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History of Cryptography

Scytale
https://en.wikipedia.org/wiki/Scytale
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Caesar Cipher

Plaintext: 
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

Ciphertext: 
QEB NRFZH YOLTK CLU GRJMP LSBO QEB IXWV ALD

Shift by 3 
and 

substitute
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Caesar Cipher

Plaintext: 
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

Ciphertext: 
QEB NRFZH YOLTK CLU GRJMP LSBO QEB IXWV ALD

En(x) = (x + n) mod 26, n = 3



Goals of Cryptography
Confidentiality

§ Keep content secret from unauthorized entities
Integrity

§ Protect content from unauthorized modification
Authentication

§ Confirm the identity of communicating entities
§ Confirm the identify of data author

Non-repudiation
§ Prevent entities from denying previous commitments or 

actions
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How to Break Crypto
Adi Shamir: “Crypto is typically bypassed, not penetrated
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This Lecture
Symmetric encryption

Public-key encryption

Hashing and message authentication codes

Secure channels in practice

Public key authentication 

TLS/SSL and attacks
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Symmetric Encryption



Symmetric Encryption
The universal technique for providing confidentiality for 
transmitted or stored data

Also referred to as conventional encryption or single-
key/secret-key encryption

Two requirements for secure use:
§ A strong encryption algorithm
§ Sender and receiver must have obtained copies of the 

secret key in a secure fashion and must keep the key secure
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Figure 2.1  Simplified Model of Symmetric Encryption
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Terminology
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Block ciphers
Processes the input one 
block of elements at a time

Produces an output block 
for each input block

Stream ciphers
Processes the input and 
produces output one 
element at a time

Requires unpredictable 
pseudorandom stream 
independent of the key
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Types of Ciphers



Stream Ciphers
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Beware of Randomness
Cryptographic algorithms frequently require random 
numbers
A true random number generator (TRNG)

§ Uses a nondeterministic source to produce randomness
§ Most operate by measuring unpredictable natural processes

§ e.g., radiation, gas discharge, leaky capacitors
§ Available on modern systems, but cannot provide high-

volume of data

Pseudorandom numbers are
§ Sequences produced that satisfy statistical randomness tests
§ Likely to be predictable
§ Likely to be used by implementations
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Blocking Ciphers
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Block Ciphers - DES
Data Encryption Standard (DES)

§ The most widely used encryption scheme in 1970-2000
§ Block size: 64 bits, key size: 56 bits

Problems
§ 56-bit key is too small
§ Electronic Frontier Foundation (EFF) announced in July 1998 

that it had broken a DES key in 56 hours
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Block Ciphers - 3DES
Triple DES (3DES)

§ Repeats basic DES algorithm three times using either two or 
three unique keys

§ Key size: 168 bits, block size: 64 bits

Problems
§ Algorithm is sluggish in software
§ Small block size
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Block Ciphers - AES
Advanced Encryption Standard (AES)

§ A specification for the encryption of electronic data 
established by the U.S. National Institute of Standards and 
Technology (NIST) in 2001

§ A subset of the Rijndael cipher
§ Multiple key sizes: 128, 192 or 256 bits
§ Block size: 128 bits

Currently considered safe to use

Spring 2018 Stevens Institute of Technology



Attacks
Brute force attacks

§ Try all possible keys on some ciphertext until an intelligible 
translation into plaintext is obtained

§ On average half of all possible keys must be tried to achieve 
success
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Time Required to Brute-force

Key size 
(bits) Cipher 

Number of 
Alternative 

Keys 
Time Required at 109 

decryptions/s 

Time Required 
at 1013 

decryptions/s 
56 DES 256  ≈ 7.2 × 1016 255 ns = 1.125 years 1 hour 

128 
AES 

2128  ≈ 3.4 × 1038 2127 ns = 5.3 × 1021 
years 5.3 × 1017 years 

168 Triple DES 
2168  ≈ 3.7 × 1050 2167 ns = 5.8 × 1033 

years 5.8 × 1029 years 

192 AES 2192  ≈ 6.3 × 1057 2191 ns = 9.8 × 1040 
years 

9.8 × 1036 years 

256 AES 2256  ≈ 1.2 × 1077 2255 ns = 1.8 × 1060 
years 

1.8 × 1056 years 

 



Attacks
Brute force attacks

§ Try all possible keys on some ciphertext until an intelligible 
translation into plaintext is obtained

§ On average half of all possible keys must be tried to achieve 
success

Cryptanalytic attacks
§ Exploit the characteristics of the algorithm and attempt to 

deduce a specific plaintext or the key being used
§ Requires…

§ … knowledge of the general characteristics of the plaintext
§ … sample plaintext-ciphertext pairs
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Attack Type Information Known by Attacker
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Attacking the Caesar Cipher

Plaintext: 
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

Ciphertext: 
QEB NRFZH YOLTK CLU GRJMP LSBO QEB IXWV ALD

Shift by 3 
and 

substitute
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Modes of Operation
Direct use of block ciphers is not very useful

§ Attackers can build a “code book” of plaintext/ciphertext
equivalents

§ Message-length needs to be multiple of cipher block size

Solution! Modes of operation
§ Five standard modes
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ECB Mode
In electronic codebook (ECB) mode each block of 
plaintext is encrypted using the same key

§ Easy to parallelize

Problems
§ Cryptanalysts may be able to exploit regularities in the 

plaintext (e.g., if pi == pj then ci == cj)
§ Data patterns may remain visible
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ECB Mode
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ECB mode is not recommended 



CBC Mode
In Cipher Block Chaining mode the input is the XOR of the 
current plaintext block and the preceding ciphertext block

§ Initialization vector (IV) 
§ Must be random and must not be reused

§ Not parallelizable
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CBC Mode
During decryption the same IV must be used

§ Can be transmitted with the message
An error in a transmitted block also affects the following 
block but not subsequent ones
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CTR Mode
Counter mode can be used to turn any blocking cipher to 
a stream cipher

§ The counter is a combination of an integer (0..N-1) with an 
nonce (IV)

§ Parallelizable!
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Cipher Feedback (CFB)
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Public-Key Encryption
Publicly proposed by Diffie and Hellman in 1976
Based on mathematical functions

§ …on the practical difficulty of factoring the product of two 
large prime numbers

Asymmetric
§ Uses two separate keys a public and a private key
§ Public key is made public for others to use

Multiple algorithms with different uses
§ Establish a shared secret key
§ Encrypt a message
§ Digital signatures
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Requirements for Public-Key 
Cryptosystems
Computationally easy …

§ ... to create key pairs
§ … for sender knowing public key to encrypt messages
§ … for receiver knowing private key to decrypt ciphertext

Computationally infeasible …
§ … for opponent to determine private key from public key
§ … for opponent to otherwise recover original message

Useful if either key can be used for each role
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Symmetric vs Asymmetric
Which one is best?

The strength of public-key cryptography depends more 
heavily on the length of the key
Intrinsically both offer similar guarantees against 
cryptanalysis
Public-key encryption is usually slower
A shared key must be kept secret, similarly to the private 
key, but unlike the public key
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Encryption with Public Key
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Encryption with Private Key
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Digital Signing



Digital Signing
Verify …

§ … the author of data
§ … the integrity of data
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Authentication with Digital 
Signatures
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Digital Envelopes
Use PK cryptography for encrypting a randomly generated 
symmetric key, which is used to encrypt a (large) message

§ PK is only used to encrypt the key

Spring 2018 Stevens Institute of Technology



Digital Envelopes
Opening an envelope
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PK Encryption Algorithms
Diffie-Hellman key exchange algorithm

§ Enables two users to securely reach agreement about a 
shared secret that can be used as a secret key for 
subsequent symmetric encryption of messages

§ Limited to the exchange of the keys

RSA (Rivest, Shamir, Adleman)
§ Developed in 1977
§ Most widely accepted and implemented approach to public-

key encryption

Elliptic curve cryptography (ECC)
§ Security like RSA, but with much smaller keys
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Algorithm Digital Signature Symmetric Key 
Distribution 

Encryption of 
Secret Keys 

RSA Yes Yes Yes 

Diffie-Hellman No Yes No 

DSS Yes No No 

Elliptic Curve Yes Yes Yes 
 

Table 2.3

Applications for Public-Key Cryptosystems

Comparison
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RSA Security
Based on the assumption that factoring numbers is hard

Variable key length
§ Largest, publicly known, factored RSA number is 768 bits
§ It is generally believed that 1024-bit keys may have already 

been broken or will soon be
§ 2048-bit keys are recommended as the minimum

Part of the Public Key Cryptography Standards (PKCS)

In practice used with digital envelopes
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RSA Security
Brute force

§ Trying all possible private keys
§ Defense is to use a large key space, however this slows speed of 

execution
Mathematical attacks

§ Several approaches, all equivalent in effort to factoring the 
product of two primes

Timing attacks
§ Depend on the running time of the decryption algorithm
§ Comes from a completely unexpected direction and is a 

ciphertext-only attack
§ Countermeasures: constant exponentiation time, random delay, 

blinding
Chosen ciphertext attacks

§ Attack exploits properties of the RSA algorithm
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Cryptographic Key 
Recommendation

https://www.keylength.com/en/1/

https://www.keylength.com/en/1/
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Hashing and 
Message Authentication 

Codes
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Hash Function Properties
Can be applied to a block of data of any size
Produces a fixed-length output

Security properties:
§ One-way or pre-image resistant: computationally infeasible 

to find x such that H(x) = h
§ Given x and H(X), it is computationally infeasible to find   y ≠ 

x such that H(y) = H(x)
§ Collision resistant or strong collision resistance: 

computationally infeasible to find any pair (x,y) such that 
H(x) = H(y)
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Simple Hash Function
Split input in blocks of n bits
Ci = bi1 Å bi2 Å . . . Å bim
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Secure Hash Algorithm (SHA)
SHA was originally developed by NIST

§ Published as FIPS 180 in 1993

§ Revised in 1995 as SHA-1

§ Produces 160-bit hash values 

SHA-2 adds 3 additional versions of SHA 

§ SHA-256, SHA-384, SHA-512 with 256/384/512-bit hash 

values

§ Same basic structure as SHA-1 but greater security
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SHA Comparison
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SHA-3
SHA-1 considered insecure and has been  phased out for 
SHA-2
SHA-2 shares same structure and mathematical 
operations as its predecessors and causes concern
Due to the time required to replace SHA-2 should it 
become vulnerable, NIST announced in 2007 a 
competition to produce SHA-3
SHA-3, a subset of the cryptographic primitive family 
Keccak

§ Better security (resist attacks against SHA-2)
§ Appropriate for fast implementation in hardware
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Algorithm and
variant Output size (bits) Block size (bits) Max message size 

(bits) Security (bits)
Example 
Performance 
(MiB/s)[12]

MD5 (as reference) 128 512 264 − 1 <64 (collisions 
found) 335

SHA-0 160 512 264 − 1 <80 (collisions 
found) -

SHA-1 160 512 264 − 1 <80 (theoretical 
attack[13] in 261) 192

SHA-2

SHA-224
SHA-256

224
256 512 264 − 1 112

128 139

SHA-384
SHA-512
SHA-512/224
SHA-512/256

384
512
224
256

1024 2128 − 1

192
256
112
128

154

SHA-3

SHA3-224
SHA3-256
SHA3-384
SHA3-512
SHAKE128
SHAKE256

224
256
384
512
d (arbitrary)
d (arbitrary)

1152
1088
832
576
1344
1088

∞

112
128
192
256

min(d/2, 128)
min(d/2, 256)

Comparison from Wikipedia
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Message Authentication Code
Verify message integrity and authenticity
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MAC with Symmetric Encryption
Encrypt hash of message using shared secret key, verify 
by decrypting with the same key
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MAC with Public-Key Encryption
Encrypt hash of message using private key, verify using 
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Digital Signatures
Similar to MAC using public-key cryptography
Used for authenticating both source and data integrity
Created by encrypting hash code with private key
Does not provide confidentiality

§ Message is safe from alteration but not eavesdropping
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Hashed MAC (HMAC) Standard
A MAC using a secret key that enables the use of available 
hash functions without modifications

To allow for easy replaceability of the embedded hash 
function in case faster or more secure hash functions are 
found or required

To use and handle keys in a simple way

Stevens Institute of TechnologySpring 2018



HMAC(K,M) = Hash[(K+ XOR opad) || Hash[(K+ XOR ipad) || M)]]

Stevens Institute of Technology

• K+ is K padded with zeros on the 
left so that the result is b bits in 
length

• ipad is a pad value of 36 hex 
repeated to fill block

• opad is a pad value of 5C hex 
repeated to fill block

• M is the message input to 
HMAC (including any padding)

• IV Initialization vector (if hash 
function requires one)
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HMAC(K,M) = Hash[(K+ XOR opad) || Hash[(K+ XOR ipad) || M)]]

Stevens Institute of TechnologySpring 2018

• Note that the XOR with ipad
results in flipping one-half of 
the bits of K .

• Similarly, the XOR with opad
results in flipping one-half of 
the bits of K , but a different set 
of bits. In effect, by passing Si 
and So through the hash 
algorithm, we have 
pseudorandomly generated 
two keys from K .



Hashes vs MACs vs Signatures

Hash MAC Signature
Integrity ✔ ✔ ✔

Authentication ✔ ✔

Non-repudiation ✔

Keys None Symmetric Asymmetric
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Private Connections in 
Practice
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Encrypted Connections
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PUBob PRBob
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Mutually agreed secret/session key

Encrypted session 
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Passive Attacker
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Active Attacker

Bob Alice

PUBob PRBob
PUAlice PRAlice
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Mutually agreed secret/session key
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Encrypt and MAC
Encrypted data need to protected with MAC against 
active adversaries

MAC-and-Encrypt E(P) || M(P)
§ No integrity of the ciphertext

MAC-then-Encrypt E(P || M(P))
§ No integrity of the ciphertext

Encrypt-then-MAC E(P) || M(E(P))
§ The right option
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Active Attacker
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Man-in-the-middle (MITM)

Bob Alice

PUBob PRBob
PUAlice PRAlice

PUBob

PUDarth PRDarth

PUAlice

PUDarth

Mutually agreed secret/session key Mutually agreed secret/session key

PUDarth

Fully compromised channel



Types of Adversaries/Attacks
Passive – does not affect system resources

§ Can intercept messages but not modify 

Active – attempt to alter system resources or affect their 
operation

§ Can intercept, re-order, and alter messages
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Public-Key Authenticity
PK encryption requires that parties can establish the 
authenticity of public keys

Some ways to accomplish this:
§ Trust on first use (TOFU)
§ Web of Trust 
§ Public-key infrastructure (PKI)
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Certificates
Certificates are essentially signed public keys

§ Signed with the private key of a certificate authority
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Certificates

Stevens Institute of Technology

Unsigned certificate:
contains user ID,
user's public key,
as well as information
concerning the CA

Signed certificate

Recipient can verify
signature by comparing
hash code values

Figure 2.7  Public-Key Certificate Use
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Bob Alice
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Mutually agreed secret/session key

CERTAlice
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Certificate Chains
Trust anchors: Systems are preconfigured with a list of 
trusted certificates

§ System-wide or application-based store
§ More can be added: self-signed, organization certificates, 

MiTM certificates, etc.
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Server provides a chain of 
certificates
Any CA can sign certificates for 
any domain

§ The system is as secure as the 
weakest CA



CAs are businesses doing 
this for profit

§ Certificates are expensive 
Self-signed certs cost 
nothing

Despite the warnings users 
tend to keep going
Now you can a cert for free

§ https://letsencrypt.org/
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CAs issuing invalid certs
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Problems with CAs



Problems with CAs
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Misplaced “CA” keys



Problems with CAs
Why is this root cert in my browser?
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TLS/SSL and Attacks



TLS
Transport Layer Security (TLS) is the most widely used 
protocol for secure communications over TCP

Succeeds the Secure Socket Layer (SSL)
§ Plagued by various security issues

Used in HTTPS, IMAPS, SMTP, etc.
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TLS Handshake

ClientHello

ClientKeyExchange

ChangeCipherSpec

Finished

GET /login HTTP/1.1\r\n

ServerHello

Certificate [optional]

ServerKeyExchange

ServerHelloDone

ChangeCipherSpec

Finished



TLS Protocols
Handshake

§ Negotiate sessions keys
§ Authenticate server and (optionally) client

Record
§ Exchange messages encrypted and MACed with established 

session key
§ Compression before encryption

§ Don’t do it
§ Extensible sub-protocols

§ For example, change the cipher suit used
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Downgrade Attacks
Goal: force the use of a weak cipher suite
Possible because browsers voluntarily downgrade the 
protocol upon handshake failure

§ For interoperability reasons
§ Due to server bugs
§ Due to protocol weaknesses

Methods:
§ Close connections until retry with lower SSL/TLS version
§ Modify list of supported ciphers sent from the client
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Downgrading TLS Connection

Bob Alice

ClientHello (TLS 1.1)

RST

ClientHello (TLS 1.0)

RST

ClientHello (SSL 3.0)
ü
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Downgrade Cipher Suite

Bob Alice

PUBob PRBob
PUAlice PRAlice

PUBob

PUDarth PRDarth

SSL handshake (I only support 512-bit RSA)

PUAlice PUAlice

PUBob

Can be factored in less 
than 12 hours for $100 on 

Amazon EC2

SSL handshake (I only support 512-bit RSA)
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Downgrade Cipher Suite

Bob Alice

PUBob PRBob
PUAlice PRAlice

PUBob

PUDarth PRDarth

SSL handshake (I only support 512-bit RSA)

PUAlice PUAlice

PUBob

Can be factored in less 
than 12 hours for $100 on 

Amazon EC2

SSL handshake (I only support 512-bit RSA)

https://www.smacktls.com/

https://www.smacktls.com/


SSL Stripping
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HSTS
HTTP Strict Transport Security protects against SSL 
stripping and other attacks

§ Convert any insecure links to https
§ Treat all errors as fatal

Implemented through an HTTP header
§ Strict-Transport-Security: max-age=31536000

You may need to safely load the site once
§ Trust-on-first use

Browsers now also do HSTS-preloading
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Other Mitigations
HTTP Public Key Pinning
https://en.wikipedia.org/wiki/HTTP_Public_Key_Pinning
Online Certificate Status Protocol
https://en.wikipedia.org/wiki/Online_Certificate_Status_
Protocol
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Apple Fail (https://gotofail.com/)

https://gotofail.com/


CRIME Attack
Leverage compression to leak HTTP cookies
Need to be able to inject a script in a webpage
Issue multiple requests to target website to brute force 
cookie
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Compression
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POST /target HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0) 
Gecko/20100101 Firefox/14.0.1
Cookie: sessionid=d8e8fca2dc0f896fd7cb4cb0031ba249

Slkgloirskjdal3irjlndfsdnvlsidjsdp91jnflijdsf;9jas;ofdas;dqlnds

Header sent 
with every 
request

POST data

Compressed 
data

Original 
data

Encrypted 
data



Compression
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POST /target HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0) 
Gecko/20100101 Firefox/14.0.1
Cookie: sessionid=d8e8fca2dc0f896fd7cb4cb0031ba249

Cookie: sessionid=a

Header sent 
with every 
request

POST data

Compressed 
dataOriginal 

data

Encrypted 
data

Saved transmission bandwidth due to compression



Compression
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POST /target HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0) 
Gecko/20100101 Firefox/14.0.1
Cookie: sessionid=d8e8fca2dc0f896fd7cb4cb0031ba249

Cookie: sessionid=d

Header sent 
with every 
request

POST data

Compressed 
dataOriginal 

data

Encrypted 
data

Saved transmission bandwidth due to compression

Observing the amount of 
data transmitted tells me 
when I get a match in the 

POST data



Heartbleed
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Reading

TLS - https://hpbn.co/transport-layer-security-tls/

TLS attacks - https://mitls.org/pages/attacks/

Analysis of the HTTPS Certificate Ecosystem 
http://conferences.sigcomm.org/imc/2013/papers/imc25
7-durumericAemb.pdf
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https://hpbn.co/transport-layer-security-tls/
https://mitls.org/pages/attacks/
http://conferences.sigcomm.org/imc/2013/papers/imc257-durumericAemb.pdf

