
Proving LTL Properties of Bitvector Programs
and Decompiled Binaries

Yuandong Cyrus Liu1 Chengbin Pang1, Daniel Dietsch2, Eric Koskinen1,
Ton-Chanh Le1, Georgios Portokalidis1, and Jun Xu1

1 Stevens Institute of Technology
2 University of Freiburg

Abstract. There is increasing interest in applying verification tools to
programs that have bitvector operations. SMT solvers, which serve as
a foundation for these tools, have thus increased support for bitvector
reasoning through bit-blasting and linear arithmetic approximations.
In this paper we show that similar linear arithmetic approximation of
bitvector operations can be done at the source level through transforma-
tions. Specifically, we introduce new paths that over-approximate bitvec-
tor operations with linear conditions/constraints, increasing branching
but allowing us to better exploit the well-developed integer reasoning
and interpolation of verification tools. We show that, for reachability of
bitvector programs, increased branching incurs negligible overhead yet,
when combined with integer interpolation optimizations, enables more
programs to be verified. We further show this exploitation of integer
interpolation in the common case also enables competitive termination
verification of bitvector programs and leads to the first effective tech-
nique for linear temporal logic (LTL) verification of bitvector programs.
Finally, we provide an in-depth case study of decompiled (“lifted”) bi-
nary programs, which emulate X86 execution through frequent use of
bitvector operations. We present a new tool DarkSea, the first tool
capable of verifying reachability, termination and LTL of lifted binaries.

1 Introduction

There is increasing interest in using today’s verification tools in domains where
bitvector operations are commonplace. Toward this end, there has been a variety
of efforts to enable bitvector reasoning in Satisfiability Modulo Theory (SMT)
solvers, which serve as a foundation for program analysis tools. One common
strategy employed by these SMT solvers is bit-blasting, which translates the in-
put bitvector formula to an equi-satisfiable propositional formula and utilizes
Boolean Satisfiability (SAT) solvers to discharge it. Another strategy is to ap-
proximate bitvector operations with integer linear arithmetic [14]. CVC4 now
employs a new approach called int-blasting [53], which reasons about bitvector
formulas via integer nonlinear arithmetic.

Inspired by these SMT strategies, this paper explores the use of linear approx-
imations of bitvector operations through source-level transformations, toward en-
abling Termination/LTL verification of bitvector programs. Our bitwise branch-
ing introduces new conditional, linear arithmetic paths that over-approximate

2 Liu et al.

many but not all bitvector behaviors. These paths cover the common cases and,
in the remaining cases, other paths fall back on the exact bitvector behavior. As
a result, in the common case, the reasoning burden is shifted to linear arithmetic
conditions/constraints, a domain more suitable to today’s automated termina-
tion/LTL techniques. We created source-translation rewriting rules for expres-
sions as well as assignment statements and implemented them as a transforma-
tion on Boogie programs, within the Ultimate verifier [31].

We first examine the impact of bitwise branching on reachability and experi-
mentally demonstrate that the translation imposes negligible overhead (from in-
troducing additional paths), yet allows existing tools to verifying more bitvector
programs. There are limited SV-COMP bitvector benchmarks (existing bench-
marks require little or no real bitvector reasoning) so we first prepared 26 new
bitvector reachability benchmarks, including examples drawn from Sean Ander-
son’s “BitHacks” repository1, which use bitvector operations for various pur-
poses. Without bitwise branching, Ultimate’s default setting (Z3 and SMT-
Interpol) is only able to verify 2 of the 26 benchmarks. We show that bitwise
branching allows us to verify these benchmarks with comparable performance
with existing tools across a variety of back-end SMT solvers (MathSAT, Z3,
CVC4, SMTInterpol). We also show that bitwise branching is comparable in
performance (both time and problems solved) with Z3.

The ability to use integer interpolation in the common case has far-reaching
consequences, which we explore in the remainder of the paper. In Sec. 6 we show
that, for bitwise termination benchmarks, bitwise branching improves Ultimate
and is competitive with other tools that support termination of bitvector pro-
grams (e.g., AProVE, KITTeL, CPAchecker). Again SV-COMP does not
have sufficient benchmarks for termination of bitvector programs, so we cre-
ated new benchmarks by extending examples from the SV-COMP termination
category [6], as well as the AProVE bitvector benchmarks [1].

More notably, our work leads to one of the first tools for verifying tempo-
ral logic (LTL) properties of bitvector programs. To our knowledge, the only
existing tool is Ultimate, and we show that bitwise branching improves Ulti-
mate’s ability to verify LTL from merely 3 examples to a total of 59 new LTL
benchmarks (out of a total of 67 benchmarks), adapted from Ultimate’s LTL
repository [7] and the BitHacks repository.

Case study: Temporal verification of lifted binaries. In Sec. 7 we explore how
bitwise branching can be used as part of a novel strategy for verifying decom-
piled (“lifted”) binaries. Lifted binaries have lost their source data-types and
instead emulate the behavior of the architecture with extensive use of bitvec-
tor operations. We developed a new tool called DarkSea, built on top of our
Ultimate-based bitwise branching, as well as IDA Pro [48] and McSema [25].
Although these decompilation tools generate IR/C programs and today’s veri-
fication tools do parse C programs, we also describe some critical translations
that were needed to make the output of McSema suitable for verification (rather
than re-compilation).

1 https://graphics.stanford.edu/∼seander/bithacks.html

https://graphics.stanford.edu/~seander/bithacks.html

Proving LTL Properties of Bitvector Programs and Decompiled Binaries 3

We experimentally validated our work and show that DarkSea is the first
tool for verifying temporal properties of lifted binaries. DarkSea is able to prove
or disprove LTL properties of 8 lifted binaries. The most comparable alternative
is Ultimate, which cannot prove any of them without DarkSea’s translations,
and can only verify 6 of them without bitwise branching.

Contributions. In summary, our contributions are:

– (Sec. 4) Bitwise branching, introducing paths with linear approximations.
– (Sec. 5) An evaluation showing that it allows one to prove reachability of

more bitvector programs, with negligible overhead.
– (Sec. 6) An evaluation showing competitive performance on termination, and

the first effective technique for LTL of bitvector programs.
– (Sec. 7) A case study and new tool called DarkSea, the first temporal

verification technique for decompiled (lifted) binaries.
– New suites of bitvector benchmarks for reachability (23), termination (31),

LTL (41) and lifted binaries (8).

We conclude with related work (Sec. 8). All code, proofs and benchmarks are
available online2. Our benchmarks have also been submitted to SV-COMP.

2 Motivating Examples

Ex. 1. Reachability Ex. 2. Termination Ex. 3. LTL ϕ = �(♦(n < 0))

int r, s, x;
while (x>0){

s = x >> 31;
x--;
r = x + (s&(1-s));
if (r<0) error ();

}

a = *;
assume(a>0);
while (x>0){

a--;
x = x & a;

}

while (1) {
n = *; x = *; y = x-1;
while (x>0 && n>0) {

n++;
y = x | n;
x = x - y;

}
n = -1;

}

and_reach1.c and-01.c or_loop3.c

We will refer to the above bitvector programs throughout the paper. To prove
error unreachable in the Ex. 1, a verifier must be able to reason about the
bitvector >> and & operations. Specifically, it must be able to conclude that ex-
pression s&(1-s) is always positive (so r cannot be negative) which also depends
on the earlier x>>31 expression. We will use this example to explain our work
in Sec. 4, and compare performance of Ultimate using state-of-the-art SMT
solvers, with and without bitwise branching.

We will see that the key benefits of bitwise branching arise when concerned
with termination and LTL. Ex. 2 involves a simple loop, in which a is decre-
mented, but the loop condition is on variable x, whose value is a bitvector expres-
sion over a. Today’s tools for termination of bitvector programs struggle with
this example: AProVE, CPAchecker and Ultimate report unknown and
KITTeL and 2LS timeout after 900s (details in the Appendix of the extended

2 github.com/cyruliu/darksea

https://github.com/cyruliu/darksea

4 Liu et al.

version [40]). Critical to verifying termination of this program are (1) proving
the invariant x > 0∧a > 0 on Line 3 within the body of the loop and (2) synthe-
sizing a rank function. To prove the invariant I, tools must show that it holds
after a step of the loop’s transition relation T = x>0∧a′=a−1∧x′=x&a′, which
requires reasoning about the bitwise-& operation because if we simply treat the
& as an uninterpreted function, I ∧ T ∧ x′>0 6=⇒ I ′.

The bitwise branching strategy we describe in this paper helps the veri-
fier infer these invariants (and later synthesize rank functions) by transforming

a = *; assume(a > 0);
while (x > 0) {
{ x > 0 ∧ a > 0 }
a--;

if (x >= 0 && a >= 0)

then { x = *; assume(x <= a); }

else { x = x & a; }
}

the bitvector assignment to x into linear con-
straint x<=a, but only under the condition
that x>=0 and a>=0. That is, bitwise branch-
ing translates the loop in Ex. 2 as depicted
in the gray boxes to the right. This changes
the transition relation of the loop body from
T (the original program) to T ′:

T ′ = x>0 ∧ a′=a−1 ∧ ((x≥0 ∧ a′≥0 ∧ x′≤a′) ∨ (¬(x≥0 ∧ a′≥0) ∧ x′=x&a′))

Importantly, when I holds, the else branch with the & is infeasible, and thus
we can treat the & as an uninterpreted function and yet still prove that I ∧
T ′ ∧ x′>0 =⇒ I ′. With the proof of I a tool can then move to the next step
and synthesizes a rank function R(x, a) that satisfies I ∧ T ′ =⇒ R(x, a)≥0 ∧
R(x, a)>R(x′, a′), namely, R(x, a) = a.

Bitwise branching also enables LTL verification of bitvector programs. We
examine the behavior of programs such as Ex. 3 above, with LTL property
�(♦(n < 0)). The state of the art program verifier for LTL is Ultimate, but
Ultimate cannot verify this program due to the bitvector operations. (Ulti-
mate’s internal overapproximation is too imprecise so it returns Unknown.) In
Sec. 6 we show that with bitwise branching, our implementation can prove this
property of this program in 8.04s.

Case study: Decompiled binary programs. In recent years many tools have
been developed for decompiling (or “lifting”) binaries into a source code for-
mat [15,45,9,25,51]. The resulting code, however, has long lost the original source

while (1) {

y = 1; x = *;

while (x>0) {

x--;

if (x <= 1)

y = 0; } } }

abstractions and instead emulates the hardware.
These programs are an interesting case study be-
cause their frequent use of bitvector operations
places them beyond the capabilities of existing
tools for LTL verification.

Consider the (source) program shown to the
right. This program, which does not contain any
bitvector operations, is taken from the Ultimate repository3. Some existing
techniques and tools [20,7] can prove that the LTL property �(x > 0 ⇒ ♦(y =
0)) holds. However, after the program is compiled (with gcc) and then disassem-

3 http://github.com/ultimate-pa/ultimate/blob/dev/trunk/examples/LTL/simple/
PotentialMinimizeSEVPABug.c

http://github.com/ultimate-pa/ultimate/blob/dev/trunk/examples/LTL/simple/PotentialMinimizeSEVPABug.c
http://github.com/ultimate-pa/ultimate/blob/dev/trunk/examples/LTL/simple/PotentialMinimizeSEVPABug.c

Proving LTL Properties of Bitvector Programs and Decompiled Binaries 5

bled and lifted (with IDPro and McSema), the resulting code has many bitvec-
tor operations. The resulting lifted code is quite non-trivial. (The full version
is given in the extended version [40].)It required substantial engineering efforts
just to parse and analyze the lifted code with existing verifiers (see Sec. 7). Let
us first focus on the bitvector complexities; here is a fragment of the lifted IR
(in C for readability):

1 while(true) {
2 tmp_x = load i32 , i32* bitcast (% x_type* @x to i32*)
3 ...
4 if (((tmp_x >> 31) == 0) & ((tmp_x == 0) ^ true)) {
5 tmp_40 = add i32 tmp_x , -1
6 store i32 tmp_40 , i32* bitcast (% x_type* @x to i32*)
7 tmp_xp = load i32 , i32* bitcast (% x_type* @x to i32*)
8 tmp_42 = tmp_xp + -1; tmp_45 = tmp_42 >> 31;
9 tmp_43 = tmp_xp + -2; tmp_44 = tmp_43 >> 31;

10 if (((((((tmp_42 != 0u)&1)) & ((((((tmp_44 == 0u)&1)) ^ ((((((tmp_44
^ tmp_45) + tmp_45)) == 2u)&1)))&1)))&1))) {

11 store i32 0, i32* bitcast (% y_type* @y to i32*)
12 }
13 } else { break; }
14 }

Roughly, Line 4 corresponds to the x>0 comparison, and Line 10 corresponds
to the x<=1 comparison. These bitvector operations, introduced to emulate the
behavior of the binary, make the program challenging for existing verifiers.

We describe a new tool DarkSea that uses bitwise branching in the context
of a decompilation toolchain involving IDA Pro, McSema and Ultimate. The
lifting performed by tools like McSema is geared toward recompilation rather
than verification, thus foiling existing tools. In Sec. 7.2 we describe translations
performed by DarkSea to tailor lifted binaries for verification. In Sec. 7.3, our
experimental results show that DarkSea is the first tool capable of proving
reachability, termination and LTL of lifted binaries.

3 Preliminaries

Our formalization is based on Boogie programs [12], denoted P . Our implemen-
tations parse input source C programs (or binaries decompiled to C) that may
have bitvector operations. These programs are then translated into Boogie pro-
grams, in which bitvector operations are represented as uninterpreted functions.
Figure 1 includes the standard syntax of a statement Stmt in a Boogie program
P . For bitvector programs, we assume the following abbreviated expression Expr
syntax, which includes bitvector operations:

Expr ::= BinOp | UnOp | UninterpFn | ...
BinOp ::= + | - | * | / | % | && | || | ==> | <==> | ...
UnOp ::= - | ! | ...

UninterpFn ::= bwAnd | bwOr | bwXor | bwShL | bwShR | bwCompl

6 Liu et al.

Stmt ::= assume Expr; | assert Expr;
| call forall Id (NondetExpr); | Id : Stmt
| Lhs(, Lhs)∗ := Expr(, Expr)∗; | break Id;
| if (NondetExpr){ Stmt∗ } Else | goto Id(, Id)∗;
| while (NondetExpr) LoopInv∗ {Stmt∗ } | call CallLhs Id ();

| call CallLhs Id (Expr(, Expr)∗); | havoc Id(, Id)∗;
| call forall Id (Expr(, Expr)∗); | return;

Lhs ::= Id | Id[Expr(, Expr)∗]
NondetExpr ::= * | Expr

Else ::= else if (NondetExpr){ Stmt∗ }Else | else { Stmt∗ }

CallLhs ::= Id(, Id)∗ :=

LoopInv ::= free invariant Expr;

Fig. 1: Boogie statement syntax in Ultimate framework.

We assume conditional branching has been transformed to non-deterministic
branching: if * then {assume(b);s1} else {assume(!b);s2}. As discussed later,
Ultimate (used in our implementation) has two modes: “bitvector mode,” in
which these uninterpreted expressions are translated into SMT bitvector sorts
and “integer mode,” in which they remain uninterpreted.

For the semantics, we assume a state space Σ : Var → Val , mapping variables
to values. We let [[e]] : Σ → Val and [[s]] : Σ → P(Σ) be the semantics of
expressions and statements, respectively, and [[P]] denotes traces of P .

4 Bitwise-branching

We build our bitwise-branching technique on the known strategy of transform-
ing bitvector operations into integer approximations [14,53] but explore a new
direction: source-level transformations to introduce new conditional paths that
approximate many (but not all) behaviors of a bitvector program. These new
paths through the program have linear input conditions and linear output con-
straints and frequently cover all of the program’s behavior (with respect to the
goal property), but otherwise fall back on the original bitvector behavior when
none of the input conditions hold. We provide two sets of bitwise-branching rules:

1. Rewriting rules of the form C `E ebv eint in Fig. 2a. These rules are
applied to bitwise arithmetic expressions ebv and specify a condition C for which
one can use integer approximate behavior eint of ebv. In other words, rewriting
rule C `E ebv eint can be applied only when C holds and a bitwise arithmetic
expression e in the program structurally matches its ebv with a substitution δ.
Then, e will be transformed into a conditional approximation: Cδ ? eintδ : ebv.
Note that, although modulo-2 is computationally more expensive, it is often more
amenable to integer reasoning strategies. For conciseness, we omitted variants
that arise from commutative re-ordering of the rules (in both Figs. 2a and 2b).

For example, consider the bitvector arithmetic expression s&(1-s) in Ex. 1
of Sec. 2. If we apply the rewriting rule e1 ≥ 0 ∧ e2 = 1 `E e1&e2 e1%2 with
the substitution s/e1, 1-s/e2 then the expression is transformed into s>=0&&(1-s

)==1 ? s%2 : (s&(1-s)). Since s reflects the sign bit of the positive variable x, it

Proving LTL Properties of Bitvector Programs and Decompiled Binaries 7

e1 = 0 `E e1&e2 0
(e1 = 0 ∨ e1 = 1) ∧ e2 = 1 `E e1&e2 e1

(e1 = 0 ∨ e1 = 1) ∧ (e2 = 0 ∨ e2 = 1) `E e1&e2 e1&&e2
e1 ≥ 0 ∧ e2 = 1 `E e1&e2 e1%2

e2 = 0 `E e1|e2 e1
(e1 = 0 ∨ e1 = 1) ∧ e2 = 1 `E e1|e2 1

e2 = 0 `E e1^e2 e1
e1 = e2 = 0 ∨ e1 = e2 = 1 `E e1^e2 0

(e1 = 1 ∧ e2 = 0) ∨ (e1 = 0 ∧ e2 = 1) `E e1^e2 1
e1 ≥ 0 ∧ e2 = CHAR BIT * sizeof(e1)− 1 `E e1>>e2 0
e1 < 0 ∧ e2 = CHAR BIT * sizeof(e1)− 1 `E e1>>e2 −1

(a) Rewriting rules for arithmetic expressions.

e1 ≥ 0 ∧ e2 ≥ 0 `S r ople e1&e2 r<=e1 && r<=e2
e1 < 0 ∧ e2 < 0 `S r ople e1&e2 r<=e1 && r<=e2 && r<0
e1 ≥ 0 ∧ e2 < 0 `S r opeq e1&e2 0<=r && r<=e1

(e1 = 0 ∨ e1 = 1) ∧ (e2 = 0 ∨ e2 = 1) `S (e1|e2)==0 e1==0 && e2==0
e1 ≥ 0 ∧ is const(e2) `S r opge e1|e2 r>=e2

e1 ≥ 0 ∧ e2 ≥ 0 `S r opge e1|e2 r>=e1 && r>=e2
e1 < 0 ∧ e2 < 0 `S r opeq e1|e2 r>=e1 && r>=e2 && r<0

e1 ≥ 0 ∧ e2 < 0 `S r opeq e1|e2 e2<=r && r<0

e1 ≥ 0 ∧ e2 ≥ 0 `S r opge e1^e2 r>=0

e1 < 0 ∧ e2 < 0 `S r opge e1^e2 r>=0

e1 ≥ 0 ∧ e2 < 0 `S r ople e1^e2 r<0
e1 ≥ 0 `S r ople ∼e1 r<0
e1 < 0 `S r opge ∼e1 r>=0

(b) Weakening rules for relational expressions and assignments. ople ∈ {<,<=,==,:=},
opge ∈ {>,>=,==,:=}, and opeq ∈ {==,:=}

Fig. 2: Rewriting rules. Commutative closures omitted for brevity.

is always 0 and the if condition is feasible. In general, we can further replace the
remaining bitwise operation in the else expression with other applicable rules.
There may still be executions that fall into the final catch-all case where the
bitwise operation is performed. However, as we see in the subsequent sections of
this paper, these case splits are nonetheless practically significant because often
the final else is infeasible.

2. Weakening rules of the form C `S sbv sint are in Fig. 2b. These
rules are applied to relational condition expressions (e.g., from assumptions)
and assignment statements sbv, specifying an integer condition C and over-
approximation transition constraint sint. When the rule is applied to a statement
(as opposed to a conditional), replacement sint can be implemented as assume(

sint). When a weakening rule C `S sbv sint is applied to an assignment s with
substitution δ, the transformed statement is if Cδ assume(sintδ) else sbv. In
addition, when sbv of a weakening rule can be matched to the condition c in
an assume(c) of the original program via a substitution δ, then the assume(c)

statement is transformed to if Cδ then assume(sintδ) else assume(c). The

8 Liu et al.

assignment operator in Figs. 2a and 2b, denoted :=, is included in three group
of operators (ople, opge, opeq).

Proofs for each rule were done with Z3. Details are in the extended ver-
sion [40].The rules in Fig. 2a and Fig. 2b were developed empirically, from the
reachability/termination/LTL benchmarks in the next sections and, especially,
based on patterns found in decompiled binaries (Sec. 7). We then generalized
these rules to expand coverage.

Translation algorithm. We implemented bitwise branching via a translation
algorithm, on top of Ultimate, denoted UltimateBwB. Our translation acts
on the AST of the program, with one method TE : exp -> exp to translate ex-
pressions and another method TS : stmt -> stmt to translate assignment state-
ments, each according to the set of available rules (algorithms of TE and TS
are given in the extended version [40]). In brief, when we reach a node with a
bitwise operator, we recursively translate the operands, match the current op-
erator against our collection of rules, and apply all matching rules to construct
nested if-then-else expressions/statements. We found that, when multiple rules
matched, the order did not matter much.

Let TE{e} : e denote the result of applying substitutions to e, and similar for
TS{s} : s. We lift this to a translation on a Boogie program P with TE{P} : P
and TS{P} : P , referring to all expressions and statements in P , respectively.

Lemma 1 (Rule correctness). For every rule C `E e e′, ∀σ. C(σ) ⇒
[[e]]σ = [[e′]]σ. For every C `S s s′, ∀σ. C(σ)⇒ [[s]]σ ⊆ [[s′]]σ.

Theorem 1 (Soundness). For every P, TE , TS, [[P]] ⊆ [[TS{TE{P}}]].

Proof. See Apx. A.

Control-flow automata. We have formalized bitwise branching via ASTs for
readability but it can also be represented as a transformation on a program rep-
resented as a control-flow automaton. A (deterministic) control flow automaton
(CFA) [35] is a tuple A = 〈Q, q0, X, s,−−�〉 where Q is a finite set of control
locations and q0 is the initial control location, X is a finite sets of typed variables,

q0 q1
x := x&a

translated into:
q0

qa qb

q1

¬(x ≥ 0 ∧ a ≥ 0) x ≥ 0 ∧ a ≥ 0

x := x&a assume(x ≤ a)

s is the loop/branch-free statement lan-
guage and −−�⊆ Q × s × Q is a finite
set of labeled edges.

Continuing with Ex. 2, an edge of
the CFA labeled with statement x = x

&a is shown to the right. Next shown
is the result after applying the first
weakening rule in Fig. 2b. Conditional
edges are introduced (e.g., x ≥ 0 ∧ q ≥
0 to qb) along with linear constraints
(e.g., assume(x ≤ a)) and bitvector op-
erations remain in the fallback case.

Proving LTL Properties of Bitvector Programs and Decompiled Binaries 9

5 Reachability of Bitvector Programs

We now evaluate the effectiveness of bitwise branching (BwB), as implemented in
our UltimateBwB, toward reachability verification. Existing SV-COMP bench-
marks require little or no bitvector reasoning; even when bitvector operations
are present, they are often irrelevant to the property and can be abstracted away.
We therefore created a new suite of 28 bitvector programs, including 12 simple
programs (ReachBit) and 16 programs adapted from the existing code snippets
“BitHacks” [10], which use bitwise operations for various tasks.

Ultimate can verify bitvector programs in two modes: integer and bitvec-
tor. In the integer mode, bitvector operations are overapproximated to nonde-
terminism and overflow/underflow is accounted for with assume statements. In
the bitvector mode, Ultimate utilizes a variety of back-end SMT solvers with
internal bitvector reasoning strategies, such as CVC4, Z3 and MathSAT (MS).
Our implementation of bitwise branching, embodied in UltimateBwB, does
not use bitvector mode but instead transforms bitvector programs (through bit-
wise branching) and verifies them in Ultimate’s integer mode using the same
set of back-end SMT solvers.

We ran our experiments with BenchExec [13] on a Linux 5.4.65 machine
with an AMD Ryzen 3970X 32-core 3.7GHz CPU and 256GB RAM. We limited
CPU time to 5 minutes, memory to 8GB, and restricted each run to two cores.

Fig. 3: Performance of UltimateBwB with bitwise branching “BwB” in integer
mode (solid lines) versus Ultimate (dashed lines, “BV” indicating bitvector
mode) on bitvector programs, using various SMT solvers.

Fig. 3 plots the number of ReachBit and BitHacks benchmarks solved ver-
sus the cumulative time between UltimateBwB with bitwise branching (solid
lines) and Ultimate (dashed lines). These results show that the performance of
UltimateBwB is comparable to Ultimate’s bitvector mode, despite the fact
that the bitwise branching transformation introduces new paths.

Because Ultimate’s verification algorithms heavily utilize interpolation for
optimizations, we also ran the experiment with interpolation enabled when possi-

10 Liu et al.

ble, using MathSAT’s interpolation (MS-Itp, in both modes) and SMTInter-
pol (SItp, only in the integer mode because SMTInterpol does not support
bitvectors). Notably, without bitwise branching, Ultimate with the default set-
ting (integer mode SItp-Z3 in Fig 3) returns Unknown for 10/12 “ReachBit”
and 16/16 “BitHacks” benchmarks, despite the fact that it has a good trend in
terms of runtime, while UltimateBwB can verify all 28 programs in the same
settings. Moreover, while interpolation is less effective in the bitvector mode (see
BV-MS-Itp vs. BV-MS), when combined with bitwise branching in the integer
mode, it improves over those solvers and has the best results (BwB-SItp-Z3).
The detailed result can be found in the extended version [40].

6 Termination and LTL of Bitvector Programs

Tool BitVec. Term. LTL

Ultimate Limited Yes Yes
AProVE [29] Yes Yes No
KITTeL [26] Yes Yes No
CPAchecker [50] Limited Yes No
2LS [18] Yes Yes No

UltimateBwB Yes Yes Yes

We now evaluate bitwise branching on
the main target: liveness properties
of bitvector programs. There are few
comparable tools that support bitvec-
tor reasoning and these properties; the
most comparable (and mature) tools
are listed to the right, along with their
limitations.

Termination. We compare bitwise branching with these termination provers

(ii) TermBitBench (i) AproveBench

A
P
r
o
V
E

C
P
A
c
h
e
c
k
e
r

K
IT

T
e
L

2
L
S

U
lt

im
a
t
e

U
lt

im
a
t
e
B
w
B

A
P
r
o
V
E

C
P
A
c
h
e
c
k
e
r

K
IT

T
e
L

2
L
S

U
lt

im
a
t
e

U
lt

im
a
t
e
B
w
B

4 5 1 7 8 2 18 1 3 3 14 2 2
E4 1 - - - - - - - - - - -
7 6 10 - 8 - 13 - - - - - -
E7 2 7 - 3 - - - 10 - - 2 6
? 14 13 - - 29 - 10 3 - 1 14 8
T 3 - 19 12 - - 7 - 10 2 - 1
M - - - - - - - - - 1 - 1
j - - 5 - - - - 2 5 - - -

in the table. We applied these tools
to two benchmarks suites: (i) We
first used 18 bitvector terminating
programs selected from AProVE’s
bitvector benchmarks [34]. No-
tably, those benchmarks were de-
signed with general bitvector arith-
metic in mind so that there is only a
small portion of bitvector programs
in it (i.e. 18/118 or 15%). (ii) We
therefore built a second set of 31
termination benchmarks, including
18 terminating programs (4) and
13 non-terminating programs (7),
called TermBitBench with bitvec-
tor operations including bitwise |,
&, ^, <<, >>, ~.

Results. To the right is a table
summarizing our results (details in [40]). For the AProVE benchmarks, our tool
can correctly prove the termination or non-termination of 2 programs, which is
less than the number of programs that can be proved by CPAchecker (3),
KITTeL (3), and 2LS (14). However, for TermBitBench, while UltimateBwB
can prove all 31 programs, CPAchecker, KITTeL, and 2LS can only prove

Proving LTL Properties of Bitvector Programs and Decompiled Binaries 11

at most 16 programs. Moreover, while our tool was built on top of Ultimate,
it outperforms Ultimate in proving termination and non-termination of bit-
wise programs. This is because Ultimate’s algorithms for synthesizing termi-
nation [32] and non-termination proofs [39] are not applicable to SMT formulas
containing bitvectors, as discussed in Sec. 2. As a consequence, Ultimate relies
on integer-based encodings of source programs together with overapproximations
of bitwise operations. The 6 false results in AproveBench are spurious counterex-
amples that arise due to Ultimate’s overapproximation of unsigned integers. Our
results here confirm that bitwise branching provides an effective means for ter-
mination of bitvector programs.

Linear temporal logic. We compared our tool against Ultimate, which is
the state-of-the-art LTL prover and the only mature LTL verifier that supports
bitvector programs. To our knowledge, there are no available bitwise bench-
marks with LTL properties so we create new benchmarks for this purpose: (iii)
New hand-crafted benchmarks called LTLBitBench of 42 C programs with LTL
properties, in which bitwise operations are heavily used in assignments, loop con-
ditions, and branching conditions. There are 22 programs in which the provided
LTL properties are satisfied (4) and 20 programs in which the LTL proper-
ties are violated (7). (iv) Benchmarks adapted from the “BitHacks” programs,
consisting of 26 programs with LTL properties (18 satisfied and 8 violated).

(iv)Bithacks (iii)LTLBit
Bench

U
lt

im
a
t
e

w
.

B
w

B

U
lt

im
a
t
e

w
.

B
w

B

4 3 10 - 21
7 - 7 - 20
? 21 5 42 -
T 1 1 - 1
M 1 3 - -

The table to the right summarizes the re-
sult of applying Ultimate and UltimateBwB
on these two bitvector benchmarks (see [40] for
details). UltimateBwB outperforms Ultimate:
UltimateBwB can successfully verify 41 of 42
programs in LTLBitBench and 18 of 26 BitHacks
programs while Ultimate can only handle a few
of them. Note that we have more out-of-memory
results in BitHacks Benchmarks, perhaps due to
memory consumption reasoning about the intro-
duced paths. In conclusion, bitwise branching ap-
pears to be the first effective technique for verifying
LTL properties of bitvector programs.

Bitwise-branching can be combined with other tools beyond Ultimate, mak-
ing it an appealing general strategy. In this paper, we implemented bitwise
branching within Ultimate [31] source code (during the C-to-Boogie trans-
lation) so that we could compare against unmodified Ultimate, which is already
one of the more effective Termination/LTL verifiers. Furthermore, to our knowl-
edge other tools do not allow one to flip a switch to enable their own bit-precise
analysis (i.e., CBMC’s Bitblasting or CPAchecker’s FixedSizeBitVectors the-
ory) or disable that analysis, abstracting with integers.

12 Liu et al.

7 Case Study: LTL of Decompiled Binaries

Decompiled binary executables are rife with bitvector operations, making them
an interesting domain for a case study. Many tools [25,8,48,27,28,36,24] have been
developed for decompilation. Similar to compilation, the decompilation process
consists of multiple phases, beginning with disassembly. Some techniques have
emerged for verifying low-level aspects of decompiled binaries such as architec-
tural semantics [47,23,11], decompilation into logic [43,44,45,51], and translation
validation [22] (discussed in Sec. 8).

Further along the decompilation process, other tools aim to represent a binary
at a higher level of abstraction through a process called lifting. A lifted binary
can be represented in IR or source code, but includes only some of the source-
level abstractions of the original program. Instead, a lifted “program” emulates
the machine itself, with data structures that mimic the hardware (e.g., registers,
flags, stack, heap, etc.) and control that mimics the behavior of the binary.

While some of the above mentioned works involve manual or semi-automated
proofs of safety properties, we have not yet seen many automated techniques
for verifying reachability, termination and temporal properties of those lifted
binaries. To a large extent today’s automated verification techniques have relied
on source abstractions (e.g., invariants and rank functions over loop variables,
structured control flow, procedure boundaries, etc.).

7.1 Bitvector operations in lifted binaries

Lifted binaries frequently use bitvector operations e.g., to reflect signed/unsigned
comparison of variables whose type was lost in compilation. As we show in
Sec. 7.3, lifted programs are beyond the capabilities of termination verification
tools such as Ultimate, CPAchecker, AProVE or KITTeL.

While the source code for the inner loop of PotentialMinimizeSEVPABug.c in
Ex. 3 is straight-forward (decrement x; assign 0 to y if x <= 1) the corresponding
expressions in the lifted binaries involve multiple bitvector operations:

(((tmp_42 != 0u)&1) &

((((tmp_44 == 0u)&1 ^ (((((tmp_44 ^ tmp_45) + tmp_45) == 2u)&1)))&1)))&1

This expression simulates branch comparisons that the machine would perform
on values whose type was discarded during compilation. The source code variable
x is a signed integer, but compilation has stripped its type. During decompila-
tion, to approximate, lifting procedures consider these tmp variables (and all
integer variables) to be unsigned. Meanwhile, in the binary, the condition x<=0

is compiled to be a signed comparison. Therefore, lifting recreates a signed com-
parison using the unsigned tmp variables. Lifted binaries are good candidates for
bitwise branching; in this example 3 rules can be applied.

7.2 DarkSea: A toolchain for temporal verification of lifted binaries

Bitvector operations are not the only issue: lifted binaries have several other
wrinkles that preclude them from being verified with today’s tools. We briefly

Proving LTL Properties of Bitvector Programs and Decompiled Binaries 13

discuss these issues and how we address them in a new toolchain called Dark-
Sea, the first tool capable of verifying reachability, termination and LTL prop-
erties of lifted binaries. DarkSea is comprised of several components:

DARKSEA

Binary
Translations

for verification

McSema

IR
IDAPro +
McSema

ULTIMATEBWB

Bitwise Branching
Proof or

cex.

Slicing &
llvm-cbe C

DARKSEA

IR

DarkSea takes as input a lifted binary (obtained from IDA Pro and McSema)
in LLVM IR format, which then can be converted to C via llvm-cbe.

Lifting tools like McSema [9,25] are often designed with the goal of re-
compilation rather than verification. Consequently, the McSema IR, even if
converted to C, cannot be analyzed by existing tools (see Sec. 7.3) which either
crash, timeout, memout, or fail during parsing. We therefore perform a series of
translations discussed below to re-target the lifted binaries into a format more
amenable to verification, which we then input to UltimateBwB. The transla-
tions below work with LLVM-8.0 and consist of around 500 lines of C++ and
200 lines of bash. We also identified and fixed several defects in McSema [3,5,4].

1. Run-time environment. For re-compilation, lifting yields code that switches
context between the run-time environments and the simulated code, akin
to how a loader moves environment variables onto the stack. A first pass
of DarkSea analyzes lifted output to discover the original program’s main,
decouples the surrounding context-switch code, and removes it.

2. Passing emulation state through procedures. McSema generates lifted pro-
grams in which function arguments pass emulation state that is used for
re-compilation. We found this to make it difficult for verifiers to track state.
We thus eliminate these arguments from every function call, creating a single
global pointer to the emulation state struct and replacing all uses of the first
argument in the function body with a use of our new pointer.

3. Nested structures. Lifted binaries simulate hardware features (e.g., regis-
ters, arithmetic flags, FPU status flags) and, for cache efficiency, represent
them as nested structures, e.g., state->general_registers.register13.union
.uint64cell. DarkSea flattens these nested data structures, creating indi-
vidual variables for all the innermost and separable fields, and then translates
accesses to these nested structures.

4. Property-directed slicing. Not all the instructions are relevant to the proper-
ties we aim to verify, so we further slice the program to keep only property-
dependent code, using DG [17] in termination-sensitive mode. For LTL prop-
erties, we use the atomic propositions’ variables to seed our slicing criteria.

A longer discussion of these translations can be found in [40].

14 Liu et al.

7.3 Experiments

We evaluated whether our translations (Sec. 7.2) and bitwise branching (Sec. 4)
enabled tools to verify termination and LTL properties of decompiled binaries.

Termination of lifted binaries. As discussed in Sec. 6, there are several ter-
mination provers that support bitvector programs. We thus applied those termi-
nation provers to today’s lifting results on both the raw output of McSema and

Table 1: Termination of Lifted Binaries,
with and without DarkSea translations.

Raw McSema DarkSea transl.

A
P
r
o
V
E

C
P
A
c
h
e
c
k
e
r

K
IT

T
e
L

2
L
S

U
lt

im
a
t
e

U
lt

im
a
t
e
B
w
B

A
P
r
o
V
E

C
P
A
c
h
e
c
k
e
r

K
IT

T
e
L

2
L
S

U
lt

im
a
t
e

U
lt

im
a
t
e
B
w
B

4 - - - - - - - - - - 18 18
j - 18 - - 3 - - - - - - -
M - - - - - 3 - - - - - -
T - - 18 - 15 15 - 18 18 - - -
? 18 - - 18 - - 18 - - 18 - -

then on the output of our trans-
lation. We used a standard ter-
mination benchmark (i.e., 18
small, but challenging programs
in literature selected from the
SV-COMP termination-crafted

benchmark). As discussed in
Sec. 7.2, lifted code is more com-
plicated than its corresponding
source (e.g., >10k vs 533 LOC in
total). Although today’s termina-
tion provers can verify the source
of these programs, they struggle
to analyze the corresponding code
lifted from the programs’ binaries,
as seen in the Raw McSema
columns in Table 1 (details in [40]).

We devoted genuine effort to overcome small hurdles but, fundamentally,
without the DarkSea translations, tools struggled for the following reasons:

– AProVE: Errors in conversion from LLVM IR to internal representation.
– KITTeL: Parsing (from C to KITTeL’s format via LLVM bitcode with

LLVM2KITTeL) succeeded, but then KITTeL silently hung until timeout.
– CPAchecker: Crashes on all benchmarks, while parsing system headers.
– Ultimate: Crashes on 3 benchmarks, due to inconsistent type exceptions.

Table 1 also shows the verification results of those termination provers when
applied to DarkSea’s translated output (second set of columns).

In sum, the results show that our translations benefit both CPAchecker
and Ultimate (which already have sophisticated parsers), reducing crashes in
analyzing lifted code. As highlighted in green, DarkSea translations enabled
Ultimate to prove termination on all of the 18 lifted programs, as compared to
Ultimate timing out on 15 of the programs without DarkSea’s translations.

LTL of lifted binaries. We finally evaluate the effectiveness of DarkSea
on LTL properties of 8 lifted binaries. In Table 2 we report the LTL property and
expected verification result of each, as well as the verification time and result
of Ultimate and DarkSea on them. Green cells use slightly different settings
for single block encoding. DarkSea’s translations eliminate unsoundness results
that come from applying Ultimate directly to McSema IR.

Proving LTL Properties of Bitvector Programs and Decompiled Binaries 15

Table 2: Ultimate vs. DarkSea on lifted programs with LTL properties.

Ultimate DarkSea
Benchmark Property Exp. Time Result Time Result

01-exsec2.s.c ♦(�x = 1) 4 4.45s j 11.23s 4

01-exsec2.s.f.c.c ♦(�x 6= 1) 7 6.31s j 10.36s 7

SEVPA gccO0.s.c �(x > 0⇒ ♦y = 0) 4 6.31s j 22.92s 4

SEVPA gccO0.s.f.c �(x > 0⇒ ♦y = 2) 7 5.16s ? 14.92s 7

acqrel.simplify.s.c �(x = 0⇒ ♦y = 0) 4 5.17s j 9.00s 4

acqrel.simplify.s.f.c.c �(x = 0⇒ ♦y = 1) 7 6.06s j 17.60s 7

exsec2.simplify.s.c �♦x = 1 4 4.92s j 5.60s 4

exsec2.simplify.s.f.c.c �♦x 6= 1 7 4.55s j 6.28s 7

In summary, we have shown that DarkSea can verify reachability, termina-
tion and LTL properties of lifted binaries. To our knowledge, DarkSea is the
first to do so.

8 Related work

Bitvector reasoning. Many works support bitvector reasoning in SMT solvers
(e.g., [52]). Kroening et al. [38] perform predicate image over-approximation.
Niemetz et al. [46] propose a translation from bitvector formulas with parametric
bit-width to formulas in a logic supported by SMT solvers, making SMT-based
procedures available for variant-size bitvector formulas.

He and Rakamarić [30] build on spurious counterexamples from overapprox-
imations of bitvector operations. Mattsen et al. [41] use a BDD-based abstract
domain for indirect jump reasoning. Bryant et al. [16] iterative construct an
abstraction of a bit vector formula.

Other works have targeted reasoning about termination of bitvector pro-
grams. Cook et al. [21] use Presburger arithmetic for representing rank functions.
Chen et al. [19] employ lexicographic rank function synthesis for bit precision and
rely on the bit-precision of an underlying SMT solver. Falke et al. [26] propose
an approach, implemented in KITTeL, which derives linear approximations of
bitvector operations using some rules similar to our bitwise-branching rules for
expressions. However, Falke et al. create a large disjunction of cases which puts
a large burden on the solver. By contrast, our bitwise-branching creates multiple
verification paths, but solver queries for most of them can be avoided through
integer interpolation. As we show in Sec. 6, our UltimateBwB was able to
solve 33/49 benchmarks, where as KITTeL solved only 10. Moreover, KITTeL
does not support LTL properties and crashes on lifted binaries.

Tools for disassembly and decompilation. Jakstab [37] focuses on accurate
control flow reconstruction in the disassembly process. BAP [15] performs static
disassembly of stripped binaries. Angr [49] includes symbolic execution and
value-set analysis used especially for control flow reconstruction. IDA Pro [48]
(used in DarkSea) demonstrated high accuracy and uses value-set-analysis.

16 Liu et al.

Hex-Rays Decompiler [2], Ghidra [8], and Snowman [24] further de-compile dis-
assembled output to higher level representations such as LLVM IR or C code.

Verifying binaries. Some works focus on the low-level aspects of the bi-
nary and aim at precise de-compilation. Roessle et al. [47] de-compile x86-64
into a big step semantics. Earlier, others performed “decompilation-into-logic”
(DiL) [43,44,45], translating assembly code into logic. While DiL provides a rich
environment for precise reasoning about fine-grained instruction-level details, it
incurs high complexity for reasoning about more coarse-grained properties such
as reachability, termination, and temporal logic. In more recent work, Verbeek
et al. [51] use the semantics of Roessle et al. [47] and describe techniques to
decompile into re-compilable code.

Others focus on verifying the decompilation/lifting process itself. Dasgupta
et al. [22] describe a translation validation on x86-64 instructions that employs
their semantics for x86-64 (Dasgupta et al. [23]). Metere et al. [42] use HOL4
to verify a translation from ARMv8 to BAP. Hendrix et al. [33] discuss their
ongoing work on verifying the translation performed by their lifting tool reopt.
Numerous other works (e.g., Sail [11]) provide formal semantics of ISAs.

9 Conclusion

We have shown that a source-level translation to approximate bitvector oper-
ations leads to tools that are competitive to the state-of-the-art in reachabil-
ity and termination of bitvector programs. We show that bitwise branching in-
curs negligible overhead, yet enables more programs to be verified. Notably, we
showed that this approach leads to the first effective technique for verifying LTL
of bitvector programs and, to our knowledge, the first technique for verifying
reachability, termination and LTL of lifted binary programs.

Acknowledgments. We thank the anonymous reviewers for their helpful feed-
back. This work is supported by ONR Grant #N00014-17-1-2787.

References

1. AProVE. aprove.informatik.rwth-aachen.de/eval/Bitvectors/
2. Hex-rays decompiler. www.hex-rays.com/products/decompiler/
3. McSema jump table bug. github.com/lifting-bits/mcsema/issues/558
4. McSema bug, missing data cross reference due to resetting ida’s analysis flag.

github.com/lifting-bits/mcsema/issues/561

5. McSema var. bug. github.com/lifting-bits/mcsema/issues/566
6. SV-COMP Termination Benchmarks. github.com/sosy-lab/sv-benchmarks/

tree/master/c/termination-crafted

7. Ultimate’s LTL benchmarks. github.com/ultimate-pa/ultimate/tree/dev/

trunk/examples/LTL/

8. Agency, N.S.: Ghidra. www.nsa.gov/resources/everyone/ghidra/
9. Altinay, A., Nash, J., Kroes, T., Rajasekaran, P., Zhou, D., Dabrowski, A., Gens,

D., Na, Y., Volckaert, S., Giuffrida, C., Bos, H., Franz, M.: Binrec: dynamic binary
lifting and recompilation. In: EuroSys. pp. 36:1–36:16 (2020)

https://aprove.informatik.rwth-aachen.de/eval/Bitvectors/
https://www.hex-rays.com/products/decompiler/
https://github.com/lifting-bits/mcsema/issues/558
https://github.com/lifting-bits/mcsema/issues/561
https://github.com/lifting-bits/mcsema/issues/566
https://github.com/sosy-lab/sv-benchmarks/tree/master/c/termination-crafted
https://github.com/sosy-lab/sv-benchmarks/tree/master/c/termination-crafted
https://github.com/ultimate-pa/ultimate/tree/dev/trunk/examples/LTL/
https://github.com/ultimate-pa/ultimate/tree/dev/trunk/examples/LTL/
https://www.nsa.gov/resources/everyone/ghidra/

Proving LTL Properties of Bitvector Programs and Decompiled Binaries 17

10. Anderson, S.: Bit twiddling hacks, graphics.stanford.edu/~seander/bithacks.
html

11. Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K.E., Norton, R.M.,
Mundkur, P., Wassell, M., French, J., Pulte, C., Flur, S., Stark, I., Krishnaswami,
N., Sewell, P.: ISA semantics for ARMv8-a, RISC-v, and CHERI-MIPS. Proc.
ACM Program. Lang. 3(POPL) (Jan 2019)

12. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: International Sympo-
sium on Formal Methods for Components and Objects. pp. 364–387 (2005)

13. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019)

14. Bozzano, M., Bruttomesso, R., Cimatti, A., Franzén, A., Hanna, Z., Khasidashvili,
Z., Palti, A., Sebastiani, R.: Encoding RTL Constructs for MathSAT: a Preliminary
Report. Electron. Notes Theor. Comput. Sci. 144(2), 3–14 (2006)

15. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A binary analysis
platform. In: Computer Aided Verification - 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. pp. 463–469 (2011)

16. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.:
Deciding Bit-Vector Arithmetic with Abstraction. In: Tools and Algorithms for the
Construction and Analysis of Systems, vol. 4424, pp. 358–372 (2007)

17. Chalupa, M.: mchalupa/dg. github.com/mchalupa/dg (Jan 2021)
18. Chen, H., David, C., Kroening, D., Schrammel, P., Wachter, B.: Synthesising in-

terprocedural bit-precise termination proofs (T). In: ASE. pp. 53–64 (2015)
19. Chen, H.Y., David, C., Kroening, D., Schrammel, P., Wachter, B.: Bit-Precise

Procedure-Modular Termination Analysis. ACM Transactions on Programming
Languages and Systems 40, 1–38 (Jan 2018)

20. Cook, B., Koskinen, E.: Making prophecies with decision predicates. In: Proceed-
ings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. p. 399–410. POPL ’11 (2011)

21. Cook, B., Kroening, D., Rummer, P., Wintersteiger, C.M.: Ranking function syn-
thesis for bit-vector relations. In: Esparza, J., Majumdar, R. (eds.) Tools and Al-
gorithms for the Construction and Analysis of Systems. pp. 236–250 (2010)

22. Dasgupta, S., Dinesh, S., Venkatesh, D., Adve, V.S., Fletcher, C.W.: Scalable val-
idation of binary lifters. In: Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 655–671 (Jun 2020)

23. Dasgupta, S., Park, D., Kasampalis, T., Adve, V.S., Roşu, G.: A Complete Formal
Semantics of x86-64 User-Level Instruction Set Architecture p. 16 (2019)

24. Derevenets, Y.: Snowman. derevenets.com/
25. Dinaburg, A., Ruef, A.: Mcsema: Static translation of x86 instructions to llvm. In:

ReCon 2014 Conference, Montreal, Canada (2014)
26. Falke, S., Kapur, D., Sinz, C.: Termination Analysis of Imperative Programs Us-

ing Bitvector Arithmetic. In: Verified Software: Theories, Tools, Experiments,
vol. 7152, pp. 261–277 (2012)

27. Galois, I.: Macaw, github.com/GaloisInc/macaw
28. Galois, I.: Reopt vcg, github.com/GaloisInc/reopt-vcg
29. Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C.,

Hensel, J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S.,
Thiemann, R.: Analyzing program termination and complexity automatically with
aprove. J. Autom. Reason. 58(1), 3–31 (2017)

30. He, S., Rakamarić, Z.: Counterexample-Guided Bit-Precision Selection. In: Pro-
gramming Languages and Systems, vol. 10695, pp. 534–553 (2017)

https://graphics.stanford.edu/~seander/bithacks.html
https://graphics.stanford.edu/~seander/bithacks.html
https://github.com/mchalupa/dg
https://derevenets.com/
https://github.com/GaloisInc/macaw
https://github.com/GaloisInc/reopt-vcg

18 Liu et al.

31. Heizmann, M., Christ, J., Dietsch, D., Hoenicke, J., Lindenmann, M., Musa, B.,
Schilling, C., Wissert, S., Podelski, A.: Ultimate program analysis framework p. 1

32. Heizmann, M., Hoenicke, J., Podelski, A.: Termination Analysis by Learning Ter-
minating Programs. In: Computer Aided Verification, vol. 8559, pp. 797–813 (2014)

33. Hendrix, J., Wei, G., Winwood, S.: Towards Verified Binary Raising p. 4
34. Hensel, J., Giesl, J., Frohn, F., Ströder, T.: Proving termination of programs with

bitvector arithmetic by symbolic execution. In: SEFM. vol. 9763 (2016)
35. Henzinger, T.A., Jhala, R., Majumdar, R., Necula, G.C., Sutre, G., Weimer, W.:

Temporal-safety proofs for systems code. In: Computer Aided Verification, 14th
International Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Pro-
ceedings. pp. 526–538 (2002)

36. Kinder, J.: Jakstab, http://www.jakstab.org/
37. Kinder, J., Veith, H.: Precise static analysis of untrusted driver binaries. In: Formal

Methods in Computer Aided Design. pp. 43–50. IEEE (2010)
38. Kroening, D., Sharygina, N.: Approximating Predicate Images for Bit-Vector Logic.

In: TACAS. Lecture Notes in Computer Science, vol. 3920, pp. 242–256 (2006)
39. Leike, J., Heizmann, M.: Geometric nontermination arguments. In: TACAS (2).

Lecture Notes in Computer Science, vol. 10806, pp. 266–283 (2018)
40. Liu, Y.C., Pang, C., Dietsch, D., Koskinen, E., Le, T., Portokalidis, G., Xu, J.:

Proving ltl properties of bitvector programs and decompiled binaries (extended).
CoRR abs/2105.05159 (2021), https://arxiv.org/abs/2105.05159

41. Mattsen, S., Wichmann, A., Schupp, S.: A non-convex abstract domain for the
value analysis of binaries. In: SANER. pp. 271–280 (2015)

42. Metere, R., Lindner, A., Guanciale, R.: Sound Transpilation from Binary to
Machine-Independent Code. arXiv:1807.10664 [cs] 10623, 197–214 (2017)

43. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: TACAS. Lecture Notes in Computer Science, vol. 4424, pp. 568–582 (2007)

44. Myreen, M.O., Gordon, M.J.C., Slind, K.: Machine-code verification for multiple
architectures - an application of decompilation into logic. In: Formal Methods in
Computer-Aided Design, FMCAD 2008. pp. 1–8 (2008)

45. Myreen, M.O., Gordon, M.J.C., Slind, K.: Decompilation into logic - improved.
In: Formal Methods in Computer-Aided Design, FMCAD 2012, Cambridge, UK,
October 22-25, 2012. pp. 78–81 (2012)

46. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C., Tinelli, C.: Towards
bit-width-independent proofs in smt solvers (2019)

47. Roessle, I., Verbeek, F., Ravindran, B.: Formally verified big step semantics out of
x86-64 binaries. In: Proceedings of the 8th ACM SIGPLAN International Confer-
ence on Certified Programs and Proofs (2019)

48. SA, H.R.: Ida pro, www.hex-rays.com/products/ida/
49. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,

Grosen, J., Feng, S., Hauser, C., Kruegel, C., et al.: Sok:(state of) the art of war:
Offensive techniques in binary analysis. In: 2016 IEEE Symposium on S&P (2016)

50. SoSy-Lab: CPAchecker, cpachecker.sosy-lab.org/
51. Verbeek, F., Olivier, P., Ravindran, B.: Sound C Code Decompilation for a Subset

of x86-64 Binaries. In: Software Engineering and Formal Methods, vol. 12310, pp.
247–264 (2020), series Title: Lecture Notes in Computer Science

52. Wintersteiger, C.M., Hamadi, Y., de Moura, L.: Efficiently solving quantified bit-
vector formulas. Formal Methods in System Design 42, 3–23 (Feb 2013)

53. Zohar, Y., Irfan, A., Mann, M., Niemetz, A., Notzli, A., Preiner, M., Reynolds, A.,
Barrett, C., Tinelli, C.: Bit-Precise Reasoning via Int-Blasting (2021)

http://www.jakstab.org/
https://arxiv.org/abs/2105.05159
https://www.hex-rays.com/products/ida/
https://cpachecker.sosy-lab.org/

Proving LTL Properties of Bitvector Programs and Decompiled Binaries 19

A Proof of Thm. 1

Proof. Induction on traces, showing equality on expression translation TE via
induction on expressions/statements and then inclusion on statement transla-
tions TS . First show that TE preserves traces equivalence. Structural induction
on e, with base cases being constants, variables, etc. In the inductive case, for
a bitvector operation e1 ⊗ e2, assume e1, e2 has been (potentially) transformed
to e′1, e

′
2 (resp.) and that Lemma 1 holds for each i ∈ {1, 2}: ∀σ.[[ei]]σ = [[e′i]]σ.

Since ⊗ is deterministic, [[e′1 ⊗ e′2]]σ = [[e1 ⊗ e2]]σ. Finally, applying the trans-
formation to ⊗, we show that [[TE{e′1 ⊗ e′2}]] = [[e′1 ⊗ e′2]] again by Lemma 1.
Next, for each statement s or relational condition c step, we prove TS preserves
trace inclusion: that [[s]] ⊆ [[TS{s}]] or that [[c]] ⊆ [[TS{c}]]. We do not recur-
sively weaken conditional boolean expressions, which would require alternating
strengthening/weakening. Thus, inclusion holds directly from Lemma 1.

	Proving LTL Properties of Bitvector Programs and Decompiled Binaries

