
CS 577 Cybersecurity Lab

Lab 3 – due 9/25/14 6:16pm

Georgios Portokalidis – Stevens Institute of
Technology

This assignment will familiarize you with how programs are represented in machine
language, how stack frames are structured in memory, and how buffer overflow
attacks work.

NOTE: Conduct the attacks using: a 32-bit Ubuntu 9.11 with the Linux kernel
v2.6.28

A VMware image can be found in the following address:
http://128.230.208.57/SEEDUbuntu12.04.zip

Initial setup:

Ubuntu and other Linux distributions have implemented several security
mechanisms to make buffer-overflow attacks difficult. We will disable them first.

Address Space Randomization. Ubuntu, and most modern operating systems, use
address space randomization to randomize the starting address of heap and stack.
This makes guessing the exact addresses difficult. In this lab, we disable these
features using the following commands:

#sudo sysctl -w kernel.randomize_va_space=0

(You may be asked to enter your password)

The StackGuard Protection Scheme. The GCC compiler implements a security
mechanism called “Stack Guard” to prevent buffer overflows. We will disable this
protection for this lab by using -fno-stack-protector when compiling with GCC. For
example, to compile example.c:

$ gcc -fno-stack-protector –o example.c1

Non-Executable Stack. To execute shellcode in the stack, we need to make the stack
executable, as this is no longer the default:

$ gcc -z execstack -fno-stack-protector –o example example.c

Exercise 1. Smash the Heap (20%)

Smash the Heap and be the winner!

Instructions

Keep in mind that the offset values may be different on different systems. This has to
do with the internals of the various memory allocators.

 Provide complete documentation with all the steps you did and the source code you
wrote to smash the Heap.

Exercise 2. Smash Global Memory (20%)

Smash the magic variable and be the winner!

Instructions

The names of the global variables affect their ordering in the BSS segment and thus
care must be taken to choose variable names that put the target variable after the
unchecked buffer. Alternatively, the `static` storage class can be used for accurate
placement.

Provide complete documentation with all the steps you did and the source code you
wrote to complete this exercice.

Exercise 3. Unbelievable (40%)

a) Jump to: printf("I don't believe it!\n");

Write a program that produces a file, as short and simple as possible, that redirects
control flow to the above statement, which should complete successfully and print
the given string.

a) Call unbelievable with the argument 0xdeadbeef

Write a program that produces a file, as short and simple as possible, that causes the
program to call the unbelievable function with the argument 0xdeadbeef. Explain its
principles of operation in a few sentences as a comment within your program.

Tip! You have to construct your own call of unbelievable with the argument 0xdeadbeef, save it in the

buffer, and “return” inside the buffer.

Provide a complete documentation with all the steps you did and the source code you
wrote.

Exercise 4. Change your marks (20%)

Write a program that produces a file named data10plus, as short and simple as
possible, that causes the hello program to print your name and recommend a grade
of "10". Explain its principles of operation in a few sentences as a comment within
your program.

Tip! You have to construct your own printf, save it in the buffer, and “return” inside the buffer.

Provide a complete documentation with all the steps you did and the source code you
wrote.

Grading

As always, we will grade your work on quality from both the user's and
programmer's points of view. Each program should contain function-level
and local comments as appropriate, as well as an explanation of the
program's principles of operation. PLEASE SUBMIT: Documentation, all
source code with comments, and a written report.

	Grading

