AAAA

Canary Types
Random canary: (used in Visual Studio, gcc, etc.)

§ Choose random string at program startup
§ Insert canary string into every stack frame
§ Verify canary before returning from function
§ To corrupt random canary, attacker must learn current

random string

Terminator canary:
Canary = 0 (null), newline, linefeed, EOF

§ String functions will not copy beyond terminator
§ Hence, attacker cannot use string functions to corrupt stack.

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

From GCC’s documentation

-fstack-protector
Emit extra code to check for buffer overflows, such as stack smashing
attacks. This is done by adding a guard variable to functions with
vulnerable objects. This includes functions that call alloca, and
functions with buffers larger than 8 bytes. The guards are initialized
when a function is entered and then checked when the function
exits. If a guard check fails, an error message is printed and the
program exits

Can be disabled with -fno-stack-protector flag

Spring 2018 Stevens Institute of Technology

Example: C code

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("len: %ld\n", strlen(buf));
return strlen(buf);

}

Spring 2018 Stevens Institute of Technology

Example: Compiled Code

0000000000400606 <mytest>:
400606: 55 push %rbp
400607: 48 89 e5 mov %rsp,%rbp
40060a: 48 83 ec 30 sub $0x30,%rsp
40060e: 48 89 7d d8 mov %rdi,-0x28(%rbp)
400612: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
400619: 00 00
40061b: 48 89 45 f8 mov %rax,-0x8(%rbp)
...
40065e: 48 8b 4d f8 mov -0x8(%rbp),%rcx
400662: 64 48 33 0c 25 28 00 xor %fs:0x28,%rcx
400669: 00 00
40066b: 74 05 je 400672 <mytest+0x6c>
40066d: e8 5e fe ff ff callq 4004d0 <__stack_chk_fail@plt>
400672: c9 leaveq
400673: c3 retq

Store canary

Verify canary

The order of local variables
may be important

Spring 2018 Stevens Institute of Technology

Alignment of Stack Buffers and
Canaries

retaddr

canary

buffer

ST
AC

K
ST

AC
K

local var
local var

saved ebp

The order of local variables
may be important

Buffer overflows could
allow important local
variables to be controlled

Spring 2018 Stevens Institute of Technology

Alignment of Stack Buffers and
Canaries

retaddr

canary

buffer

ST
AC

K
ST

AC
K

local var
local var

saved ebp

Place canary between
buffer and saved
ebp/return address

The compiler may not
always be able to align stack
variables “ideally”

Spring 2018 Stevens Institute of Technology

Alignment of Stack Buffers and
Canaries

retaddr

canary

buffer

ST
AC

K
ST

AC
K

local var
local var

saved ebp

StackShield
Address obfuscation instead of
canary
Encrypt return address on stack
by XORing with random string
Decrypt just before returning
from function
Attacker needs decryption key
to set return address to desired
value.

S T A C K

High address/stack bottom

Low address/stack top

RETADDR

buf

buf

buf

buf

key

Spring 2018 Stevens Institute of Technology

Example: StackShield

S T A C K

High address/stack bottom

Low address/stack top

RETADDR

buf

buf

buf

buf

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

!@#^% key

Spring 2018 Stevens Institute of Technology

Example: StackShield

S T A C K

High address/stack bottom

Low address/stack top

RETADDR

buf

buf

buf

buf

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

!@#^% key

Spring 2018 Stevens Institute of Technology

Problems
Canaries can be omitted in small functions or non-string
buffers

Canaries/keys can be leaked

Bugs may leave canaries untouched

Spring 2018 Stevens Institute of Technology

Heap Protections

Spring 2018 Stevens Institute of Technology

Heap Arbitrary Writes

n->next->prev = n->prev;

n->prev->next = n->next;

Facts About DLinked Lists

n->prev->next == n

n->next->prev == n

If these are violated a
corruption has occurred!

Spring 2018 Stevens Institute of Technology

Heap Protections

Other Protections
Separating metadata from chunks

Adding canary type values

Spring 2018 Stevens Institute of Technology

Boundary Checking

Spring 2018 Stevens Institute of Technology

Run time checking: Libsafe

Dynamically loaded library
Intercepts calls to strcpy (dest, src)

§ Validates sufficient space in current stack frame:
|frame-pointer – dest| > strlen(src)

§ If so, does strcpy.
Otherwise, terminates application.

destret-addrsfp
top
of
stacksrc buf ret-addrsfp

libsafe main
Spring 2018 Stevens Institute of Technology

Address-space Layout
Randomization

(ASLR)

Spring 2018 Stevens Institute of Technology

One Attack Fits All
(Lack of Diversity)

Spring 2018 Stevens Institute of Technology

CodeRed worm exploits an MS IIS web server buffer overflow on July 2001

Infections after 24 hours

One Attack Fits All
(Lack of Diversity)

Spring 2018 Stevens Institute of Technology

Slammer worm exploits an MS SQL server buffer overflow on January 2003

Infections after 30 minutes

Enter Address Space Layout
Randomization
Disrupt exploits by:

§ Randomly choose base address of stack, heap, and code
segments

§ Randomize location of Global Offset Table

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

0xffffffff

0x00000000

KERNEL

0xc0000000

.TEXT
0x08000000

HEAP
HEAP_BASE

STACKSTACK_BASE

.data
.bss

Spring 2018 Stevens Institute of Technology

0xffffffff

0x00000000

KERNEL

0xc0000000

.TEXT
0x08000000

HEAP
HEAP_BASE

STACKSTACK_BASE

.data
.bss

0xffffffff

0x00000000

KERNEL

0xc0000000

.TEXT
0x28000000

HEAP
HEAP_BASE

STACK
STACK_BASE

.data
.bss

ASLR

Spring 2018 Stevens Institute of Technology

0xffffffff

0x00000000

KERNEL

0xc0000000

.TEXT
0x08000000

HEAP
HEAP_BASE

STACKSTACK_BASE

.data
.bss

0xffffffff

0x00000000

KERNEL

0xc0000000

.TEXT
0x28000000

HEAP
HEAP_BASE

STACK
STACK_BASE

.data
.bss

ASLR

Spring 2018 Stevens Institute of Technology

0xffffffff

0x00000000

KERNEL

0xc0000000

.TEXT
0x08000000

HEAP
HEAP_BASE

STACKSTACK_BASE

.data
.bss

ASLR

Fall 2014

0xffffffff

0x00000000

KERNEL

0xc0000000

.TEXT
0x09000000

HEAP
HEAP_BASE

STACK
STACK_BASE

.data
.bss

Example

Spring 2018 Stevens Institute of Technology

unsigned long getEBP (void) {
__asm (”movl %ebp ,%eax ”);

}

int main(void) {
printf(”EBP: %x\n”, getEBP());

}

> ./getEBP
EBP:bffff3b8

> ./getEBP
EBP:bffff3b8

No ASLR

> ./getEBP
EBP:bfaa2e58

> ./getEBP
EBP:bf9114c8

With ASLR

ASLR in Linux
First implementation from the PaX project

§ https://pax.grsecurity.net/

Now part of the vanilla kernel

Spring 2018 Stevens Institute of Technology

Rs: number of bits randomized
in the stack area
Rm: number of bits randomized
in the mmap() area
Rx: number of bits randomized
in the main executable area
Ls: least significant randomized
bit position in the stack area
Lm: least significant randomized
bit position in the mmap() area
Lx: least significant randomized
bit position in the main
executable area

32-bit Linux
Rs = 24, Rm = 16, Rx = 16,
Ls = 4, Lm = 12, Lx = 12

64-bit Linux
Much larger entropy

Spring 2018 Stevens Institute of Technology

ASLR in Linux

ASLR in Windows
Vista and Server 2008

Stack randomization
§ Find Nth hole of suitable size (N is a 5-bit random value),

then random word-aligned offset (9 bits of randomness)

Heap randomization: 5 bits
§ Linear search for base + random 64K-aligned offset

EXE randomization: 8 bits
§ Preferred base + random 64K-aligned offset

DLL randomization: 8 bits
§ Random offset in DLL area; random loading order

Spring 2018 Stevens Institute of Technology

Brute-forcing ASLR
Sometimes only some of the bits in randomization are
effective

Implementation uses randomness improperly à
distribution of heap bases is biased

“An Analysis of Address Space Layout Randomization on
Windows Vista”, Ollie Whitehouse, BlackHat 2007

§ https://www.blackhat.com/presentations/bh-dc-
07/Whitehouse/Paper/bh-dc-07-Whitehouse-WP.pdf

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

Biased Selection of Heap Base
Address

Brute-forcing ASLR

Exploiting server software using fork()

Spring 2018 Stevens Institute of Technology

Server program

library
library

library
library

Disk Memory

Program image

library
library
library

Loader

Randomize
location of
program and
libraries in
memory

Brute-forcing ASLR

Exploiting server software using fork()

Spring 2018 Stevens Institute of Technology

Memory

Program image

library
library
library

Process 1 Process 2
fork()

Child process
shares layout
with parent

Incoming user
request

Brute-forcing ASLR

Exploiting server software using fork()

Spring 2018 Stevens Institute of Technology

Memory

Program image

library
library
library

Process 1 Process 2

Incoming user
request

Attack child process

Brute-forcing ASLR

Exploiting server software using fork()

Spring 2018 Stevens Institute of Technology

Memory

Program image

library
library
library

Process 1 Process 2

Incoming user
request

Attack child process

fork()

Repeat till
successful

Exploit the Weakest Link
Not all program segments can be moved to a random

location

ASLR-enabled programs/libraries need to be position

independent (PIE)

They can also opt out

Spring 2018 Stevens Institute of Technology

Distribution Tested Binaries PIE Enabled Not PIE

Ubuntu 12.10 646 111 (17.18%) 535

Debian 6 592 61 (10.30%) 531

CentOS 6.3 1340 217 (16.19%) 1123

Percentage of PIE

binaries in different

Linux distributions

Exploit the Weakest Link
One non-PIE may be enough

Spring 2018 Stevens Institute of Technology

Program image

library
library
library

Program image

library
library
library

Program image

library
library
library

Return-to-PLT

PLT entry consists of 3 instructions
§ First jumps to address contained in the GOT
§ Initially pointing to the linker àwill resolve the function and update the GOT

Functions are bound lazily àon first call

Spring 2018 Stevens Institute of Technology

00000000004004a0 <puts@plt>:
4004a0: ff 25 3a 06 20 00 jmpq *0x20063a(%rip) # 600ae0 <_GLOBAL_OFFSET_TABLE_+0x20>
4004a6: 68 01 00 00 00 pushq $0x1
4004ab: e9 d0 ff ff ff jmpq 400480 <_init+0x28>

00000000004004b0 <printf@plt>:
4004b0: ff 25 32 06 20 00 jmpq *0x200632(%rip) # 600ae8 <_GLOBAL_OFFSET_TABLE_+0x28>
4004b6: 68 02 00 00 00 pushq $0x2
4004bb: e9 c0 ff ff ff jmpq 400480 <_init+0x28>

PLT

0000000000600ac0 <_GLOBAL_OFFSET_TABLE_>:
600ae0: a6 04 40 00 00 00 00 00
600ae8: b6 04 40 00 00 00 00 00

An information leak is
caused by exploiting a bug
that discloses the memory
layout and/or contents of a
program

Main idea:
§ Corrupting (partially) data

that affect what or how
much is read from
memory

§ Receive the output of the
read

Spring 2018 Stevens Institute of Technology

Information Leaks

Spring 2018 Stevens Institute of Technology

Leak Can Occur in the Stack

retaddr

canary

path

ST
AC

K

local var
local var

saved ebp

void func(char *filename, int len)
{

char path[128] = “/tmp/”;

memcpy(path, filename, len);

...
fprintf(logfl, “Opened %s\n”, path);
...

}

Omitting or overwriting the
terminating ‘\0’ character and
reading a string can leak data

Spring 2018 Stevens Institute of Technology

Or the Heap

HEAP
HEAP outputfile userinput

void string::copy(string *src)
{

...
memcpy(this->data, src->data, src->len);
...

}

outputfile->copy(userinput);
...
logfl << “user entered ” << userinput << endl;

class string
{
...
private:

size_t len;
char *data;

...
};

Spring 2018 Stevens Institute of Technology

Or the Heap

HEAP
HEAP outputfile userinput

void string::copy(string *src)
{

...
memcpy(this->data, src->data, src->len);
...

}

outputfile->copy(userinput);
...
logfl << “user entered ” << userinput << endl;

class string
{
...
private:

size_t len;
char *data;

...
};

Information Leaks Continued
Many of the other bugs we have already seen can be

used to leak information

§ Overflow

§ Use-after-free

§ Type confusion

JavaScript is frequently used as it allows dynamically

triggering the exploit multiple times

https://media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

MS13-037 MICROSOFT INTERNET EXPLORER
DASH STYLE ARRAY INTEGER OVERFLOW

<html>
<head>
<script>
#{js}
</script>
<meta http-equiv="x-ua-compatible" content="IE=EmulateIE9" >
</head>
<title>
</title>
<style>v\\: * { behavior:url(#default#VML); display:inline-block }</style>
<xml:namespace ns="urn:schemas-microsoft-com:vml" prefix="v" />
<script>
#{js_trigger}
</script>
<body onload="#{create_rects_func}(); #{exploit_func}();">
<v:oval>
<v:stroke id="vml1"/>
</v:oval>
</body>
</html>

Summary of ASLR Weaknesses
Memory leaks

§ Combine memory leaks with control-flow hijacking
§ Repeatable arbitrary memory leaks are better

Insufficient entropy
Incompatible binaries
Memory spraying

§ Make many copies of the attack payload
§ Increase the chances of the payload being at a particular

address
§ Probabilistic attack

Side channels
§ Infer layout based on leaks from side channels

Spring 2018 Stevens Institute of Technology

Reading
Stackguard
ftp://gcc.gnu.org/pub/gcc/summit/2003/Stackguard.pdf
Bypassing StackGuard and StackShield
http://phrack.org/issues/56/5.html
Bypassing PaX ASLR protection
http://phrack.org/issues/59/9.html
On the Effectiveness of Address-Space Randomization
https://benpfaff.org/papers/asrandom.pdf
Low-level Software Security:Attacks and Defenses
https://trailofbits.github.io/ctf/exploits/references/tr-
2007-153.pdf

Spring 2018 Stevens Institute of Technology

