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Topics
Recap: Security mechanisms for software hardening

Attacks against client programs
§ Browsers
§ Heap spraying
§ Mitigations

Back to return-to-libc

Return-oriented programming

Control-flow Integrity (CFI)

Attacks against CFI and more defenses
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Broadly Deployed Security 
Mechanisms
NX-bit à Prevent arbitrary code execution

Stack canaries à Detect and prevent stack overflows

ASLR à Introduce uncertainty on the location of injected 
shellcode and existing code in a running program

They have raised the bar for attackers
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Shift in Target Selection

ServersClients
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Shift in Target Selection

ServersClients
Web browsers

Flash Acrobat Reader



Very popular software
§ Probably installed on 

every client device

Large and complex software

Dynamically translates and 
executes JavaScript
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Recap: Attacks Against Browsers

JavaScript Code

Native Code
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Recap: Code Injection in the  
Code Cache

Code 
Cache

ExecutionExploit bug to control 
instruction pointer!

<html>
<body>
<script language='javascript'>

var myvar = unescape('%u\4F43%u\4552'); // 
CORE
myvar += unescape('%u\414C%u\214E'); // 
LAN!
alert("allocation done");

</script>
</body>
</html>

No ASLR à Code cache location known
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Recap: Code Injection in the  
Code Cache

Code 
Cache

Execution

<html>
<body>
<script language='javascript'>

var myvar = unescape('%u\4F43%u\4552'); // 
CORE
myvar += unescape('%u\414C%u\214E'); // 
LAN!
alert("allocation done");

</script>
</body>
</html>

ASLR à Code cache location unknown



Heap Spraying
Attempt to place shellcode at a predictable location
Mechanisms: 
Dynamically expand buffer by appending copies of the 
shellcode
On the fly generate variables
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https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
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Code 
Cache

var v1 = “myshellcode”;
var v2 = “myshellcode”;

var v3 = “myshellcode”;



Code 
Cache
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Code 
Cache

var v1 = “myshellcode”;
var v2 = “myshellcode”;

var v3 = “myshellcode”;

var v4 = “myshellcode”;
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Large NOP Sleds
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Summary: Heap Spraying
May require multiple attempts

Can possibly defeat ASLR

Heap fragmentation is in play 
§ May be worse in concurrent systems
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Code/Data Separation in the Code 
Cache

JIT compiler

Code 
Cache

Execution

Native 
code

Static 
data

Heap

Dynamically allocated
data

Bounded code cache size



No More Code Injection
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ASLR + Code/data Separation 
+ Finite Code Cache
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Back to return-to-libc
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I don’t like calling 
system() every day
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Chaining Functions with ret2libc

Stack fakeret

ESP

F1

F1(cmd) F2(arg1, arg2)

*cmd
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Chaining Functions with ret2libc

Stack

ESP

F1(cmd) F2(arg1, arg2)

fakeret *cmd
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Chaining Functions with ret2libc

Stack

ESP

F1(cmd) F2(arg1, arg2)

F2 *cmd
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Chaining Functions with ret2libc

Stack

ESP

F1(cmd) F2(arg1, arg2)

F2 *cmd arg2 arg1
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Chaining Functions with ret2libc

Stack

ESP

F1(cmd) F2(arg1, arg2)

*cmd arg2 arg1

F3(arg3)
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Chaining Functions with ret2libc

Stack

ESP

F1(cmd) F2(arg1, arg2)

*cmd arg2 arg1

F3(arg3)



Chaining Functions with ret2libc
We need small gadgets to unwind the stack pointer in a 
controlled way
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Stack F2 ret arg2 arg1F1 *cmdret

ESP
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Chaining Functions with ret2libc

Stack F2 ret arg2 arg1*cmdret

ESP

F1(cmd)
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Chaining Functions with ret2libc

Stack F2 ret arg2 arg1

ESP

F1(cmd)
pop eax; ret

*cmd
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Chaining Functions with ret2libc

Stack F2 ret arg2 arg1

ESP

F1(cmd)
pop eax; ret
F1(arg1, arg2)
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Chaining Functions with ret2libc

Stack arg2 arg1

ESP

F1(cmd)
pop eax; ret
F1(arg1, arg2)

add 0x8,esp; ret
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Chaining Functions with ret2libc

Stack arg2 arg1

ESP

F1(cmd)
pop eax; ret
F1(arg1, arg2)

add 0x8,esp; ret

F3 arg3fake
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Chaining Functions with ret2libc

Stack

ESP

F1(cmd)
pop eax; ret
F1(arg1, arg2)

add 0x8,esp; ret

arg3fake

F3(arg3)
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I don’t like only 
calling functions



Enter Return-Oriented 
Programming
Re-use parts of the application’s code to perform 
arbitrary computations 

A Turing complete machine

Use the stack like a tape providing the data for the 
computation and the instruction pointer
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A Code Collage
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mov (%rcx),%rbx
test %rbx,%rbx
je 41c523 <main+0x803>
mov %rbx,%rdi
callq 42ab00
mov %rax,0x2cda9d(%rip)
cmpb $0x2d,(%rbx)
je 41c4ac <main+0x78c>
mov 0x2cda8d(%rip),%rax
ret
test %rbx,%rbx
mov $0x4ab054,%eax
cmove %rax,%rbx
mov %rbx,0x2cda6a(%rip)
test %rdi,%rdi
je 41c0c2 <main+0x3a2>
mov $0x63b,%edx
mov $0x4ab01d,%esi
callq 46cab0 <sh_xfree>
ret

mov %rax,0x2d2945(%rip)
mov 0x2cda16(%rip),%rax
test %rax,%rax
je 41c112 <main+0x3f2>
movzbl (%rax),%edx
callq 41b640 <time@plt>
mov 0xb8(%rsp),%r15d
cmp 0xc(%rsp),%r15d
mov %rax,0x2d2670(%rip)
je 41c214 <main+0x4f4>
xchg %ax,%ax
mov (%rsp),%rdx
movslq %r15d,%rax
mov (%rdx,%rax,8),%r14
ret
je 41c214 <main+0x4f4>
cmpb $0x2d,(%r14)
jne 41c214 <main+0x4f4>
movzbl 0x1(%r14),%r12d
movl $0x0,0x18(%rsp)
cmp $0x2d,%r12b

je 41c440 <main+0x720>
xor %ebp,%ebp
mov $0x4c223a,%ebx
add $0x1,%r14
jmp 41c1a3 <main+0x483>
cmp (%rbx),%r12b
mov %ebp,%r13d
jne 41c188 <main+0x468>
mov %rbx,%rsi
test %eax,%eax
xchg %ax,%ax
jne 41c188 <main+0x468>
movslq %ebp,%rax
ret
cmpl $0x1,0x4ab3c8(%rax)
je 41c461 <main+0x741>
mov (%rsp),%rcx
add $0x1,%r15d
movslq %r15d,%rdx
mov (%rcx,%rdx,8),%rdx
test %rdx,%rdx
je 41cefd <main+0x11dd>

Gadgets



An Example
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...
0xb8800000
0x00000001
0xb8800010
0x00000002
0xb8800020
0xb8800010
0x00400000
0xb8800030
...

Payload Code

0xb8800000:
pop eax
ret
...

0xb8800010:
pop ebx
ret
...

0xb8800020:
add ebx, eax
ret
...

0xb8800030:
mov eax, [ebx]
ret

esp

Actions

eax = 1

ebx = 2

eax += ebx

ebx = 0x400000

*ebx = eax

0xff

0x00



Current State of the Art
First-stage ROP code for bypassing NX

§ Allocate/set W+X memory (VirtualAlloc, VirtualProtect, …)
§ Copy embedded shellcode into the newly allocated area

Second stage jumps to injected code

Pure-ROP exploits
§ In-the-wild exploit against Adobe Reader XI 
§ CVE-2013-0640
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Control-flow Integrity



Attacker Modus Operandi
Find memory corruption bug

§ Manipulate to take over program counter
Find ASLR bypass

§ Leak memory layout
§ Spray memory
§ Weakly or non-randomized sections/memory

Inject ROP payload
§ Break W^X semantics

Inject code
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Attacker Modus Operandi
Find memory corruption bug

§ Manipulate to take over program counter
Find ASLR bypass

§ Leak memory layout
§ Spray memory
§ Weakly or non-randomized sections/memory

Inject ROP payload
§ Break W^X semantics

Inject code
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Control-flow Integrity aims to restrict the 
arbitrary manipulation of the program counter
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Control Flow Manipulation
Function calls my_function(arg1, arg2)

void (*fptr)(arg1_type, arg2_type) = &my_function;
fptr(arg1, arg2);

Function returns return; return 100;

If statements if (cond) {
} else {
}

Loops for () { } while { } do { } while

Break/continue while (true) {
if (cond)

break;
}

while (cond) {
if (cond2)

continue;
}

switch (cond) {
val1: … break;
val2: … break;

}

Switch statement

goto statement goto label1;
…
Label1:



Statements where 
the target statement 
cannot be known a 
priori

§ Indirect control-
flow transfers

Indirect calls, returns, 
and some switches
Calls to virtual 
functions are indirect 
calls
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Control-Flow Hijacking Prone 
Statements

void (*fptr)(arg1_type, arg2_type) = &my_function;
fptr(arg1, arg2);

return; return 100;

switch (cond) {
val1: … break;
val2: … break;

}

Class C {
virtual void vcall(void);

}

C obj = new C();

obj->vcall():
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Easily Observable in Machine 
Code

void (*fptr)(arg1_type, arg2_type) = &my_function;
fptr(arg1, arg2);

return; return 100;

switch (cond) {
val1: … break;
val2: … break;

}

ret

C Code Machine Code

jmp *(%rax)

call *(%rax)

Class C {
virtual void vcall(void);

}

C obj = new C();

obj->vcall(): call *(%rax)

jmp *(%rax)
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Function Call Graph (FCG)

parent_function() function()

next_function()

call *

call

call ret

call
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FCG Enforcement

parent_function() function()

next_function()

call *

call

call ret

call
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Control-flow Graph (CFG) 
Indirect flows only

parent_function() function()

call *

call

call ret

next_function():

jmp *

call
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CFI - CFG Enforcement 

parent_function() function()

call *

call

call ret

next_function():

jmp *

call



Extracting the CFG
With source code

§ More reliable
§ Still not perfect
§ How to handle 

§ Dynamically loaded 
libraries?

§ Callbacks

Without source code
§ Requires accurate 

disassembly
§ Cannot accurately define 

all paths
§ Shared libraries are 

easier to handle
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static void (*fptr)(char *string, int len);

void set_callback(void *ptr)
{

fptr = ptr;
}

void process_items()
{

for (string *s : items) {
fptr(s->c_str, s->len);

}
}
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4028d1:       be 71 85 41 00          mov $0x418571,%esi

4028d6:       bf 06 00 00 00          mov $0x6,%edi

4028db:       e8 30 fe ff ff callq 402710 <setlocale@plt>

4028e0:       be 3f 51 41 00          mov $0x41513f,%esi

4028e5:       bf 28 51 41 00          mov $0x415128,%edi

4028ea:       e8 51 fa ff ff callq 402340 <bindtextdomain@plt>

4028ef:       bf 28 51 41 00          mov $0x415128,%edi

4028f4:       e8 07 fa ff ff callq 402300 <textdomain@plt>

4028f9:       bf c0 a1 40 00          mov $0x40a1c0,%edi

4028fe:       c7 05 d8 9c 21 00 02    movl $0x2,0x219cd8(%rip)        # 61c5e0 <_fini+0x20a054>

402905:       00 00 00 

402908:       e8 63 fc 00 00          callq 412570 <__sprintf_chk@plt+0xfce0>

40290d:       48 b8 00 00 00 00 00    movabs $0x8000000000000000,%rax

402914:       00 00 80 

402917:       c7 05 0f a8 21 00 00    movl $0x0,0x21a80f(%rip)        # 61d130 <stderr+0xa80>

40291e:       00 00 00 

402921:       c6 05 a8 a8 21 00 01    movb $0x1,0x21a8a8(%rip)        # 61d1d0 <stderr+0xb20>

402928:       48 89 05 51 a9 21 00    mov %rax,0x21a951(%rip)        # 61d280 <stderr+0xbd0>

40292f:       8b 05 97 9c 21 00       mov 0x219c97(%rip),%eax # 61c5cc <_fini+0x20a040>

402935:       48 c7 05 50 a9 21 00    movq $0x0,0x21a950(%rip)        # 61d290 <stderr+0xbe0>

40293c:       00 00 00 00 

402940:       48 c7 05 3d a9 21 00    movq $0xffffffffffffffff,0x21a93d(%rip)        # 61d288 <stderr+0xbd8>

402947:       ff ff ff ff

40294b:       c6 05 9e a8 21 00 00    movb $0x0,0x21a89e(%rip)        # 61d1f0 <stderr+0xb40>

402952:       83 f8 02                cmp $0x2,%eax

402955:       0f 84 83 08 00 00       je     4031de <__sprintf_chk@plt+0x94e>

40295b:       83 f8 03                cmp $0x3,%eax

40295e:       74 2f                   je     40298f <__sprintf_chk@plt+0xff>

402960:       83 e8 01                sub    $0x1,%eax

402963:       74 05                   je     40296a <__sprintf_chk@plt+0xda>

402965:       e8 b6 f8 ff ff callq 402220 <abort@plt>

40296a:       bf 01 00 00 00          mov $0x1,%edi

40296f:       e8 0c f9 ff ff callq 402280 <isatty@plt>

402974:       85 c0                   test   %eax,%eax

402976:       0f 84 2c 0e 00 00       je     4037a8 <__sprintf_chk@plt+0xf18>

40297c:       c7 05 ca a8 21 00 02    movl $0x2,0x21a8ca(%rip)        # 61d250 <stderr+0xba0>

402983:       00 00 00 



Working with an Imperfect CFG
Lets assume that we know/can learn

§ The location of every function
§ The location of every indirect branch instruction

Coarse-grained CFI can enforce the following
§ Indirect calls should only transfer control to functions

§ Same for most jumps

§ Returns should only transfer control to instructions following 
a indirect call or jump
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call  *(%rax)
ret

Function_A:
OK

ret

Function_B:
OK
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call  *(%rax)
ret

Function_A:

ret

Function_B:

OK

OK
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call  *(%rax)
ret

Function_A:

ret

Function_B:

pop %rax
ret

Function_C:NOT
OK

OK



Spring 2018 Stevens Institute of Technology

call  *(%rax)
ret

Function_A:

ret

Function_B:

call  *(%rax)

pop %rax
ret

OK

NOT
OK



Enforcing Through Embedded IDs

ID codes are embedded into the binary program to 
identify acceptable targets

§ 2-ID policy
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Function_A:

[ID_2]

ret

[ID_1]

Function_B:

ret

[ID_1]

call *(%rax)



Enforcing Through Embedded IDs

Checks are introduced right before the control transfer
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Function_A:

[ID_2]

check [ID_1] ret

[ID_1]

check [ID_2]

Function_B:

ret
check [ID_2]

[ID_1]

call *(%rax)

This is not an 
instruction

This is not an 
instruction

This is not an 
instruction



Modifications for CFI Enforcement
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Function_A:

[ID_2]

check [ID_1] ret

[ID_1]

check [ID_2]

Function_B:

ret
check [ID_2]

[ID_1]

call *(%rax)

*(%rax) == ID_1
call *(%rax+8)

pop %rcx
*(%rcx+4) == ID_2
jmp *(%rcx)

prefetchnta *(0xAABBCCDD)

(0xEEFFEEFFEEFF…)



Modifications for CFI Enforcement
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Function_A:

[ID_2]

check [ID_1] ret

[ID_1]

check [ID_2]

Function_B:

ret
check [ID_2]

[ID_1]

call *(%rax)

*(%rax) == ID_1
call *(%rax+8)

pop %rcx
*(%rcx+4) == ID_2
jmp *(%rcx)

prefetchnta *(0xAABBCCDD)

(0xEEFFEEFFEEFF…)

This instruction 
does not have 

an adverse 
effects

3E 0F 18 05 DD CC BB AA
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Control-flow integrity
Martín Abadi University of California, Santa Cruz and Microsoft Research, 

Santa Cruz, CA

Mihai Budiu Microsoft Research

Úlfar Erlingsson Reykjavík University and Microsoft Research

Jay Ligatti University of South Florida, Tampa, FL

http://dl.acm.org/citation.cfm?id=1609960

ACM Transactions on Information and System Security (TISSEC) 

Limitations:
• Code integrity must be ensured (no code injection)

• Incremental deployment is not supported (all or nothing)

• Only 2 IDs are supported for enforcing CFI

http://dl.acm.org/citation.cfm?id=1609960
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Practical Control Flow Integrity and Randomization for 
Binary Executables

Chao Zhang
Tao Wei
Zhaofeng Chen
Lei Duan
Laszlo Szekeres
Stephen McCamant
Dawn Song
Wei Zou

Proceedings of the 2013 IEEE Symposium on Security and Privacy

http://dl.acm.org/citation.cfm?id=2498134

http://dl.acm.org/citation.cfm?id=2498134


CCFIR
Three IDs are used to restrict control flow
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Function_A:

[ID_2]

check [ID_1]
[ID_1]

retcheck [ID_2]

Sensitive_Function_A

ret
check [ID_2 | ID_3]

call *(%rax)

[ID_2]

call 0x….
call 0x…

[ID_3]



CCFIR
Three IDs are used to restrict control flow
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Function_A:

[ID_2]

check [ID_1]
[ID_1]

ret
check [ID_2]

Sensitive_Function_A

ret
check [ID_2 | ID_3]

call *(%rax)

[ID_2]

call 0x….
call 0x…

[ID_3]

Memory allocation 
routines, changing 

permissions, launching 
processes, etc.



CCFIR
Three IDs are used to restrict control flow
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Function_A:

[ID_2]

check [ID_1]
[ID_1] 

retcheck [ID_2]

Sensitive_Function_A

ret
check [ID_2 | ID_3]

call *(%rax)

[ID_2]

call 0x….
call 0x…

[ID_3]



CCFIR
Three IDs are used to restrict control flow
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Function_A:

[ID_2]

check [ID_1]
[ID_1]

ret
check [ID_2]

Sensitive_Function_A

ret
check [ID_2 | ID_3]

call *(%rax)

[ID_2]

call 0x….
call 0x…

[ID_3]

Prevents code-
reuse of sensitive 

functions
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Sensitive Functions Heuristic

Sensitive_Function_A

ret
check [ID_2 | ID_3]

call 0x…

[ID_3]

Sensitive_Function_B

ret
check [ID_2 | ID_3]

Function_A:

check [ID_2]
ret

[ID_1] 

call 0x…

[ID_3]
Prevents code-

reuse of sensitive 
function parts
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 call ecx

 ret

back:

 ret

foo:

 jmp back_sb-2
back:

foo_sb:
 jmp foo

 jmp back

 call ecx
back_sb:

 mov ecx,foo

 mov ecx,foo_sb

foo:

 ...

 ...  jnz error
 test [esp],M_R

 jnz error
 test ecx,M_F

 ...

 ...

 ...

 ...
 test ecx,8
 jz error

Original

Hardened

Direct control transfer

Indirect control transfer

;ΐͷ͑ͮ͑͡Ωͩͨ͡͡͡͡͡
;ΐ͑ͮ͑͡Ωͩ͡͡͡͡͡Η
͑͑͑͑͑͑ΠΣ
;ΐ͑ͮ͑͡Ωʹ͡͡͡͡͡Η

Figure 6: Rewriting of an indirect call and return

 call foo

 ret

back:

 jmp back_sb-5

 ret

back:

 call foo

 jmp back

foo:

back_sb:

 ...

foo:

 ...

 jnz error
 test [esp],M_R

 ...

 ...

Original

Hardened

;ΐͷ͑ͮ͑͡Ωͩͨ͡͡͡͡͡
;ΐ͑ͮ͑͡Ωͩ͡͡͡͡͡Η
͑͑͑͑͑͑ΠΣ
;ΐ͑ͮ͑͡Ωʹ͡͡͡͡͡Η

Direct control transfer

Indirect control transfer

Figure 7: Rewriting of a direct call and return

instructions’ targets before the control transfers. The policy
our scheme enforces is the following:
• Indirect call/jump instructions’ targets must be function

pointer stubs (i.e 8-byte aligned but not 16-byte aligned)
in the Springboard.

• The target of a return back to a sensitive function can be
any valid return stub (i.e. 16-byte aligned).

• Any other return instruction’s target must be a valid
normal return stub (i.e., 16-byte aligned with the 26th
bit 0).
As discussed in Section III-D, this enforcement can be

performed using one or two bit-testing instructions.
For any indirect call/jump instruction, its target should be

in the Springboard (i.e. the 27th bit is 0) and only 8-bytes
aligned (i.e. the 0-2 bits are 0, but the 3rd bit is 1). Thus if
the target address is bitwise ANDed with 8, the result should
be non-zero. In addition, if the TARGET is bitwise ANDed
with the mask 0x8000007 (i.e. M_F in Figure 6), the result
should be zero. As shown in Figure 6, these bitwise AND
operations are performed with the test instruction. If one
of these conditions is violated, the control flow is directed
to a predefined error handler (i.e. error in Figure 6). In
our implementation, the error handler will log the buggy
EIP value and the invalid transfer target, and then terminate
the process. (To record the EIP, there is a separate copy of
error for each indirect call/jump and return.)

Figure 6 also shows how the validation is inserted before
return instructions. Before returning, the target of the return
is on the top of the stack, pointed to by the esp register. The
return address is then tested against a mask M_R. The mask
is 0x800000f for returns from functions called by sensitive
functions, and 0xc00000f for all other return instructions.
An Exceptional Case. The function longjmp()

ends with an indirect jump, but its target is a return address

saved by a call to setjmp(), and so is 16-byte aligned. Thus
the check for this special jmp instruction matches the check
for a return instruction: test ecx, 0xc00000f.
Optimizations. Indirect jump instructions which are

used for switch statements, such as jmp jtable[eax*4], do not
need dynamic checks. For any switch statement, regardless
of what its control expression is, the control flow in the
binary generated by modern compilers (e.g., GCC and VC)
is forced to one entry in its jump table. For example, GCC
first makes a bound check against eax (corresponding to the
case value in switch statements). If it exceeds the bound,
then eax is assigned with a default value (corresponding
to the default case). And then, the control flow transfers
through jmp jtable[eax*4]. In this way, the control flow is
always forced to the jump table entries and thus cannot be
hijacked by attackers. Thus BitRewrite skips validating these
indirect jump instructions, to improve performance.

D. Compatibility Issues

A protected module only allows indirect control transfers
whose targets are valid Springboard stubs. But the stubs are
not restricted to be within the current module’s Springboard
section. Stubs within other modules’ Springboard sections
are also permitted, since their addresses are compatible; they
are validated the same way. And thus if every module in a
program (i.e. the main program and all DLLs) is rewritten,
according to the scheme described in the previous section,
the separate modules will be compatible with each other in
any combination and the control-flow integrity is enforced.

However, rewriting all modules is not always possible
in practice (e.g. system DLLs on Windows 7 cannot be
altered). While control transfers from an unprotected module
to a protected one cause no problem, if there is an indirect
control transfer from the protected module to an unprotected
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instructions’ targets before the control transfers. The policy
our scheme enforces is the following:
• Indirect call/jump instructions’ targets must be function

pointer stubs (i.e 8-byte aligned but not 16-byte aligned)
in the Springboard.

• The target of a return back to a sensitive function can be
any valid return stub (i.e. 16-byte aligned).

• Any other return instruction’s target must be a valid
normal return stub (i.e., 16-byte aligned with the 26th
bit 0).
As discussed in Section III-D, this enforcement can be

performed using one or two bit-testing instructions.
For any indirect call/jump instruction, its target should be

in the Springboard (i.e. the 27th bit is 0) and only 8-bytes
aligned (i.e. the 0-2 bits are 0, but the 3rd bit is 1). Thus if
the target address is bitwise ANDed with 8, the result should
be non-zero. In addition, if the TARGET is bitwise ANDed
with the mask 0x8000007 (i.e. M_F in Figure 6), the result
should be zero. As shown in Figure 6, these bitwise AND
operations are performed with the test instruction. If one
of these conditions is violated, the control flow is directed
to a predefined error handler (i.e. error in Figure 6). In
our implementation, the error handler will log the buggy
EIP value and the invalid transfer target, and then terminate
the process. (To record the EIP, there is a separate copy of
error for each indirect call/jump and return.)

Figure 6 also shows how the validation is inserted before
return instructions. Before returning, the target of the return
is on the top of the stack, pointed to by the esp register. The
return address is then tested against a mask M_R. The mask
is 0x800000f for returns from functions called by sensitive
functions, and 0xc00000f for all other return instructions.
An Exceptional Case. The function longjmp()

ends with an indirect jump, but its target is a return address

saved by a call to setjmp(), and so is 16-byte aligned. Thus
the check for this special jmp instruction matches the check
for a return instruction: test ecx, 0xc00000f.
Optimizations. Indirect jump instructions which are

used for switch statements, such as jmp jtable[eax*4], do not
need dynamic checks. For any switch statement, regardless
of what its control expression is, the control flow in the
binary generated by modern compilers (e.g., GCC and VC)
is forced to one entry in its jump table. For example, GCC
first makes a bound check against eax (corresponding to the
case value in switch statements). If it exceeds the bound,
then eax is assigned with a default value (corresponding
to the default case). And then, the control flow transfers
through jmp jtable[eax*4]. In this way, the control flow is
always forced to the jump table entries and thus cannot be
hijacked by attackers. Thus BitRewrite skips validating these
indirect jump instructions, to improve performance.

D. Compatibility Issues

A protected module only allows indirect control transfers
whose targets are valid Springboard stubs. But the stubs are
not restricted to be within the current module’s Springboard
section. Stubs within other modules’ Springboard sections
are also permitted, since their addresses are compatible; they
are validated the same way. And thus if every module in a
program (i.e. the main program and all DLLs) is rewritten,
according to the scheme described in the previous section,
the separate modules will be compatible with each other in
any combination and the control-flow integrity is enforced.

However, rewriting all modules is not always possible
in practice (e.g. system DLLs on Windows 7 cannot be
altered). While control transfers from an unprotected module
to a protected one cause no problem, if there is an indirect
control transfer from the protected module to an unprotected
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Figure 1: Illustration of CCFIR: a code section is split up into 2
sections, and all indirect control transfers (dashed lines) are only
permitted to flow to an aligned address in the Springboard section.
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Figure 2: Memory layout for executables hardened
by CCFIR: only Springboard sections are placed
in a memory area for which the 27th bit is 0.

languages.1 Programs in high-level languages comply
with this rule, and even most inline assembly code does.

R4. If the targets of indirect call/jmp instructions are hard-
coded in binaries, they must be absolute addresses and
can be indexed through relocation tables (as rule R1).

R5. Compilers separate code and data sections (in order to
conform to DEP). In code sections, the only data which
can appear are special control structures, such as jump
tables for switch statements and exception tables.

These rules hold for binaries generated by modern com-
pilers today. Due to the rule R4, we can find most possible
indirect code entries. Then with the help of the export
table and the EntryPoint of the target PE file, it can be
disassembled recursively to identify all possible instructions.

Combined with other policies described in Section IV-B,
we take an approach that can disassemble a PE file com-
plying with rules R1∼R5 correctly and automatically. For
binaries not respecting R5, we can still identify most code
and data correctly and tag unidentified parts explicitly for
manual review. These remaining parts are usually small even
for large binaries, and can be easily reviewed.

As binaries can be disassembled correctly, we can identify
where transfer targets are created (i.e., all occurrences of
function pointers and return addresses) and where transfer
targets are used (i.e., all control-transfer instructions).

D. The Springboard and New Memory Layout
While CFI enforcement techniques have been used to

make software fault isolation (SFI) more efficient [13],
we conversely use ideas of layout-based checking from
SFI [38][39] to make CFI enforcement more efficient.

1getpc() is a seldom-used method for addressing code and data in normal
binaries, although it’s more popular in malicious code. In our experiments
we find only one case of getpc in Windows binaries, setjmp() discussed in
Section IV-C2.

For each module, we introduce a new code section called
the Springboard. As shown in Figure 1, for each valid
indirect control-transfer target (e.g. nodes 5 and 3 in this
figure), the Springboard contains an associated unique stub
(nodes 5′ and 3′ respectively) containing a direct jump to the
given target. The nodes 2′ and 2′′ are used to make sure the
node 3′ is aligned. Using techniques known from SFI, we
make sure that any indirect control-flow transfer instruction
can only jump to a code stub inside the Springboard. As
a result, diverting the execution to an attacker-supplied
arbitrary target becomes impossible.

The Springboard section is distinguishable from other
memory areas through the memory layout. As shown in Fig-
ure 2, it is enforced that any executable code section whose
address’s 27th bit is 0 can only be a Springboard section. In
other words we divide the program’s virtual memory space
into 128MB-large (227) slices, so that Springboard sections
are always in even slices, and other code sections are in odd
slices. Data sections are not constrained.

Real-world applications’ code sections are typically small-
er than 10MB, and they can be placed freely anywhere into
an odd 128MB memory slice, as long as the whole section
is inside the slice. Multiple Springboards or multiple code
sections can be contained in the same 128MB slice but
never mixed. Thus one bit testing instruction is capable of
checking if an address belongs to a Springboard section.

Make Valid Targets Distinguishable. In order to dis-
tinguish valid targets of indirect transfer instructions from
invalid targets (e.g. those supplied by attackers), valid targets
are all redirected to code stubs in the Springboard. Further,
to defeat advanced attacks like ROP and return-to-libc, code
stubs within the Springboard are further distinguishable.

First, function pointer stubs and return address stubs are
different. Second, return address stubs for return-landing

Function stub address
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0
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languages.1 Programs in high-level languages comply
with this rule, and even most inline assembly code does.

R4. If the targets of indirect call/jmp instructions are hard-
coded in binaries, they must be absolute addresses and
can be indexed through relocation tables (as rule R1).

R5. Compilers separate code and data sections (in order to
conform to DEP). In code sections, the only data which
can appear are special control structures, such as jump
tables for switch statements and exception tables.

These rules hold for binaries generated by modern com-
pilers today. Due to the rule R4, we can find most possible
indirect code entries. Then with the help of the export
table and the EntryPoint of the target PE file, it can be
disassembled recursively to identify all possible instructions.

Combined with other policies described in Section IV-B,
we take an approach that can disassemble a PE file com-
plying with rules R1∼R5 correctly and automatically. For
binaries not respecting R5, we can still identify most code
and data correctly and tag unidentified parts explicitly for
manual review. These remaining parts are usually small even
for large binaries, and can be easily reviewed.

As binaries can be disassembled correctly, we can identify
where transfer targets are created (i.e., all occurrences of
function pointers and return addresses) and where transfer
targets are used (i.e., all control-transfer instructions).

D. The Springboard and New Memory Layout
While CFI enforcement techniques have been used to

make software fault isolation (SFI) more efficient [13],
we conversely use ideas of layout-based checking from
SFI [38][39] to make CFI enforcement more efficient.

1getpc() is a seldom-used method for addressing code and data in normal
binaries, although it’s more popular in malicious code. In our experiments
we find only one case of getpc in Windows binaries, setjmp() discussed in
Section IV-C2.

For each module, we introduce a new code section called
the Springboard. As shown in Figure 1, for each valid
indirect control-transfer target (e.g. nodes 5 and 3 in this
figure), the Springboard contains an associated unique stub
(nodes 5′ and 3′ respectively) containing a direct jump to the
given target. The nodes 2′ and 2′′ are used to make sure the
node 3′ is aligned. Using techniques known from SFI, we
make sure that any indirect control-flow transfer instruction
can only jump to a code stub inside the Springboard. As
a result, diverting the execution to an attacker-supplied
arbitrary target becomes impossible.

The Springboard section is distinguishable from other
memory areas through the memory layout. As shown in Fig-
ure 2, it is enforced that any executable code section whose
address’s 27th bit is 0 can only be a Springboard section. In
other words we divide the program’s virtual memory space
into 128MB-large (227) slices, so that Springboard sections
are always in even slices, and other code sections are in odd
slices. Data sections are not constrained.

Real-world applications’ code sections are typically small-
er than 10MB, and they can be placed freely anywhere into
an odd 128MB memory slice, as long as the whole section
is inside the slice. Multiple Springboards or multiple code
sections can be contained in the same 128MB slice but
never mixed. Thus one bit testing instruction is capable of
checking if an address belongs to a Springboard section.

Make Valid Targets Distinguishable. In order to dis-
tinguish valid targets of indirect transfer instructions from
invalid targets (e.g. those supplied by attackers), valid targets
are all redirected to code stubs in the Springboard. Further,
to defeat advanced attacks like ROP and return-to-libc, code
stubs within the Springboard are further distinguishable.

First, function pointer stubs and return address stubs are
different. Second, return address stubs for return-landing
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instructions’ targets before the control transfers. The policy
our scheme enforces is the following:
• Indirect call/jump instructions’ targets must be function

pointer stubs (i.e 8-byte aligned but not 16-byte aligned)
in the Springboard.

• The target of a return back to a sensitive function can be
any valid return stub (i.e. 16-byte aligned).

• Any other return instruction’s target must be a valid
normal return stub (i.e., 16-byte aligned with the 26th
bit 0).
As discussed in Section III-D, this enforcement can be

performed using one or two bit-testing instructions.
For any indirect call/jump instruction, its target should be

in the Springboard (i.e. the 27th bit is 0) and only 8-bytes
aligned (i.e. the 0-2 bits are 0, but the 3rd bit is 1). Thus if
the target address is bitwise ANDed with 8, the result should
be non-zero. In addition, if the TARGET is bitwise ANDed
with the mask 0x8000007 (i.e. M_F in Figure 6), the result
should be zero. As shown in Figure 6, these bitwise AND
operations are performed with the test instruction. If one
of these conditions is violated, the control flow is directed
to a predefined error handler (i.e. error in Figure 6). In
our implementation, the error handler will log the buggy
EIP value and the invalid transfer target, and then terminate
the process. (To record the EIP, there is a separate copy of
error for each indirect call/jump and return.)

Figure 6 also shows how the validation is inserted before
return instructions. Before returning, the target of the return
is on the top of the stack, pointed to by the esp register. The
return address is then tested against a mask M_R. The mask
is 0x800000f for returns from functions called by sensitive
functions, and 0xc00000f for all other return instructions.
An Exceptional Case. The function longjmp()

ends with an indirect jump, but its target is a return address

saved by a call to setjmp(), and so is 16-byte aligned. Thus
the check for this special jmp instruction matches the check
for a return instruction: test ecx, 0xc00000f.
Optimizations. Indirect jump instructions which are

used for switch statements, such as jmp jtable[eax*4], do not
need dynamic checks. For any switch statement, regardless
of what its control expression is, the control flow in the
binary generated by modern compilers (e.g., GCC and VC)
is forced to one entry in its jump table. For example, GCC
first makes a bound check against eax (corresponding to the
case value in switch statements). If it exceeds the bound,
then eax is assigned with a default value (corresponding
to the default case). And then, the control flow transfers
through jmp jtable[eax*4]. In this way, the control flow is
always forced to the jump table entries and thus cannot be
hijacked by attackers. Thus BitRewrite skips validating these
indirect jump instructions, to improve performance.

D. Compatibility Issues

A protected module only allows indirect control transfers
whose targets are valid Springboard stubs. But the stubs are
not restricted to be within the current module’s Springboard
section. Stubs within other modules’ Springboard sections
are also permitted, since their addresses are compatible; they
are validated the same way. And thus if every module in a
program (i.e. the main program and all DLLs) is rewritten,
according to the scheme described in the previous section,
the separate modules will be compatible with each other in
any combination and the control-flow integrity is enforced.

However, rewriting all modules is not always possible
in practice (e.g. system DLLs on Windows 7 cannot be
altered). While control transfers from an unprotected module
to a protected one cause no problem, if there is an indirect
control transfer from the protected module to an unprotected
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instructions’ targets before the control transfers. The policy
our scheme enforces is the following:
• Indirect call/jump instructions’ targets must be function

pointer stubs (i.e 8-byte aligned but not 16-byte aligned)
in the Springboard.

• The target of a return back to a sensitive function can be
any valid return stub (i.e. 16-byte aligned).

• Any other return instruction’s target must be a valid
normal return stub (i.e., 16-byte aligned with the 26th
bit 0).
As discussed in Section III-D, this enforcement can be

performed using one or two bit-testing instructions.
For any indirect call/jump instruction, its target should be

in the Springboard (i.e. the 27th bit is 0) and only 8-bytes
aligned (i.e. the 0-2 bits are 0, but the 3rd bit is 1). Thus if
the target address is bitwise ANDed with 8, the result should
be non-zero. In addition, if the TARGET is bitwise ANDed
with the mask 0x8000007 (i.e. M_F in Figure 6), the result
should be zero. As shown in Figure 6, these bitwise AND
operations are performed with the test instruction. If one
of these conditions is violated, the control flow is directed
to a predefined error handler (i.e. error in Figure 6). In
our implementation, the error handler will log the buggy
EIP value and the invalid transfer target, and then terminate
the process. (To record the EIP, there is a separate copy of
error for each indirect call/jump and return.)

Figure 6 also shows how the validation is inserted before
return instructions. Before returning, the target of the return
is on the top of the stack, pointed to by the esp register. The
return address is then tested against a mask M_R. The mask
is 0x800000f for returns from functions called by sensitive
functions, and 0xc00000f for all other return instructions.
An Exceptional Case. The function longjmp()

ends with an indirect jump, but its target is a return address

saved by a call to setjmp(), and so is 16-byte aligned. Thus
the check for this special jmp instruction matches the check
for a return instruction: test ecx, 0xc00000f.
Optimizations. Indirect jump instructions which are

used for switch statements, such as jmp jtable[eax*4], do not
need dynamic checks. For any switch statement, regardless
of what its control expression is, the control flow in the
binary generated by modern compilers (e.g., GCC and VC)
is forced to one entry in its jump table. For example, GCC
first makes a bound check against eax (corresponding to the
case value in switch statements). If it exceeds the bound,
then eax is assigned with a default value (corresponding
to the default case). And then, the control flow transfers
through jmp jtable[eax*4]. In this way, the control flow is
always forced to the jump table entries and thus cannot be
hijacked by attackers. Thus BitRewrite skips validating these
indirect jump instructions, to improve performance.

D. Compatibility Issues

A protected module only allows indirect control transfers
whose targets are valid Springboard stubs. But the stubs are
not restricted to be within the current module’s Springboard
section. Stubs within other modules’ Springboard sections
are also permitted, since their addresses are compatible; they
are validated the same way. And thus if every module in a
program (i.e. the main program and all DLLs) is rewritten,
according to the scheme described in the previous section,
the separate modules will be compatible with each other in
any combination and the control-flow integrity is enforced.

However, rewriting all modules is not always possible
in practice (e.g. system DLLs on Windows 7 cannot be
altered). While control transfers from an unprotected module
to a protected one cause no problem, if there is an indirect
control transfer from the protected module to an unprotected
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instructions’ targets before the control transfers. The policy
our scheme enforces is the following:
• Indirect call/jump instructions’ targets must be function

pointer stubs (i.e 8-byte aligned but not 16-byte aligned)
in the Springboard.

• The target of a return back to a sensitive function can be
any valid return stub (i.e. 16-byte aligned).

• Any other return instruction’s target must be a valid
normal return stub (i.e., 16-byte aligned with the 26th
bit 0).
As discussed in Section III-D, this enforcement can be

performed using one or two bit-testing instructions.
For any indirect call/jump instruction, its target should be

in the Springboard (i.e. the 27th bit is 0) and only 8-bytes
aligned (i.e. the 0-2 bits are 0, but the 3rd bit is 1). Thus if
the target address is bitwise ANDed with 8, the result should
be non-zero. In addition, if the TARGET is bitwise ANDed
with the mask 0x8000007 (i.e. M_F in Figure 6), the result
should be zero. As shown in Figure 6, these bitwise AND
operations are performed with the test instruction. If one
of these conditions is violated, the control flow is directed
to a predefined error handler (i.e. error in Figure 6). In
our implementation, the error handler will log the buggy
EIP value and the invalid transfer target, and then terminate
the process. (To record the EIP, there is a separate copy of
error for each indirect call/jump and return.)

Figure 6 also shows how the validation is inserted before
return instructions. Before returning, the target of the return
is on the top of the stack, pointed to by the esp register. The
return address is then tested against a mask M_R. The mask
is 0x800000f for returns from functions called by sensitive
functions, and 0xc00000f for all other return instructions.
An Exceptional Case. The function longjmp()

ends with an indirect jump, but its target is a return address

saved by a call to setjmp(), and so is 16-byte aligned. Thus
the check for this special jmp instruction matches the check
for a return instruction: test ecx, 0xc00000f.
Optimizations. Indirect jump instructions which are

used for switch statements, such as jmp jtable[eax*4], do not
need dynamic checks. For any switch statement, regardless
of what its control expression is, the control flow in the
binary generated by modern compilers (e.g., GCC and VC)
is forced to one entry in its jump table. For example, GCC
first makes a bound check against eax (corresponding to the
case value in switch statements). If it exceeds the bound,
then eax is assigned with a default value (corresponding
to the default case). And then, the control flow transfers
through jmp jtable[eax*4]. In this way, the control flow is
always forced to the jump table entries and thus cannot be
hijacked by attackers. Thus BitRewrite skips validating these
indirect jump instructions, to improve performance.

D. Compatibility Issues

A protected module only allows indirect control transfers
whose targets are valid Springboard stubs. But the stubs are
not restricted to be within the current module’s Springboard
section. Stubs within other modules’ Springboard sections
are also permitted, since their addresses are compatible; they
are validated the same way. And thus if every module in a
program (i.e. the main program and all DLLs) is rewritten,
according to the scheme described in the previous section,
the separate modules will be compatible with each other in
any combination and the control-flow integrity is enforced.

However, rewriting all modules is not always possible
in practice (e.g. system DLLs on Windows 7 cannot be
altered). While control transfers from an unprotected module
to a protected one cause no problem, if there is an indirect
control transfer from the protected module to an unprotected
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 call ecx

 ret

back:

 ret

foo:

 jmp back_sb-2
back:

foo_sb:
 jmp foo

 jmp back

 call ecx
back_sb:

 mov ecx,foo

 mov ecx,foo_sb

foo:
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 ...  jnz error
 test [esp],M_R

 jnz error
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 test ecx,8
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instructions’ targets before the control transfers. The policy
our scheme enforces is the following:
• Indirect call/jump instructions’ targets must be function

pointer stubs (i.e 8-byte aligned but not 16-byte aligned)
in the Springboard.

• The target of a return back to a sensitive function can be
any valid return stub (i.e. 16-byte aligned).

• Any other return instruction’s target must be a valid
normal return stub (i.e., 16-byte aligned with the 26th
bit 0).
As discussed in Section III-D, this enforcement can be

performed using one or two bit-testing instructions.
For any indirect call/jump instruction, its target should be

in the Springboard (i.e. the 27th bit is 0) and only 8-bytes
aligned (i.e. the 0-2 bits are 0, but the 3rd bit is 1). Thus if
the target address is bitwise ANDed with 8, the result should
be non-zero. In addition, if the TARGET is bitwise ANDed
with the mask 0x8000007 (i.e. M_F in Figure 6), the result
should be zero. As shown in Figure 6, these bitwise AND
operations are performed with the test instruction. If one
of these conditions is violated, the control flow is directed
to a predefined error handler (i.e. error in Figure 6). In
our implementation, the error handler will log the buggy
EIP value and the invalid transfer target, and then terminate
the process. (To record the EIP, there is a separate copy of
error for each indirect call/jump and return.)

Figure 6 also shows how the validation is inserted before
return instructions. Before returning, the target of the return
is on the top of the stack, pointed to by the esp register. The
return address is then tested against a mask M_R. The mask
is 0x800000f for returns from functions called by sensitive
functions, and 0xc00000f for all other return instructions.
An Exceptional Case. The function longjmp()

ends with an indirect jump, but its target is a return address

saved by a call to setjmp(), and so is 16-byte aligned. Thus
the check for this special jmp instruction matches the check
for a return instruction: test ecx, 0xc00000f.
Optimizations. Indirect jump instructions which are

used for switch statements, such as jmp jtable[eax*4], do not
need dynamic checks. For any switch statement, regardless
of what its control expression is, the control flow in the
binary generated by modern compilers (e.g., GCC and VC)
is forced to one entry in its jump table. For example, GCC
first makes a bound check against eax (corresponding to the
case value in switch statements). If it exceeds the bound,
then eax is assigned with a default value (corresponding
to the default case). And then, the control flow transfers
through jmp jtable[eax*4]. In this way, the control flow is
always forced to the jump table entries and thus cannot be
hijacked by attackers. Thus BitRewrite skips validating these
indirect jump instructions, to improve performance.

D. Compatibility Issues

A protected module only allows indirect control transfers
whose targets are valid Springboard stubs. But the stubs are
not restricted to be within the current module’s Springboard
section. Stubs within other modules’ Springboard sections
are also permitted, since their addresses are compatible; they
are validated the same way. And thus if every module in a
program (i.e. the main program and all DLLs) is rewritten,
according to the scheme described in the previous section,
the separate modules will be compatible with each other in
any combination and the control-flow integrity is enforced.

However, rewriting all modules is not always possible
in practice (e.g. system DLLs on Windows 7 cannot be
altered). While control transfers from an unprotected module
to a protected one cause no problem, if there is an indirect
control transfer from the protected module to an unprotected
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required
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foo:
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foo_sb:
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instructions’ targets before the control transfers. The policy
our scheme enforces is the following:
• Indirect call/jump instructions’ targets must be function

pointer stubs (i.e 8-byte aligned but not 16-byte aligned)
in the Springboard.

• The target of a return back to a sensitive function can be
any valid return stub (i.e. 16-byte aligned).

• Any other return instruction’s target must be a valid
normal return stub (i.e., 16-byte aligned with the 26th
bit 0).
As discussed in Section III-D, this enforcement can be

performed using one or two bit-testing instructions.
For any indirect call/jump instruction, its target should be

in the Springboard (i.e. the 27th bit is 0) and only 8-bytes
aligned (i.e. the 0-2 bits are 0, but the 3rd bit is 1). Thus if
the target address is bitwise ANDed with 8, the result should
be non-zero. In addition, if the TARGET is bitwise ANDed
with the mask 0x8000007 (i.e. M_F in Figure 6), the result
should be zero. As shown in Figure 6, these bitwise AND
operations are performed with the test instruction. If one
of these conditions is violated, the control flow is directed
to a predefined error handler (i.e. error in Figure 6). In
our implementation, the error handler will log the buggy
EIP value and the invalid transfer target, and then terminate
the process. (To record the EIP, there is a separate copy of
error for each indirect call/jump and return.)

Figure 6 also shows how the validation is inserted before
return instructions. Before returning, the target of the return
is on the top of the stack, pointed to by the esp register. The
return address is then tested against a mask M_R. The mask
is 0x800000f for returns from functions called by sensitive
functions, and 0xc00000f for all other return instructions.
An Exceptional Case. The function longjmp()

ends with an indirect jump, but its target is a return address

saved by a call to setjmp(), and so is 16-byte aligned. Thus
the check for this special jmp instruction matches the check
for a return instruction: test ecx, 0xc00000f.
Optimizations. Indirect jump instructions which are

used for switch statements, such as jmp jtable[eax*4], do not
need dynamic checks. For any switch statement, regardless
of what its control expression is, the control flow in the
binary generated by modern compilers (e.g., GCC and VC)
is forced to one entry in its jump table. For example, GCC
first makes a bound check against eax (corresponding to the
case value in switch statements). If it exceeds the bound,
then eax is assigned with a default value (corresponding
to the default case). And then, the control flow transfers
through jmp jtable[eax*4]. In this way, the control flow is
always forced to the jump table entries and thus cannot be
hijacked by attackers. Thus BitRewrite skips validating these
indirect jump instructions, to improve performance.

D. Compatibility Issues

A protected module only allows indirect control transfers
whose targets are valid Springboard stubs. But the stubs are
not restricted to be within the current module’s Springboard
section. Stubs within other modules’ Springboard sections
are also permitted, since their addresses are compatible; they
are validated the same way. And thus if every module in a
program (i.e. the main program and all DLLs) is rewritten,
according to the scheme described in the previous section,
the separate modules will be compatible with each other in
any combination and the control-flow integrity is enforced.

However, rewriting all modules is not always possible
in practice (e.g. system DLLs on Windows 7 cannot be
altered). While control transfers from an unprotected module
to a protected one cause no problem, if there is an indirect
control transfer from the protected module to an unprotected
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Microsoft’s Control-Flow Guard
Included in MS Visual Studio
Inserts control-flow checks before indirect calls during 
compilation
A bitmap marks the allowed targets

Spring 2018 Stevens Institute of Technology

check bitmap[%rax]
call *(%rax)

bitmap:

Exe:

Dll:

1 bit per 8 or 16-byte slot

Compiled
with
CFG
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Inserts control-flow checks before indirect calls during 
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check bitmap[%rax]
call *(%rax)

bitmap:

Exe:

Dll

Dll1 bit per 8 or 16-byte slot

Compiled
with
CFG

Non-CFG
library



Most instructions cannot be 
targeted (> 98%)
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Reachable Targets Under CFI

Targetable locations
in code pages:

Without
CFI

With
CFI



What is Left
Call Sites (CS)

§ Targetable by return instructions

§ CS gadgets

§ Return Oriented Programming (ROP)

Function Entry Points (EP)
§ Targetable by indirect call and indirect jump instructions

§ EP gadgets

§ Call Oriented Programming (COP) 
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call  …

ret

CS

call  *(rax)

Function_X:

EP



CS gadgets: Linking
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call  …

ret

CS

call  …

ret

CS

call  …

ret

CS



CS gadgets: Linking
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call  …
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CS

call  …
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CS

call  …

ret

CS

gadget 
address

gadget 
address

gadget 
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stack



CS gadgets: Linking
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call  …

ret

CS

call  …

ret

CS

call  …

ret

CS

gadget 
address

gadget 
address

gadget 
address

stack

data data



CS gadgets: Calling Functions
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call  …

ret

CS

call  …

ret

CS

call  …

call *(%rsi)

ret

CS

Function_X:

ret



CS gadgets: Calling Sensitive 
Functions
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call  …

ret

CS

call  …

ret

CS

VirtualProtect:

ret

CCFIR: No indirect 
calls to sensitive APIs

call  …

call *(%rsi)

ret

CS



CS gadgets: Calling Sensitive 
Functions
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call  …

ret

CS

call  …

ret

CS

VirtualProtect:

retcall  …

call 788..

ret

CS

call  …

call *(%rsi)

ret

CS

CS



EP gadgets: Linking
Chaining is significantly harder
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call  *(%rax)

call  *(%rax)

Function_Y:

Function_Z:
call  *(%rax)

Function_X:
EP

EP

EP



EP gadgets: Calling Functions
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call  *(%rax)

Function_Z:

call  *(%rax)

Function_X:
EP

EP

ret

memset:

call  *(%rbx)

call  *(%rdx)

Function_Q:
EP



EP gadgets: Calling Functions
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call  *(%rax)

Function_Z:

call  *(%rax)

Function_X:
EP

EP

ret

memset:

call  *(%rbx)

call  *(%rdx)

Function_Q:
EP

call  78..

call  *(%rdx)

Function_L:
EP



Switch Control: CS à EP
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call  *(%rax)

Function_X:
EP

call  …

ret

CS

call  …

call  *(%rax)

CS



Switch Control: EP à CS
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call  *(%rax)

Function_X:
EP

call  …

ret

CS

ret

Function_Y: Need to 
corrupt return 

address



Switch Control: EP à CS
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call  *(%rax)

Function_X:
EP

call  …

ret

CS

ret

Function_Y: Need to 
corrupt return 

address

Corrupt stack by
• breaking calling conventions
• Self-corrupting function (e.g., memcpy())



Compromising Coarse-grained 
CFI is Possible
https://www.cs.stevens.edu/~gportoka/files/outofcontrol
_oakland14.pdf
Exploiting Internet Explorer 8

§ Vulnerability: Heap Overflow (CVE-2012-1876)
§ More info about vulnerability @ 

http://www.vupen.com/blog

Assume ASLR / DEP / CCFIR in place
First controlled indirect branch instruction: jmp edx

(EP à CS) + VirtualProtect + memcpy = Code Injection

Spring 2018 Stevens Institute of Technology

https://www.cs.stevens.edu/~gportoka/files/outofcontrol_oakland14.pdf
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Assume ASLR / DEP / CCFIR in place
First controlled indirect branch instruction: jmp edx

(EP à CS) + VirtualProtect + memcpy = Code Injection
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Finer-Grained CFI
Various approaches to improve CFI

§ More accurate CFG and more checks
§ Only allow calls to target the functions they actually were 

intended to
§ Better forward-edge CFI

Context-sensitive control flow enforcement
§ For example, a function should return to its caller not any 

caller

Spring 2018 Stevens Institute of Technology
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Shadow Stacks
return 

address

saved rbp

local 
variables

return 
address

saved rbp

local 
variables

Regular 
stack

return 
address
return 

address

Shadow
stack

call f
…

f:
ssp -= 8
*ssp = *sp
...
...
*ssp == *rsp
if NZ then error
ret

This results into 
multiple 

instructions
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Shadow Stacks
return 

address

saved rbp

local 
variables

return 
address

saved rbp

local 
variables

Regular 
stack

return 
address

return 
address

Shadow
stack

f:
*(sp+off) = *sp
...
...
*(sp+off) == *sp
if NZ then error
ret

This results into 
less instructions

Fixed 
offset 
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Shadow vs Unsafe Stacks
saved rbp

local 
variables

saved rbp

local 
variables

Unsafe
stack

return 
address
return 

address

Shadow
stack

A separate register 
(not %rsp) used



Shadow Stack Limitations
Performance is the main obstacle for adoption

§ The Performance Cost of Shadow Stacks and Stack Canaries
§ https://people.eecs.berkeley.edu/~daw/papers/shadow-

asiaccs15.pdf

Intel announced that hardware support for shadow stacks 
and CFI (called control-flow enforcement) will be made 
available on their future CPUs

§ http://www.theregister.co.uk/2016/06/10/intel_control_flo
w_enforcement/
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https://people.eecs.berkeley.edu/~daw/papers/shadow-asiaccs15.pdf
http://www.theregister.co.uk/2016/06/10/intel_control_flow_enforcement/


kBouncer: Efficient and 
Transparent ROP Mitigation

§ Vassilis Pappas et al. 
[Usenix Security ‘13]

§ Winner of Microsoft’s 
Blue hat prize

Use HW debugging feature 
to detect abnormal control-
flow transfers

§ Low overhead!
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Heuristics-based Approaches



CPU registers store last 
branches taken by the 
program

§ Ring-buffer structure

Holds last 16 entries
§ Store source:destination

Configurable
§ Example: Store only 

indirect calls

Spring 2018 Stevens Institute of Technology

Last Branch Record (LBR)

Branch

Branch

Branch

Branch

Branch

Branch

Branch
Branch

Branch

Branch

Branch

Branch

Branch

Branch

Branch BranchBranch



Detection Approach
1. Returns must target call sites

2. A limited number of small code fragments can be 
chained together

Spring 2018 Stevens Institute of Technology

pop   rcx
pop   rax
ret

add   rax, rcx
ret

pop   rsi
pop   rdi
ret

add   rax, rsi
add   rax, rdi
pop   rcx
ret

Max 
gadget 

size

call  …

ret

CS
call  …

ret

CS

Max chain length



Fast Checks
The payload will eventually interact with the OS through 
system calls

§ Check for abnormal control transfers on system call entry
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Detection Approach
1. Returns must target call sites

2. A limited number of small code fragments can be 
chained together

Spring 2018 Stevens Institute of Technology

pop   ecx
pop   eax
retn

add   eax, ecx
retn

pop   esi
pop   edi
retn

add   eax, esi
add   eax, edi
pop   ecx
retn

Max 
gadget 

size

Max chain length

call  …

ret

CS
call  …

ret

CS

How can we establish the max 
gadget size and max chain length?



Establishing The Parameters
Set max gadget size to 19 (<20)
Evaluate max chain length experimentally

Spring 2018 Stevens Institute of Technology
Dataset: Internet Explorer, Adobe Reader, Flash Player, Microsoft Office (Word, Excel, Powerpoint)

detection
threshold
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Chosen Parameters

kBouncer ROPecker
Time-of-Check Entry of Sensitive API Entry of Sensitive API +

during execution

Gadget Length 20 instructions 6 instructions

Inspect BH
instances

Detected max "benign" 
gadget chain length: 5

Detected max "benign" 
gadget chain length: 10

Gadget Chain
Length 8 gadgets 11 gadgets

Approach similar to 
kBouncer
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Why Picking Parameters Is Hard

Executing a legitimate program

No alert, 
all is good!

Max 
gadget 

size

Max chain length

Se
cu

rit
y

Ch
ec

k



Spring 2018 Stevens Institute of Technology

Why Picking Parameters Is Hard

Executing a legitimate program

Max 
gadget 

size

Max chain length

Se
cu

rit
y

Ch
ec

k

False 
positive!



Spring 2018 Stevens Institute of Technology

Why Picking Parameters Is Hard

Executing a legitimate program

Max 
gadget 

size

Max chain length

Se
cu

rit
y

Ch
ec

k

False 
positive!



How to Avoid Detection?
Interpose longer gadgets in the exploit
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No alert, 
all is good!

Max 
gadget 
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Max chain length

Se
cu

rit
y

Ch
ec

k



Long gadgets frequently:
§ Use a high number of 

registers
§ Leave used registers dirty 

at exit
§ Require memory 

preparations to avoid 
crashing

§ Have whacky code 
sequences
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Using Long Gadgets

mov eax, ebx
mov ecx, edx
add esi, edi

mov esi, [0x1234]
cmp esi, 10
jg X

mov ecx, 0x2321
div ecx
mov [eax], edi

mov ecx, 0x5678
and edi, ecx
xor eax, edi
retn



Such Defenses Are Also 
Vulnerable
http://www.cs.stevens.edu/~gportoka/files/sizematters_
usenixsec14.pdf

Exploiting Internet Explorer 8 similar to CFI attack

Assumes kBouncer is in place
§ Also applies to similar defenses like ROPecker [NDSS ‘13]

Multiple payloads
§ kBouncer thresholds: TC=6, TG=20
§ Stricter thresholds: TC=2, TG=27
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http://www.cs.stevens.edu/~gportoka/files/sizematters_usenixsec14.pdf


VirtualProtect

SHELLCODE

7

2

2

2

3

Security check

33
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Per Application Thresholds
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What if We Had the Perfect CFG
We know exactly which functions are called from an 
indirect call
We know exactly the call sites where a function’s return is 
supposed to return
But we still do not have a shadow stack

Control Flow Bending
https://www.usenix.org/sites/default/files/conference/pr
otected-files/sec15_slides_carlini.pdf
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https://www.usenix.org/sites/default/files/conference/protected-files/sec15_slides_carlini.pdf
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How to Exploit the memcpy() 
Hotspot

…
…
memcpy(dst,src,N)
…
… …

…
ret

memcpy:

some_function:

retaddr

Local 
data

m
em

cp
y

fra
m

e

Assume memcpy
is not buggy
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How to Exploit the memcpy() 
Hotspot

retaddr

Local 
data

m
em

cpy
fram

e

memcpy(dst, src, N)

Attacker data



Dispatcher Function
memcpy() acts as a dispatcher function

§ Can be used to return to gadgets part of the CFG

Other hot functions can act as dispatcher functions, as 
long as:

§ They are commonly called
§ Their arguments are under attacker control
§ Can overwrite their own return address
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Summary
CFI is a powerful security primitive

Depends on the quality/accuracy of the CFG

Even in the ideal case, it might fall to code-reuse attacks
§ Depends on the application

§ Complexity of the CFG
§ Availability of gadgets
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Reading 
Heap spraying 
https://www.corelan.be/index.php/2011/12/31/exploit-
writing-tutorial-part-11-heap-spraying-demystified/
Chained return-to-libc
https://sploitfun.wordpress.com/2015/05/08/bypassing-nx-
bit-using-chained-return-to-libc/
Practical return-oriented programming 
https://trailofbits.files.wordpress.com/2010/04/practical-
rop.pdf
The geometry of innocent flesh on the bone: return-into-libc
without function calls (on the x86) 
https://cseweb.ucsd.edu/~hovav/dist/geometry.pdf
Heap feng-shui
https://www.blackhat.com/presentations/bh-europe-
07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
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