
CS 577 Cybersecurity Lab

Lab 2 – due 9/18/14 6:15pm

Georgios Portokalidis – Stevens Institute of
Technology

This lab will be done on the linux-lab.

You will need ssh, PuTTY, and a terminal to connect.

If you need to open multiple terminals to the same host for the exercise make sure
you are indeed connected to the same host. linux-lab.cs.stevens.edu is just an alias
that connects you to one out of many hosts. For instance, if after connecting to linux-
lab you are in host1, make sure to connect to host1.srcit.stevens-tech.edu from the
second terminal.

Exercise 1. PassCracker (60%)

Create a password cracker able to break passwords hashed with the MD5 hash
function. Your cracker should use the following techniques:

Dictionary attack: Utilize a dictionary.

Brute-force: Generate all possible combinations of short 3-5 character long
passwords.

Combination of the above: Combine Dictionary and Brute-force attacks. For
instance, try to break passwords that include a word followed by a small number of
digits (cybersecurity14).

Dictionaries can be found in: https://wiki.skullsecurity.org/Passwords

Keep in mind that in some cases you should add some heuristics, to find the correct
password. E.g., try to crack passwords in leetspeak. That is, replace ‘e’ with ‘3’, ‘a’
with ‘4’ and so on. (http://en.wikipedia.org/wiki/Leet).

You are given two files with passwords, which you can use for testing your tool
during development:

The 1st one has just hashed passwords.

 hash = MD5(password)

https://wiki.skullsecurity.org/Passwords
http://en.wikipedia.org/wiki/Leet

The 2nd one has passwords hashed along after appending a salt with the value
“id14”.

hash = MD5(password||salt)

a) Your password cracker tool should takes a password file, salt, and time out
(seconds) as arguments.

Are you able to crack any of the passwords in the files? [You will not be graded
based on the number of passwords cracked, however it may help.]

How does salt make the cracking process harder?

In the two files can you tell if any users have the same passwords? How?

How much slower will you cracker run, if you try to brute-force longer passwords
like 15 characters long. [You do not have to run your tool for longer passwords, just
reason about it.]

Submit you source code (including makefile), and a short report of what you have
done, answering the above questions. Do not forget to document your code when
developing by using comments!

Exercise 2. Password hardening based on keystroke dynamics (40%)

Use keystroke dynamics as a 2nd factor authentication in order to prevent intruders
that know your password access your account. Rely on machine learning, to create
behavior profiles based on the way each user writes.

To do list:

 Create a program that collects keystrokes

 Use a key listener in order to collect the pressed or released buttons.

 For every event collect also the timestamp

 Save the keystrokes into a txt file

For help refer to :
http://docs.oracle.com/javase/tutorial/uiswing/events/keylistener.h
tml

 Collect 20 times the keystrokes for the same password (e.g., ap2lv9!) for each
team member.

http://docs.oracle.com/javase/tutorial/uiswing/events/keylistener.html
http://docs.oracle.com/javase/tutorial/uiswing/events/keylistener.html

 Create the behavior profiles (.arff files)

 Store all keystrokes into one file (from all team members)

 Add a new column into the file, named as Intruder

 Make a copy of this file, based on the number of your team members

 Using Weka evaluate various classifiers and features performing
experiments (10-fold cross validation).

For Help refer to:

http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/documentation.html

 Report your findings (Accuracy/experiment)

 Use the features and the classifier that provides the best results for your
profiles

 Create a second program that:

 Asks for a username and password

 Collect the keystrokes for your password

 Checks if the password was entered by the legit user by utilizing machine
learning

 Based on the username, load the corresponding behavior file in order
to train your classifier

Instances train = new Instances(new FileReader("user1.arff"));

train.setClassIndex(train.numAttributes()-1);

 Select and train your classifier

IBk knn = new IBk();

knn.buildClassifier(train);

 Evaluate the password

eval.evaluateModel(knn, test);

 Get the results and various information about the classification

eval.toSummaryString();

knn.classifyInstance(test.instance(0));

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/documentation.html

 Perform experiments trying you team members to access with your account
and discuss the results

 Submit:

 The source code with comments and any needed documentation.

 Report

