CS 577 Cybersecurity Lab
Stevens Institute of Technology
Lab 6 - due 10/23/14 6:16pm

Instructor Georgios Portokalidis

Teaching Assistant Dimitrios Damopoulos

This assignment will help you to build your first android application,
decompile/edit/recompile a legitimate android app, reverse engineer malicious
android applications, and finally designing a malware detection tool for Android

apps.
This lab will be done on your personal computer.

To develop android application, you will need to install into your system: the Java
and Android SDK, Eclipse as the developing IDE and the Android Developer Tools.

Android SDK is open source and available for every OS.
Follow the instruction to install the Android SDK into your systems:

http://developer.android.com/sdk/installing /index.html?pkg=adt

Additional tools and information

Apktool: https://code.google.com/p/android-apktool/

Smali debugging: https://code.google.com/p/androidapktool /wiki/SmaliDebugging

dex2jar: https://code.google.com/p/dex2jar/
JD Decompiler: http://jd.benow.ca/

jarsigner or keytool:
https://www.owasp.org/index.php/Signing_jar_files_with_jarsigner

Android Security Overview: https://source.android.com/devices/tech/security/

System Permissions:
http://developer.android.com/guide/topics/security /permissions.html

Android Security

Aim of this deliverable is to understand how basic Android applications are build,
how easy is to modify the Android application package (APK) in order to inject
malicious behaviors into a legitimate application. Also you have to go one step
further and analyze 5 popular Android malware understanding and reporting the
malicious functions. Finally using the gained knowledge, you will have to build a
signature-based malware detection system, able to analyze statically an application
and define if it is malicious or not.

Exercise 1. Build your first app (20%)

Create your first android application. This application will be the typical “Hello
world” for the Android OS.

You'll learn how to create an Android project and run a debuggable version of the
app- You'll also learn some fundamentals of Android app design, including how to
build a simple user interface.

Exercise 2. Decompile/Edit/ Recompile (20%)

Having compiled and packaged your first Android application (“Hello world”) into
an APK file, in this exercise you have to use one of the available tools and technics to
modify it. Once you reverse engineer apk and retrieve the source code, you have to
change the “Hello world” phrase into, “Hello world, Your_names”. Finally recompile
the application, install the application into the emulator and execute it. Report the
results.

Document every step of the process. Keep in mind that in this exercise you will not
use the source code you wrote in the 1st exercise, but you will retrieve it directly
from your APK.

Exercise 3. Reverse engineering Android applications (30%)

Reverse engineer 3 android malwares to identify and document the malicious code,
the required permissions, and report if the malware is able to exploit the android OS
and gain root privileges.

Explain the malicious behavior by understanding the source code and not by
executing it.

Can these malwares be categorized into families based on the malicious behavior
and same source code?

Keep in mind that you don’t have to execute the malware. In case you do it, please
use a new emulator only for the experiment.

Exercise 4. Signature-based Malware detection systems (30%)

Having identified the malicious source code in exercise 3, create malware signatures.
Moreover, design and implement an application able to automatically analyze an
APK and search into the source code for the malicious signature. This way you will
be able to detect malwares. The application should be analyzed statically and not
dynamically.

Using your tool, analyze and define the legitimate and malicious android
applications and report the performance and accuracy of you tool.

Please, keep it simple!
Bonus. Employ machine learning to detect malwares (20%)

Expand your previous detection system by providing a detection engine based on
machine leaning. Use WEKA in order to build the behavior profile that includes both
legitimate and malicious source code.

Explain how you build and evaluate your detection system. Test it with both
legitimate and malicious application. Does your system identify zero-day (unknown
to the training phase) malwares?

Grading

As always, we will grade your work on quality from both the user's and
programmer's points of view. Each program should contain function-level
and local comments as appropriate, as well as an explanation of the
program's principles of operation. PLEASE SUBMIT: Documentation,
your source code and the 2 APK you create for the first exercise, a
report with all the steps and problems you had.

