
Towards Optimal Use of Exception Handling
Information for Function Detection

Chengbin Pang∗†§ Ruotong Yu†§ Dongpeng Xu‡ Eric Koskinen† Georgios Portokalidis† Jun Xu†

∗Nanjing University †Stevens Institute of Technology ‡University of New Hampshire

Abstract—Function entry detection is critical for security of
binary code. Conventional methods heavily rely on patterns, in-
evitably missing true functions and introducing errors. Recently,
call frames have been used in exception-handling for function
start detection. However, existing methods have two problems.
First, they combine call frames with heuristic-based approaches,
which often brings error and uncertain benefits. Second, they
trust the fidelity of call frames, without handling the errors that
are introduced by call frames.

In this paper, we first study the coverage and accuracy of
existing approaches in detecting function starts using call frames.
We found that although recursive disassembly with call frames
can maximize coverage, using extra heuristic-based approaches
does not improve coverage and actually hurts accuracy. Second,
we unveil call-frame errors and develop the first approach to fix
them, making their use more reliable.

I. INTRODUCTION

Function detection is the process of identifying code regions
in binary software that are compiled from source-level func-
tions. Accurate function detection is critical for guaranteeing
the correctness and effectiveness of mainstream applications
of binary security, ranging from binary code similarity de-
tection [22, 29], legacy-code patching [6, 38–40], shadow
stack protection [8], coarse-grained [16, 25, 36, 45] or fine-
grained [15, 17, 30, 37, 44] control flow integrity, to code
layout randomization [10, 18–21, 28, 41, 42, 44].

The first step of function detection is to identify function
entry points, or function starts and this is, unfortunately, very
challenging. First, symbols in a binary provide the true identity
of function starts, but those symbols are normally stripped.
Second, binary code is often riddled with complex constructs
(e.g., jump tables, tail calls, etc) for performance optimiza-
tion. Mainstream conventional approaches for function start
detection [7, 24, 27] first recursively disassemble a given
binary from known function starts (e.g., program entry) and
add the targets of call instructions as new function starts. They
then scan the non-disassembled code to further detect function
starts with common function prologues [32, 34] or data-mining
models [7, 24], followed by recursive disassembly again.
Beyond such a hybrid approach, there are also solutions that
either (i) use data-mining models or neural networks to detect
function starts [5, 33] or (ii) aggregate basic blocks connected
by intra-procedural control flows into groups and consider the
target of each call instruction or the first instruction in each
group as a function start [4].

§These authors contributed equally to this paper. This work was done while
Pang was a Visiting Scholar at Stevens Institute of Technology.

Although the above approaches have demonstrated some
effectiveness in detecting function starts, they still share a
fundamental drawback: they all attempt to recover function
information using a pattern-driven principle, explicitly or
implicitly. This drawback impedes the adoption of those
approaches in the context of security applications. In fact, the
patterns used by them are usually incomplete (missing true
function starts) and/or inaccurate (introducing false function
starts). Unlike symbols whose reliability is guaranteed by
compilers, the patterns collected by these approaches do not
build on any reliable source. Inevitably, those approaches lead
to errors or omissions, which in turn reduces the confidence
of users and even leads to cascading effects.

Recent advances [35, 43] have leveraged a new source
to detect function starts in x64 binaries: call frames in the
exception handling segment. To support exception handling,
compilers emit call frames in x64 binaries as mandated by
the ABI, giving information such as the start location for
functions wherever possible. Mainstream binary analysis tools,
in particular GHIDRA [2] and ANGR [34], already use call
frames to facilitate function start detection. However, we
observe two common, critical problems. First, the tools try
to improve coverage by mixing the use of call frames with
additional approaches that are sometimes safe and sometimes
unsafe. Safe approaches leverage knowledge from the binary
(e.g., symbols), the machine (e.g., instruction set), and/or
the ABI (e.g., calling conventions) to provide correctness
guarantees. However, unsafe approaches are also involved,
which try to use common patterns but typically do not offer
assurances of correctness. These unsafe approaches inevitably
introduce errors, sabotaging the reliability of call frames
and the safe approaches. Moreover, the benefits from unsafe
approaches (e.g., whether they can really improve coverage)
remain unclear. Second, the tools fully trust the fidelity of call
frames. They do not realize that call frames by themselves can
also introduce errors and, not surprisingly, do not include any
solutions to fix those errors.

In this paper, we inspect the above two problems, aiming
to bring new insights towards optimal strategies of using call
frames for function start detection.

First, we study the coverage of existing tools, when com-
bining call frames with other methods, and the accuracy of the
results produced. To perform the study, we collected 1,395 bi-
naries from both real-world application and the popular bench-
marks, and we separately measured the coverage and accuracy
of detecting function starts detected by each combination of

approaches. Our key findings are (i) running safe recursive
disassembly with call frames can already provide nearly full
coverage; (ii) additionally running unsafe approaches from
existing tools does not provide meaningful improvement to
the coverage but, can introduce plenty of false positives.1

These bring insights towards both optimal coverage and better
reliability in the use of call frames for function start detection.

Second, we systematically unveil and quantify the errors
that call frames can introduce. To be specific, we compared
the function starts extracted from call frames and the ground
truth in our benchmark binaries. We discovered that modern
compilers keep separate call frames (also separate symbols)
for distant parts in a non-contiguous function. When such call
frames are directly used for function start detection, they can
bring a significant group of false function starts. We also found
that existing tools do not provide any solution to handle such
false function starts. Following our findings, we develop a new
algorithm to fix errors brought by call frames. Our key insight
is that distant parts in a non-contiguous function are typically
connected via a jump. By checking that the jump between two
call frames cannot be a jump between two functions (i.e, the
jump cannot be a tail call), we can decide that the two call
frames belong to the same non-contiguous function and thus,
merge them. Inspired by this insight, we incorporate well-
founded, restrictive criteria to detect tail calls, minimizing
the chance of reporting false tail calls and ensuring that all
missed tail calls are harmless. According to our evaluation,
our algorithm can eliminate nearly 95% of the false function
starts introduced by call frames, without incurring harmful side
effects. Further, all the missed false function starts are due to
conservativeness of our implementation choices instead of the
design of our algorithm.

Our main contributions are as follows.

• New knowledge - We investigate the coverage and accuracy
of function starts detected by combing call frames with
different approaches from existing tools. We bring insights
towards using call frames to achieve optimal coverage of
function starts with a minimal hurt to the reliability.

• New approach - We are the first to systematically study,
classify, and quantify the errors that call frames can bring.
We develop the first approach that can fix the errors in
call frames, making them a better information source for
function start detection.

• New finding - We unveil key problems in how existing
tools use call frames and demonstrate their significance with
quantitative evidence.

• New tool - We developed a tool incorporating all our
strategies. Its source code is available at https://github.c
om/ruotongyu/FETCH.

1False positive means the start of a function identified but it is actually not.
False negative means the start of a function is not identified.

II. OVERVIEW

A. Problem Definition

Informally, function detection is to reconstruct the mapping
from the code in a binary to the corresponding functions in
the source code. At the binary level, a function consists of a
set of basic blocks, which has one entry point and one or more
exit points. The principled solution of function detection is to
find a function entry point firstly, or a function start, and then
follow the intra-procedural control flow to detect instructions
until reaching the exit points. Accurately finding function starts
is a universal foundation of function detection. In this paper,
we, therefore, focus on function start detection.

B. Existing Solutions

Past research has brought many solutions of function start
detection. Most solutions developed in the earlier stage use
three strategies. First, BYTEWEIGHT [5] and Shin et al. [33]
train decision trees and neural networks to detect function
starts from raw binaries. Second, NUCLEUS [4] first recov-
ers the instructions using linear sweep and then aggregates
the instructions connected via intra-procedural control flows
into groups. The target of a direct call instruction or the
lowest address in each group is considered a function start.
Third, the majority of tools (e.g., DYNINST [24], BAP [7],
and RADARE2 [32]) use a hybrid solution. The tools first
gather symbols remaining in the binary and then run recursive
disassembly from each symbol. The addresses of the symbols
and targets of direct/indirect calls found in recursive disas-
sembly are considered function starts. The tools finally detect
function starts in the non-disassembled regions using common
prologues or data mining models [27], followed by recursive
disassembly from the newly discovered function starts.

A fundamental limitation shared by the above solutions is
that, they all heavily rely on pattern matching or empirical
learning to recover function starts from binary code. Even
with the hybrid solutions, nearly 18% of the function starts are
detected by prologue matching (without counting the functions
recursively found from those function starts) [27]. The patterns
and learned models can be incomplete or inaccurate and
oftentimes over-fit the “training” data. As a consequence, those
solutions inevitably introduce errors or miss true function
starts.

Using Exception Handling Information: Recently, many
tools are adopting a more reliable source of information —
the exception-handling information — to facilitate function
start detection. Both ANGR [34] and GHIDRA [2] leverage
call frames in the exception handling section to help detect
function starts. They first consider the addresses recorded in
existing symbols and call frames as function starts and run
recursive disassembly from those addresses to detect more
function starts carried by targets of call instructions. Then
they take extra steps such as function prologue matching to
find further missing function starts. JIMA [3] only leverages
exception handling information to aid detection of exception
handling code blocks.

https://github.com/ruotongyu/FETCH
https://github.com/ruotongyu/FETCH

1 double div(int a, int b) {

2 if(b == 0)

3 throw "Division by zero error!";

4 return (a/b);

5 }

6 void main (){

7 int x = (int)getchar();

8 int y = (int)getchar();

9 try {

10 return div(x,y);

11 }

12 catch (const char* msg){

13 cerr << msg << endl;

14 }

15 }

Fig. 1: An example of exception handling in C++ programs.

The use of exception handling information by existing
tools (ANGR and GHIDRA) in function start detection has
two problems. First, they combine the reliable information
in call frames with unsafe approaches, i.e., approaches that
do not offer assurances of correctness: ¶ both ANGR and
GHIDRA run prologue matching to detect function starts in
the non-disassembled code regions, followed by a round of
recursive disassembly from each matched function start; ·
both ANGR and GHIDRA leverage heuristics to detect tail calls
and consider their targets as function starts (not enabled by
default); ¸ ANGR linearly scans the remaining code gaps and
treats the beginning of each correctly disassembled code piece
as a new function start [27]. The use of unsafe approaches
often bring errors, but it may not increase the coverage
achieved by call frames and safe approaches that provide
correctness guarantees (e.g., recursive disassembly). Second,
the existing tools fully trust the fidelity of call frames, without
realizing and handling the errors that call frames can bring.

C. Research Scopes

In this paper, we focus on exploring the use of exception
handling information for function-start detection. Our goal is
not to develop a new approach from scratch. Instead, we aim to
expose any shortcomings in how existing tools use exception
handling information and identify the best strategies of using
exception handling information for function start detection.
Specifically, we have the following goals:

• Goal 1: We study the coverage of function starts by com-
bining call frames with both safe and unsafe approaches
from existing tools. This will bring insights towards
optimal coverage with a minimal threat to reliability. § IV
discusses how we achieve this goal in detail.

• Goal 2: We systematically study the errors that call
frames can introduce and explore new solutions to fix the
errors. This will help ensure the fidelity of call frames as
an information source for function start detection. § V
presents our approach to the second goal.

In accordance to our goals, we restrict our discussion in this
paper on binaries with call frames. To this regard, we focus
on System-V x64 binaries (e.g., x64 binaries running on Linux
or other Unix variants) because the corresponding ABI [23]

Throw exception

(user code)

__cxa_allocate_exception

(libstdc++)

__cxa_throw

(libstdc++)

_Unwind_RaiseException

(libgcc)

unwind one frame

run personality routine

if no handler, loop

transfer to handler
Catch exception

(user code)

Fig. 2: Workflow of exception handling in C++ programs.

mandates the existence of call frames while the other types of
binaries may not have call frames.

III. DEMYSTIFYING EXCEPTION HANDLING

In this section, we describe the technical details of exception
handling at the binary level and unveil the types of exception
handling information that can help function start detection.

A. Exception Handling at the High Level

Exception handling is the process of responding to the
occurrence of exceptions during the execution of a program.
Support of exception handling has become a standard feature
of modern programming languages. For instance, C++ pro-
vides the try, throw, and catch clauses to facilitate handling
of exceptions. To explain exception handling, we use the C++
example in Figure 1. Exception handling in other programming
languages follows a similar format, although using different
grammar.

As shown in Figure 1, the main function receives two
integers from the user and attempts to divide them by calling
div. In normal cases, div returns the division result to main, but
if the divisor is zero, it throws an exception which will then
be caught and handled by main. To realize exception handling
in this case, execution has to go through two key steps. First,
it needs to find the proper handler for the exception. As shown
in our example, the throwing of an exception and the suitable
handler for that exception can lie in different functions. As
such, exception handling may need to search in the call
chain on the stack, including the current function where the
exception is thrown and all the caller functions. Second, after
finding the proper handler, execution is redirected to it.

The above two steps are mainly completed by a special
procedure called stack unwinding. When an exception occurs,
stack unwinding linearly searches every function on the call
stack for the exception handler. While searching the exception
handler, stack unwinding concurrently updates the stack by
removing the stack frame of each searched function until the
correct handler is identified. Following that, stack unwinding
sets the stack pointer to the frame of the function with the
correct handler, recovers the contexts in that function, and
switches the execution to that handler.

In Figure 1, once div throws the exception at line 3, the
execution will in turn search div and main to locate the right
handler at line 12 in main. In this process, the execution will
remove div’s stack frame and then set the stack pointer to
main’s frame. Finally, the execution will recover the context
of main and switches to the catch clause at line 12.

.text

.data

.eh_frame

.other

PC Start: b0
PC Range: 56
CFIs:
 DW_CFA_def_cfa: r7 ofs 8
 DW_CFA_advance_loc: 1 to b1
 DW_CFA_def_cfa_offset: 16
...

Binary File eh_frame

CIE

FDE

FDE

CIE

FDE

FDE

Fig. 3: An overview of the eh_frame section.

B. Exception Handling under the Hood

In this section, we further reveal the under-the-hood mech-
anism of exception handling and stack unwinding. We follow
the same setting of our running example: exception handling
in x64 binaries compiled from C++ programs.

Figure 2 shows the workflow of the exception han-
dling procedure. We will focus on the part of stack
unwinding since other parts are not related to function
detection. Stack unwinding is mainly completed by the
_Unwind_RaiseException function from C library (libgcc). We
describe how _Unwind_RaiseException performs the stack un-
winding procedure as follows. For simplicity, we abbreviate
_Unwind_RaiseException as FU .
¶ FU first checks the program counter (PC), i.e., the rip

register, at the throw statement and determines the current
function (e.g., div in Figure 1) based on the PC.

· FU then checks if the current function has a proper handler.
Specifically, it checks whether the current function has a
catch block that can handle the throw. If a proper catch

block is found, FU switches the PC to the catch block.
Otherwise, FU recovers the registers saved by the current
function and destroys its stack frame by adjusting the
stack pointer (SP). Then, FU goes to the next step.

¸ FU finds the caller function on the stack (e.g., main in
Figure 1) and repeats ·, using the return address as the
new PC. However, if the stack frame is empty, FU will
invoke terminate to make the program exit abnormally.

As unveiled by the description above, ¶-¸ critically depend
on three tasks: (T1) given PC, finding the function containing
the PC; (T2) given PC and the corresponding SP, determining
the call frame of the current function and its return address;
(T3) given PC and the corresponding SP, recovering the
registers saved by the current function. To complete the three
tasks, FU leverages information from a special section called
eh_frame, which is also the key data empowering function
detection. In the rest of this section, we will give a brief intro-
duction of eh_frame and then explain how it helps complete
the three tasks.

C. EH_Frame: Key Data Structure for Exception Handling

Overview of EH_Frame: As illustrated in Figure 3, eh_frame
is a separate section in a binary file. It is structured as a list
of Common Information Entries (CIE), each corresponding to
an object file linked into the binary file. A CIE carries one
or more Frame Description Entries (FDE), and typically, one

FDE records the information of a unique function from the
CIE’s object file.

Exception Handling with EH_Frame: The major informa-
tion in eh_frame used by exception handling resides in the
FDEs. An FDE record consists of a list of fields, among which
PC Begin, PC Range, and Call Frame Instructions (CFIs) are
indispensable to tasks T1-T3. In the following, we will follow
the example in Figure 4 to explain how the three fields are
used to complete T1-T3.

Figure 4a shows the assembly code of a function extracted
from IDA-Pro 7.2 and Figure 4b shows the corresponding
FDE. Line 2 and 3 in Figure 4b presents the PC Begin and
the PC Range fields in the FDE. They explicitly give the
start address and length of the function body. Using the PC
information in the FDEs, exception handling can easily find
the function containing a given PC, thus completing task T1.

The rest part of Figure 4b (line 4-19) presents CFIs, a group
of special instructions describing the unwinding rules. Due
to historical reasons, the format of CFI follows the DWARF
standard [9]. The core concept introduced by these unwinding
rules is called “Canonical Frame Address (CFA)”. CFA is
a universal variable that refers to the base address of the
current stack frame (typically the highest address), which
helps to uniform the various representations of the frame
pointer introduced by compilers. There are four main types
of instructions involved in the unwinding rules:

• DW_CFA_def_cfa defines how CFA is represented, nor-
mally in the format of an offset to a designated register.

• DW_CFA_advance_loc records the location of an instruction
that changes the register used to represent the CFA
or saves certain registers to the stack. The instruction
location is represented by an offset to the function start.

• DW_CFA_def_cfa_offset describes the rule to calculate
CFA when the value of the register representing CFA
is changed. The rule typically follows the format of an
offset relative to that register.

• DW_CFA_offset records the saving of certain registers to
the stack, covering both the number and the location of
the saved register.

We continue using the example in Figure 4 to explain how
the above instructions describe concrete unwinding rules. At
line 5 in Figure 4b, a DW_CFA_def_cfa instruction defines that
rsp is used to represent the CFA and initially, CFA = rsp + 8.
Across the entire function, there are six instructions changing
rsp, respectively marked as 1-6 in the comments in Figure 4a.
Correspondingly, FDE records each change with a separate
DW_CFA_advance_loc instruction, also marked as 1-6 in the
comments in Figure 4b. Following each DW_CFA_advance_loc

instruction, FDE appends a DW_CFA_def_cfa_offset instruction
to describe how to re-calculate the CFA. Consider line 2 in Fig-
ure 4a as an example. The instruction pushes rbp to the stack,
decreasing rsp by 8. Accordingly, line 6 in Figure 4b indicates
that the instruction before address b1 makes a change to the
register representing the CFA (i.e., rsp); line 7 in Figure 4b
describes that now the offset between CFA and rsp is 16 bytes,

1 ; function start

2 b0: push rbp ; 1

3 b1: lea rax,[rip+0x36d8b8]

4 b8: lea rbp,[rdi+0x50]

5 bc: push rbx ; 2

6 bd: lea rbx,[rdi+0xb0]

7 c4: sub rsp,0x8 ; 3

8 c8: mov QWORD PTR [rdi],rax

9 cb: nop DWORD PTR [rax]

10 d0: sub rbx,0x18

11 d4: mov rdi, QWORD PTR [rbx]

12 d7: call 3d5c0 <qfree@plt>

13 dc: cmp rbp,rbx

14 df: jne 45fd0 <main+0x55e0>

15 e1: add rsp,0x8 ; 4

16 e5: pop rbx ; 5

17 e6: pop rbp ; 6

18 e7: ret

19 ; function end

(a) Assembly code

1 00001070 FDE

2 PC Begin: b0

3 PC Range: 56

4 CFIs:

5 DW_CFA_def_cfa: r7 (rsp) ofs 8

6 DW_CFA_advance_loc: 1 to b1 // 1

7 DW_CFA_def_cfa_offset: 16

8 DW_CFA_offset: r6 (rbp) at cfa-16

9 DW_CFA_advance_loc: 12 to bd // 2

10 DW_CFA_def_cfa_offset: 24

11 DW_CFA_offset: r3 (rbx) at cfa-24

12 DW_CFA_advance_loc: 11 to c8 // 3

13 DW_CFA_def_cfa_offset: 32

14 DW_CFA_advance_loc: 29 to e5 // 4

15 DW_CFA_def_cfa_offset: 24

16 DW_CFA_advance_loc: 1 to e6 // 5

17 DW_CFA_def_cfa_offset: 16

18 DW_CFA_advance_loc: 1 to e7 // 6

19 DW_CFA_def_cfa_offset: 8

(b) FDE entry from eh_frame

Return Address

rbp

rbx

Previous

Function
CFA

CFA-8

CFA-16

CFA-24

CFA-32

Stack

Stack

Pointer

(1) (5)

(2) (4)

(3)

(6)

(c) The run-time stack
Fig. 4: A function from IDA-Pro 7.2 and its FDE. Addresses of instructions are simplified to only keep the lower two digits.

namely CFA = rsp + 16. The rest five DW_CFA_def_cfa_offset

instructions can be interpreted similarly and the run-time stack
is shown in Figure 4c.

The above mechanism guarantees that, given PC and rsp

at any execution point, CFA can be correctly calculated. This
essentially ensures that (i) the range of the current stack frame
can be determined since CFA always refers to the highest
address of the current stack frame and (ii) the return address
of the current function can be found because return address is
located right below the top of the current stack frame (i.e., at
CFA - 8). Therefore, using information in the CFI, exception
handling can correctly complete task T2.

Referring back to the example in Figure 4, the first in-
struction in Figure 4a pushes rbp, a callee-saved register,
to the stack. Correspondingly, FDE inserts a DW_CFA_offset

instruction at line 8 in Figure 4b, indicating that the instruction
before address b1 saves register number 6 (i.e., rbp) to address
CFA - 16 on the stack. Similar to this case, whenever a
callee-saved register is stored on the stack, FDE inserts a
DW_CFA_offset instruction. As such, given PC and rsp at any
point of the execution, exception handling can learn what
callee-saved registers exist in the current stack frame, and
thus, complete T3 in the unwinding process.

We also note that x64 binaries compiled from C programs
similarly carry FDEs, as verified by our studies in § IV. In
fact, the x64 ABI mandates FDEs in such binaries as many
library functions like backtrace, __builtin_return_address

need FDEs to support their functionality.

IV. EXPLORING COVERAGE OF FUNCTION START
DETECTION WITH CALL FRAMES

In this section, we aim at our first research goal — exploring
the best strategies that use call frames towards optimal cover-
age of function starts with a minimal harm to the reliability.
We will study the detection of function starts using FDEs
with both safe and unsafe approaches from existing tools,
and hence, understand which combination of approaches can
bring the best balance between coverage and risks. To be more
specific, we will center around three questions:

Q1 - Using only FDEs, how many function starts can be
detected?

Q2 - Using FDEs and safe approaches, particularly recursive
disassembly, how many function starts can be detected?

Q3 - Can unsafe approaches, such as the heuristics used by
existing tools, help detect more function starts? What are
their side effects?

To answer the above questions, we perform a set of empir-
ical studies with a large corpus of x64 binaries as follows.

A. Setup of Studies

1) Preparation of Datasets: We collected two sets of x64
binaries, one from the wild and one built from source code.
Dataset 1: The first dataset are binaries collected from
the wild, including 18 close-source binaries and 25 pre-built
binaries from open-source programs. Details of the binaries are
shown in Table I. The binaries cover nearly all the common
types of software we use in our daily life, ranging from editors
to browsers and tele-conference clients. The binaries also cover
both C programs and C++ programs.
Dataset 2: The second dataset is compiled from widely-
used open source programs. As shown in Table II, the dataset
includes 179 programs used by a recent study [27], covering
both applications and libraries that are written in C/C++. These
programs carry highly diverse functionality and complexity;
They also contain both hand-written assembly code and hard-
coded machine code. To further increase the diversity, we
compiled the 179 programs into x64 binaries with both LLVM
(version 6.0.0) and GCC (version 8.1.0), using optimization
level O2, O3, Ofast, and Os. We omitted O0 and O1 since
they are not widely used in practice. At the end, we produced
1,352 binaries in total.

2) Generation of Ground Truth: To measure the detection
results, ground truth about the function starts is required.
One common approach to obtaining the ground truth is to
use the symbols, but we found that symbols are not perfect:
(i) the symbols for hundreds of destructor functions in our
dataset are missing; (ii) the symbols for a small group of

TABLE I: Wild binaries in our study. Open - open source or
not; EHF - having eh_frame or not; Sym - having symbols or
not; FDE - ratio of functions with FDEs (v.s. symbols).

Software Open EHF Sym FDE Note
Atom-1.49.0 3 3 7 –– gcc-7.3.0;c++
Simplenot-1.4.13 3 3 7 –– gcc-4.6.3;c++
OpenShot-2.4.4 3 3 7 –– gcc-4.8.4; c
seamonkey-2.49.5 3 3 7 –– gcc-4.8.5; c++
mupdf-1.16.1 3 3 7 –– gcc-7.4.0; c
laverna-0.7.1 3 3 7 –– gcc-4.6.3; c++
franz-5.4.0 3 3 7 –– gcc-4.6.3; c++
Nightingale-1.12.1 3 3 7 –– gcc-4.7.2; c
palemoon-28.8.0 3 3 7 –– c++
evince-3.34.3 3 3 7 –– c
amarok-2.9.0 3 3 7 –– c
deadbeef-1.8.2 3 3 7 –– c
qBittorrent-4.2.5 3 3 7 –– c++
pdftex-3.14159265 3 3 7 –– c
eclipse-4.11 3 3 7 –– gcc-4.8.5; c
VS Code-1.40.2 3 3 7 –– gcc-7.3.0; c++
VirtualBox-5.2.34 3 3 3 100.0 c++
gv-3.7.4 3 3 3 100.0 c
okular-1.3.3 3 3 3 100.0 c++
gcc-7.5 3 3 3 100.0 c
wkhtmltopdf-0.12.4 3 3 3 100.0 c
firefox-78.0.2 3 3 3 100.0 c++
qemu-system-2.11.1 3 3 3 100.0 c
ThunderBird-68.10.0 3 3 3 100.0 gcc-6.4.0; c++
Smuxi-Server 3 3 3 100.0 gcc-5.3.1; c
TeamViewer-15.0.8397 7 3 7 –– gcc-7.2.0; c++
skype-8.55.0.141 7 3 7 –– gcc-7.3.0; c++
trillian-6.1.0.5 7 3 7 –– c++
opera-65.0.3467.69 7 3 7 –– gcc-7.3.0; c++
yandex-browser-19.12.3 7 3 7 –– gcc-7.3.0; c++
SpiderOakONE-7.5.01 7 3 7 –– gcc-4.1.2; c
slack-4.2.0 7 3 7 –– gcc-7.3.0; c++
rainlendar2-2.15.2 7 3 7 –– gcc-5.4.0; c++
sublime-3211 7 3 7 –– gcc-6.3.0; c++
netease-cloud-music-1.2.1 7 3 7 –– c++
wps-11.1.0.8865 7 3 7 –– c++
wpp-11.1.0.8865 7 3 7 –– c++
wpspdf-11.1.0.8865 7 3 7 –– c++
wpsoffice-11.1.0.8865 7 3 7 –– c++
ida64-7.2 7 3 7 –– gcc-4.8.2; c++
zoom-7.19.2020 7 3 7 –– gcc-4.8.5; c++
binaryninja-1.2 7 3 3 100.0 gcc-5.4.0; c++
FoxitReader-4.4.0911 7 3 3 99.99 gcc-4.8.4; c++
Avg. - - - 99.99 -

assembly functions in our dataset have incomplete types. More
importantly, symbols can introduce a significant group of false
positives, as we will show in § V. Thus, we only use symbols
for the pre-compiled binaries in dataset 1 since we have no
other options; while for dataset 2, we use a compiler-based
approach to produce more complete and more accurate ground
truth. Specifics are as follows.

Ground Truth for Dataset 1: As described above, we
considered symbols as the ground truth of function starts for
the binaries from the wild. Specifically, among the 25 binaries
pre-built from open source projects, we found symbols in 1 of
them and we successfully installed symbols for 8 others. For
the closed-source binaries, we found symbols in 2 of them.
In total, we obtained symbol-based ground truth for 11 wild
binaries and our studies only considered them.

Ground Truth for Dataset 2: To generate a better ground
truth than the symbols, we re-used the frameworks developed
by [27] to intercept the end-to-end compiling and linking
process to obtain all function starts.

TABLE II: Self-built programs used in our study. EHF - having
eh_frame or not; FDE - the ratio of functions that have FDEs,
where the baseline is symbols.

Project Type # Prog/Bins EHF FDE Lang
Coreutils-8.30 Utilities 105/840 3 100.0 C
Findutils-4.4 Utilities 3/24 3 100.0 C
Binutils-2.26 Utilities 17/136 3 100.0 C/C++
Openssl-1.1.0l Client 1/4 3 96.40 C
D8-6.4 Client 1/4 3 100.0 C++
Busybox-1.31 Client 1/8 3 100.0 C
Protobuf-c-1 Client 1/6 3 100.0 C++
ZSH-5.7.1 Client 1/2 3 100.0 C
Openssh-8.0 Client 7/28 3 100.0 C
Mysql-5.7.27 Client 1/6 3 100.0 C++
Git-2.23 Client 1/8 3 100.0 C
filezilla-3.44.2 Client 1/4 3 100.0 C++
Lighttpd-1.4.54 Server 1/8 3 100.0 C
Mysqld-5.7.27 Server 1/6 3 100.0 C++
Nginx-1.15.0 Server 1/6 3 98.97 C
Glibc-2.27 Library 1/3 3 99.97 C
libpcap-1.9.0 Library 1/8 3 100.0 C
libv8-6.4 Library 1/4 3 100.0 C++
libtiff-4.0.10 Library 1/8 3 100.0 C
libxml2-2.9.8 Library 1/8 3 100.0 C
libprotobuf-c-1 Library 1/8 3 100.0 C++
SPEC CPU2006 Benchmark 30/223 3 99.99 C/C++
Total - 179/1352 - 99.87 -

B. Answering Question Q1

Comparing with Symbols: In our first study, we extracted
the PC Begin fields from all FDEs and compared them with
symbols. Not surprisingly, FDEs and symbols are highly
overlapped. In the 11 wild binaries, FDEs cover 101,882
(99.99%) of the 101,891 symbols. In 9 out of the 11 binaries,
FDEs cover all the symbols (see the column of FDE in
Table I). The results with self-built binaries are similar. In
the 1,352 self-built binaries, FDEs cover 1,138,601 (99.87%)
of the 1,140,047 symbols. In 1,319 out of these binaries, FDEs
cover all the symbols (see the column of FDE in Table II).

Comparing with Ground Truth: We further considered the
PC Begin fields in our self-built binaries as function starts and
compared them with the compiler-generated ground truth. In
total, the FDEs cover 1,103,832 of the 1,105,278 function
starts. Despite the high overall coverage rate (99.87%), FDEs
alone can still leave large coverage gaps in many binaries. To
be specific, FDEs miss function starts in 33 of our self-built
binaries and the average number of missed functions is 43.82.
In the binary built from Openssl with Ofast, FDEs miss 237
functions.

Through manual analysis, we found that the majority (1,330
out of 1,446) of the functions missed by FDEs are assembly
functions. In principle, to comply with the ABI and generate
FDE for every assembly function, the developers should write
CFI directives [11] manually. However, this only happens in
infrastructural projects2 instead of everywhere, due to the com-
plexity and error-proneness of manually creating unwinding
rules. The other functions missed by FDEs are the instances
of __clang_call_terminate, which are statically linked into
the binaries by the Clang compiler.

2Example: https://github.com/openssl/openssl/blob/33388b44b67145af21
81b1/crypto/aes/asm/aes-x86_64.pl#L608

https://github.com/openssl/openssl/blob/33388b44b67145af2181b1/crypto/aes/asm/aes-x86_64.pl#L608
https://github.com/openssl/openssl/blob/33388b44b67145af2181b1/crypto/aes/asm/aes-x86_64.pl#L608

C. Answering Question Q2

Following our first study, we then investigate whether re-
cursive disassembly, a widely-used safe approach, can detect
the missing function starts. Specifically, we ran the built-in
recursive disassembly in both ANGR and GHIDRA, starting
from addresses carried by FDEs and symbols. In the course
of recursive disassembly, both ANGR and GHIDRA consider
targets of call instructions as new function starts. As we focus
on the effectiveness of recursive disassembly in this study, we
disabled the extra heuristics used by ANGR and GHIDRA for
function detection, including the tail call detection used by
both tools, the function matching used by both tools, and the
linear scan used by ANGR (more details can be found in [27]).
To guarantee the accuracy of the experiment result, we only
considered the self-built binaries since we have the precise
ground truth for them.

Results with GHIDRA: GHIDRA can run all the 1,352
self-built binaries. However, the results are well below ex-
pectations. In comparison to solely using FDEs, recursive
disassembly by GHIDRA significantly reduced the coverage:
the total number of covered function starts dropped from
1,103,832 to 1,088,377; and the number of binaries with non-
detected functions increased from 33 to 78. The reduction
of coverage is mainly caused by a strategy — control-flow
repairing — that examines the function start after a non-
returning function. If the function start cannot be reached by
other control flows, GHIDRA removes that function start. Due
to inaccuracy in the detection of non-returning functions and
incompleteness in the analysis of control flows [27], control-
flow repairing often removes many true function starts, leading
to reduced coverage as we observed.

We then conducted a follow-up test where we disabled the
control-flow repairing. This time GHIDRA’s recursive disas-
sembly demonstrated its effectiveness: in comparison to solely
using FDEs, it increased the number of detected functions
from 1,103,832 to 1,104,786 and dropped the the number
of binaries with non-detected functions from 33 to only 6
(see Figure 5a). While the recursive disassembly by GHIDRA
indeed brings more coverage, we found that it is accompanied
by another heuristic to detect thunk functions. The heuristic
considers a function that starts with a jump to be a thunk
function and takes the target of the jump as a new function
start. In our test, the heuristic introduced over 400 new false
positives and increased the number of binaries that have false
positives from 488 to 542.

Results with ANGR: ANGR can only run 1,343 of the self-
built binaries because it could not open the remaining 9.
Before discussing the results, we want to note an observation
that can make a significant difference. Specifically, ANGR
marks a special group of functions (or precisely, functions that
have a basic block solely consisting of padding instructions)
as alignment. A recent study [27] suggests excluding the
alignment functions for comparison. However, we found that
doing so will reduce the coverage but not improve accuracy.
Therefore, we preserved all the alignment functions.

In total, the group of 1,343 binaries contain 982,763 func-
tions. By using FDEs alone, we detected 981,317 of those
functions and achieved full coverage in 1310 binaries. How-
ever, the further recursive disassembly by ANGR decreased
the number of binaries with full coverage to 1,303. The major
cause is a heuristic that ANGR uses to merge functions. To
be specific, ANGR merges two adjacent functions if the two
functions are connected by a jump which is the only outgoing
control-transfer from the first function and the only incoming
control-transfer to the next function.

Following up the above test, we re-ran ANGR’s recursive
disassembly without function merging. This time recursive
disassembly demonstrated true effectiveness. It increased the
number of detected functions from 981,317 to 982,195 and
increased the number of binaries with full coverage from 1,310
to 1,337. However, similar to GHIDRA, ANGR’s recursive
disassembly is coupled with a heuristic that introduces extra
false positives. In an alignment function where the beginning
instructions are considered padding, the heuristic will mark
the first non-padding instruction a new function start, incurring
3,973 false positives.

Results with Safe Recursive Disassembly: As described
above, the recursive disassembly by GHIDRA and ANGR is
coupled with heuristics. In addition, the recursive disassembly
itself in GHIDRA and ANGR also uses other unsafe strategies
to handle complex constructs (e.g., indirect jumps) [27]. These
indicate that the tests with GHIDRA and ANGR do not truly
unveil the coverage of "safe" recursive disassembly on top of
FDEs. This motivated us to run an extra test with error-free
recursive disassembly. In general, recursive disassembly can
run into errors only when handling indirect jumps, indirect
calls, tail calls, and non-returning functions. We handle these
complex constructs as follows to avoid errors.

¶ Indirect Jumps - We only consider indirect jumps for jump
tables. Specifically, we follow DYNINST [24] to detect and
solve jump tables which has proven high precision [27] and
fixed some implementation defects in DYNINST.

· Indirect Calls - We skip all indirect calls.
¸ Tail Calls - We do not detect tail calls.
¹ Non-returning Functions - We reuse DYNINST’s algorithm

to detect non-returning functions, which has proven accu-
rate [27]. We expanded the non-returning library functions
used by DYNINST to cover all the cases in our self-built
binaries. In particular, we handled error and error_at_line

as special cases since they are non-return only when the
first argument is non-zero. Encountering either function, we
run backward slices from the first argument and examine
whether the argument always flows from 0. If so, we
consider the function returning and non-returning otherwise.

Running the above error-free recursive disassembly, we
achieved identical coverage as GHIDRA and ANGR, while
more importantly, we introduced no false positives during the
recursive disassembly, as illustrated by Figure 5.

800 820 840 860 880 900

FDE+Rec
+Tcall

FDE+Rec
+Fsig

FDE+Rec

FDE+Rec
+CFR

FDE

1346

1346

1346

1274

1319

830

830

830

810

864

1200
1220

1240
1260

1280
1300

1320
1340

1346

1346

1346

1274

1319

830

830

830

810

864

of binaries

Full Accuracy
Full Coverage

(a) GHIDRA (1,352 binaries)

0

FDE+Rec
+Tcall

FDE+Rec
+Scan

FDE+Rec
+Fsig

FDE+Rec

FDE+Rec
+Fmerg

FDE

1337

1337

1337

1337

1303

1310

697

0

13

845

845

864

700 750 800 850 900

1337

1337

1337

1337

1303

1310

697

0

13

845

845

864

1200
1250

1300
1350

1337

1337

1337

1337

1303

1310

697

0

13

845

845

864

of binaries

Full Accuracy
Full Coverage

(b) ANGR (1,343 binaries)

800 820 840 860 880 900

FDE+Rec+
Xref+Tcall

RDE+Rec
+Xref

FDE+Rec

FDE

1334

1346

1346

1319

1222

864

864

864

1200
1220

1240
1260

1280
1300

1320
1340

1334

1346

1346

1319

1222

864

864

864

of binaries

Full Accuracy
Full Coverage

(c) Optimal Strategies (1,352 binaries)
Fig. 5: The number of binaries where different strategies achieve full coverage or full accuracy. In the figure, FDE indicates
solely using FDEs; Rec, Fsig, Tcall respectively indicate running recursive disassembly, function matching, and tail call
detection in the corresponding tool; CFR indicates control flow repairing in GHIDRA; Fmerg and Scan indicate function
merging and linear scan by ANGR; Xref indicates function pointer detection in the optimal strategies.

D. Answering Question Q3

After running our safe recursive disassembly with FDEs, we
missed 568 functions in the 1,352 binaries and missed 568
functions in the 1,343 binaries that ANGR can run. All the
missed functions are assembly functions, mainly belonging to
two groups: (1) functions that are only reachable via tail calls
and the successors of those functions (2) functions that are
only reachable via indirect calls and the successors of those
functions. In the last study, we aim to understand whether the
other unsafe approaches used by GHIDRA and ANGR can help
detect those functions and what harm they will incur.

Results with GHIDRA: GHIDRA uses two heuristic-based
approaches, function matching and tail call detection,3 to
further detect function starts. We tested the two approaches
in turn. As indicated by Figure 5a the two approaches are not
helpful to coverage. The function matching detected no new
function starts, despite it neither brought false positives. The
tail call detection found 16 new function starts, however, at
the cost of 97,339 new false positives.

Results with ANGR: Besides using function matching and tail
call detection, ANGR also detects function starts in its linear-
scan process. In our study, we in turn tested function matching,
tail call detection, and linear scan. Function matching helped
detect 8 new function starts. However, it brought 4,128 false
positives and it decreased the number of binaries with full
accuracy from 845 to 13; The tail call detection found 211 new
function starts at the cost of 4,686 false positives. Moreover,
it dropped the number of binaries with full accuracy from
845 to 697; The linear scan detected 230 new function starts.
However, it increased the number of false positives from
35,159 to 210,921 and more importantly, it eliminated all the
binaries that have full accuracy.

E. Moving Towards Full Coverage

Recursive disassembly with FDEs can provide high cov-
erage, but it does not guarantee full coverage for a specific
binary. It would be very convenient if we could identify — or
slightly over-approximate — the missing function starts, since

3Tail call detection is not enabled by default in GHIDRA (neither in ANGR).
We tested it because some missing function starts are due to tail calls.

this will enable the users to have full coverage and, with slight
manual efforts on examining the functions we further identify,
obtain a full accuracy (except the accuracy issues inherited
from FDEs). To this regard, we explored another soundness-
driven approach [31] and we present the details as follows.

Given a binary, we first run recursive disassembly on top of
FDEs and then collect all the potential function pointers. For
each pointer, we validate its legitimacy. Specifically, we run
our conservative recursive disassembly from the pointer and
check four types of errors: (i) invalid opcodes; (ii) running
into the middle of previously disassembled instructions; (iii)
control transfers to the middle of previously detected func-
tions; and (iv) invalid calling conventions (to validate calling
conventions, we use the rule that all non-argument registers,
namely registers other than rdi, rsi, rdx, rcx, r8, r9, must be
initialized before use). If no error occurs, we consider the
function pointer legitimate and take it as a new function start.

A key challenge in the above approach is the identification
of function pointers. To overcome this challenge, we take a
conservative approach to collecting a super-set of function
pointers. Technically, we scan every consecutive eight-bytes
(e.g., [0,...,7], [1,...,8], [2,...,9], etc) in the data segment and the
non-disassembled regions, considering each of the eight-bytes
as a pointer. We also identify all the constant operands in the
disassembled code and consider each constant as a potential
pointer. As demonstrated by a recent study [27], this combined
strategy can collect all potential function pointers. We further
want to note that, once we determine a “legitimate” function
pointer, we will update the pointer collection based on the
results of recursive disassembly from that pointer.

Applying the above approach to our 1,352 self-built bina-
ries, we detected 154 more function starts without introducing
new false positives. We also examined the 414 functions we
still missed. These functions belong to two categories. The
first category includes 160 unreachable assembly functions
(i.e., assembly functions that are not referenced anywhere
and their successors). Missing such functions is in principle
harmless. The second category contains 254 functions that are
only referenced by tail calls in the same function. As we will
explain in § V-B, the side effect of missing the 254 functions is
equivalent to in-lining them into their parent functions, which

1 ; start of part 1, FDE1

2 4126c0: push rbp

3 ...

4 4128ff: test rax,rax

5 ; a non-tail-call jump to part 2

6 412902: je 404fbe

7 ; end of part 1

8 ; gap

9 ; ...

10 ; start part 2, FDE2

11 404fbe: mov esi,$0x4437e0

12 404fc3: xor edi,edi

13 ...

14 405010: call 4247d0

15 405015: jmp 404fdc

16 ; end of part 2

(a) A non-contiguous function
from BinUtils-2.26. The func-
tion contains two parts and each
part has a separate FDE.

1 ; start of function

2 3c610 <__restore_rt>:

3 3c610: mov $0xf,%rax

4 3c617: syscall

5 3c619:

6
7 ; FDE Entry

8 00021e98 FDE

9 PC Begin: 3c60f

10 PC Range: a

11 CFIs:

12 DW_CFA_expression: reg8 DW_OP_breg7 +40

13 DW_CFA_expression: reg9 DW_OP_breg7 +48

14 DW_CFA_expression: reg10 DW_OP_breg7 +56

15 ...

16 DW_CFA_nop:

(b) A handwritten function in
Glibc-2.27. The begin of hand-
written FDE does not equal to
the begin of function start.

Fig. 6: Examples of false positive introduced by FDEs.

is also in general harmless. We finally want to note that while
our function pointer detection is not theoretically safe, on
average it only reports 0.31 function starts for each binary,
which requires minor human efforts to validate.

V. IMPROVING ACCURACY OF FUNCTION START
DETECTION WITH CALL FRAMES

In this section, we aim at our second research goal —
understanding the accuracy of function start detection with
exception handling information. Existing tools, GHIDRA and
ANGR, simply trust the fidelity of FDEs when using them
for function detection. However, we found that FDEs are not
perfectly accurate and in fact, they can introduce many false
positives. In the following, we will first unveil and quantify
the false positives that FDEs can introduce, and then we will
present a new approach to fix the errors.

A. Identifying and Quantifying Errors Due to FDEs

To systematically understand the errors introduced by FDEs,
we compared the function starts extracted from FDEs in our
self-built binaries with the ground truth. We found that FDEs
brought 34,772 false positives, spanning 488 of the 1,352
binaries. In the case of Mysqld compiled with GCC and Ofast,
FDEs introduced 3, 616 false positives.

Among all the false positive, 34,769 are related to non-
contiguous functions. For each non-contiguous function, the
compiler inserts separate FDEs for different parts in the func-
tion (e.g., Figure 6a). As such, function starts extracted from
FDEs for the non-beginning parts become false positives. Such
false positives are rooted from the design of FDEs: a single
FDE cannot cover multiple non-contiguous code segments.
Without adapting the design and the standard behind, it is
unlikely to fully avoid such false positives. We also want to
note that symbols have the same problem: separate symbols
are generated for different parts from the same non-contiguous
function. Our study shows that symbols also introduce the
34,769 false positives. The remaining 3 FDE false positives are
from assembly functions where the developers (intentionally)
insert CFI directives that label the incorrect function starts
(e.g., Figure 6b).

Algorithm 1 Tail-call Detection and Function Merging
1: Input: A list of functions L
2: function TAILCALL-DETECT(L)
3: for f ∈ L do
4: for direct/conditional jump j ∈ f do
5: t← Target(j)
6: isTailCall = False
7: if t ∈ f then
8: continue . Skip jump inside function
9: end if

10: h← getStackHeight(j)
11: if h = 0 then
12: if HasRefTo(t, L) ∧ MeetCallConv(t) then
13: add_tail(t) . Find a tail call
14: add_func(L, t)
15: isTailCall = True
16: end if
17: end if
18: if ¬isTailCall ∧ IsFunction(t) ∧ RefTo(t) == j then
19: MergeFunc(t, f) . Merge function
20: remove_func(L, t)
21: end if
22: end for
23: end for
24: return L
25: end function

The false positives brought by FDEs can hurt security
applications. For instance, many control flow integrity solu-
tions for binary code [16, 25, 36, 45] consider all function
starts as legitimate targets of indirect control transfers. Our
experiment with ROPgadget [1] shows that the basic blocks at
the FDE-introduced false function starts contain 99,932 valid
ROP gadgets. Including the FDE-introduced false function
starts would make control hijacks to those ROP gadgets un-
detectable, reducing the security effectiveness of control flow
integrity. However, we observe that both GHIDRA and ANGR
do not provide any solution to address the false positives
introduced by FDEs: all the the false positives due to FDE
persist across every detection step of GHIDRA and ANGR.

B. Fixing Errors Due to FDEs

To effectively reduce the FDE-introduced false positives,
we propose a new algorithm based on a key observation that
two distant parts in the same non-contiguous function are
connected via a jump. In principle, by determining that the
jump is not a jump between two functions (i.e., not a tail call),
we can safely merge the two distant parts. In general, it is hard
to design a perfect algorithm to detect tail calls. Most existing
tools use heuristics that are neither sound nor complete [27].
In this work, we propose a completeness-driven, but safe,
algorithm, which ensures fidelity of the captured cases and
minimizes the side effects of the missed cases.

Our algorithm is shown in Algorithm 1. It iterates over
each conditional or unconditional jump in each function. It
considers a jump to be a tail call if:

¶ The stack pointer at the jump site is right below the return
address. This is a must-be-true property of tail call because
the current function has to ensure that the target can directly
return to its parent function.

· The target satisfies the calling conventions since the target
of a tail call must be a new function. To validate calling
conventions, we re-use the rule as described in § IV-E.

¸ The target is not referenced elsewhere other than jumps in
the current function. In theory, a tail call does not have
to meet this rule. However, our empirical studies with a
large-corpus binaries (listed in Table II) show that this rule
can perfectly avoid false positives. More importantly, this
rule ensures that the target of any missed tail call is not
referenced elsewhere. Thus, the side effect of the missed
tail call is equivalent to in-lining the target function to the
source function, which should be generally harmless.

For a jump that we determine to be not a tail call, we check
whether the target has an FDE record and whether the target is
not referenced elsewhere. If both conditions hold, we consider
the jump part and the target part are from the same function
and we merge the two parts to the same function.

To implement Algorithm 1, there are two challenges. First,
it needs to know the value of the stack pointer at a jump
site. Many tools, such as DYNINST [24] and ANGR [34],
include static analysis of stack height. However, as shown in
Table IV, these analyses can often provide inaccurate stack
height due to side effects of other errors and defects of
engineering. To address this challenge, we opt to use the stack
height recorded by CFIs in FDEs. For conservativeness, we
only pick functions whose CFIs give complete information of
stack height, by checking (i) whether the CFA in the CFIs is
represented by rsp and the CFA is initialized as rsp+8 and (ii)
whether a DW_CFA_def_cfa_offset instruction exists wherever
the stack height is changed. We skip functions with incomplete
stack height. Second, the algorithm needs to collect all the
references to functions. We overcome this challenge by using
the conservative approach in § IV-E.

We also looked at the 3 false positives introduced by the
developers. We found that the code blocks pointed to by those
FDEs all present invalid calling conventions (using the rules in
§ IV-C). By checking the calling conventions of each function
directly identified from FDEs, we detected the three false
positives. After removing the false positives and re-running
our pointer-based detection in § IV-E, we also identified the
false negatives masked by those three false positives.

C. Algorithm Evaluation

We tested the performance of Algorithm 1 with our 1,352
self-built binaries. On top of FDEs, we first ran our recursive
disassembly and our function pointer detection. Then, we ran
Algorithm 1 and measured the change of both coverage and
accuracy. In total, our algorithm reduced the number of FDE-
introduced false positives from 34,772 to 2,659, increasing the
number of binaries with full accuracy from 864 to 1,222.

Among the remaining 2,659 false positives, 2,656 are still
caused by non-contiguous functions. Our algorithm missed
detecting them because CFIs in those functions do not provide
complete stack height information, and thus, we skipped
processing those functions. While intuition suggests we can
re-use static analyses from existing tools (e.g., ANGR and
DYNINST) for stack height information in such functions,
we opted not to do so. The reason, as aforementioned, is
that the static analyses can be incomplete or inaccurate. To

validate our choice, we also conducted an empirical evaluation.
Specifically, we compared the stack height information from
CFIs and the stack height information provided by both
ANGR and DYNINST. It is worth noting that we only ran the
comparison on functions whose CFIs provide complete stack
height information. As shown by the results in Table IV, the
stack height analyses by ANGR and DYNINST carries both
incompleteness and inaccuracy (even just considering the jump
sites), using of which can hurt our tail call detection.

We finally examined whether Algorithm 1 brought false
negatives and false positives. It turns out that the algorithm
did not bring extra false positives, but it introduced 161 new
false negatives, slightly reducing the number of binaries with
full coverage from 1,346 to 1,334 (see Figure 5c). All the 161
false negatives are because we merged targets of true tail calls
to the call sites. Despite missing the 161 functions slightly
affects coverage, the 161 functions are only referenced by
tail calls in a single function (otherwise they will be detected
by our algorithm). In this sense, the side effect of missing
those functions is equivalent to in-lining them to their parent
functions, which in general produces no harm. This is also the
reason why the 254 false negatives we discussed in § IV-E are
harmless.

VI. COMPARING WITH OTHER APPROACHES

We finally conducted an extra comparison, where we com-
pared the optimal strategies of using FDEs and 8 existing
tools (using the 1,352 self-built binaries shown in Table II).
For simplicity of presentation, we will use FETCH (Function
dETection with exCeption Handling) to represent our optimal
strategies of using FDEs.

Setup: FETCH works by first extracting FDEs and then
running our safe recursive disassembly (§ IV-B), our function
pointer detection (§ IV-E), and our tail call detection (§ V-B).
The 6 other tools that do not use FDEs are from two categories:
(i) open-source tools that are designated for function detection
or have a component of function detection (DYNINST [24],
BAP [7], RADARE2 [32], and NUCLEUS [4], and (ii) commer-
cial tools that can detect functions (IDA PRO [14] and BINARY
NINJA [26]). Their configures are same as [27]. The results
of GHIDRA and ANGR are also included for convenience of
comparison.

Coverage and Accuracy: As shown in Table III, FETCH
presents extremely high coverage and accuracy. It only brings
hundreds (or dozens) false positives and false negatives from
the total 1,352 binaries, regardless of the optimization level.
FETCH outperforms all the 8 other tools. It produces the best
coverage in all the settings and the best accuracy except under
optimization level Ofast. These results demonstrate the benefits
of the FDE-assisted solutions.

Efficiency: We also measured the average time required by
each tool to run a binary, and we show the results in Table V.
Overall, FETCH can finish analyzing a binary in around 3.3
seconds, which represents a high efficiency.

TABLE III: Comparison results between FETCH and existing tools. The results highlighted in blue indicate the best results.
FP #: the number of false positives (thousands); FN #: the number of false negatives (thousands).

OPT DYNINST BAP RADARE2 NUCLEUS IDA PRO BINARY NINJA GHIDRA ANGR FETCH
FP # FN # FP # FN # FP # FN # FP # FN # FP # FN # FP # FN # FP # FN # FP # FN # FP # FN #

O2 12.20 81.41 148.94 93.82 4.10 100.23 17.49 18.41 2.68 37.04 41.17 11.96 43.49 5.62 51.68 0.20 0.78 0.08
O3 12.60 82.05 165.06 96.71 4.26 106.99 20.15 16.70 2.71 36.94 44.57 12.80 46.62 4.65 54.71 0.19 0.84 0.08
Os 6.72 87.82 109.50 79.86 3.08 81.67 23.35 27.86 0.97 32.74 34.45 6.14 0.92 1.97 37.10 0.18 0.07 0.14
Of 13.63 88.22 159.41 92.20 3.08 93.93 26.68 19.36 0.86 37.97 40.08 10.39 46.43 4.66 67.43 0.18 0.97 0.12
Avg. 11.29 84.88 132.48 90.65 3.63 95.71 21.92 20.58 1.81 36.17 40.07 10.32 34.37 5.23 52.73 0.19 0.67 0.11

TABLE IV: Coverage and precision of stack height analyses
by ANGR and DYNINST. Baseline is the stack height from
CFIs. Full indicates the result with all code locations and
Jump indicates the result with only jump sites considered.

OPT
ANGR DYNINST

Full Jump Full Jump
Pre Rec Pre Rec Pre Rec Pre Rec

O2 93.00 97.26 98.56 95.95 93.18 98.26 98.60 99.36
O3 93.66 97.28 98.62 95.84 92.87 97.96 98.50 99.34
Os 96.42 99.22 99.27 99.27 99.10 98.27 98.67 99.35
Of 93.20 97.08 98.43 94.53 94.08 98.60 98.90 99.36

Avg. 94.07 97.71 98.72 96.40 94.81 98.27 98.67 99.35

TABLE V: Average time needed by tools to run a binary.

Tool DYNINST BAP RADARE2 NUCLEUS GHIDRA ANGR IDA NINJA FETCH
Avg. 2.8s 114.2s 34.9s 3.1s 40.4s 78.5s 10.3s 20.4s 3.3s

VII. DISCUSSION

In this section, we discuss the limitations and future direc-
tions of our research.

A. Threats to Validity

In this research, we focus on exploring the best strategies
to (i) achieve optimal coverage and accuracy of using FDEs
for function start detection and (ii) minimize the risks to the
reliability. There exists potential threats to the fidelity of our
findings. First, we concluded that running safe recursive disas-
sembly on top of FDEs can achieve extremely high coverage
with guaranteed reliability. However, recursive disassembly in
practice may not ensure safety due to complex constructs like
indirect jumps and non-returning functions. To reduce this
threat, we have adopted the most conservative strategies to
handle them (§ IV-C). Second, the reliability of our approach
to fixing FDEs-introduced errors is threatened by the com-
pleteness of the algorithm of tail call detection. To mitigate
this threat, we adopted three restrictive criteria to detect tail
calls, which have empirically proven completeness (§ V-B).
Finally, as we unveiled in § V-A, developers may manually
insert or modify the contents of eh_frame (intentionally or
unintentionally) in a way that introduces errors. This is a
threat to the accuracy and we currently cannot avoid the threat.
However, such errors rarely happen in practice and therefore,
we envision it would not raise major concerns.

B. Generality of Study

Our study focuses on x64 System-V binaries because such
binaries are guaranteed by the ABI to have call frames.
However, this does not mean our study cannot be applied to
other types of binaries. In fact, the methods used in our study
are architecture independent and can work with any types

of binaries that have call-frame-similar data structures. We
have already conducted preliminary studies on other types of
binaries and confirmed the availability of a structure similar to
call frames. In particular, we found that x86 System-V binaries
also widely carry FDEs, covering nearly all the functions . We
also discovered that x64 PE binaries adopt an FDE-similar data
structure to support exception handling [13], which contains
the starts and boundaries of functions. Our preliminary results
show that at least 70% of the functions are covered by this
structure. In addition, the ABI of Arm architecture also has
the similar structure to support exception handling [12]. As a
future work, we plan to extend our study to cover other types
of binaries.

VIII. CONCLUSION

In this paper, we focus on studying the use of call frames
to detect function starts. We found that the use of call frames
by existing tools has two common problems. First, beyond
using call frames and safe approaches, existing tools also run
additional unsafe approaches to detect function starts, seeking
to improve the coverage. However, the unsafe approaches can
often introduce errors and their capacity of improving coverage
is unclear. Second, the existing tools fully trust the information
from call frames, without recognizing that call frames can also
introduce errors. To gain a deeper understanding of the two
problems and hence, bring insights towards optimal strategies
of using call frames for function start detection, we conducted
two studies. In the first study, we measured the coverage and
accuracy of function starts detected by different approaches
that existing tools run on top of call frames. Our key finding
is that combing safe recursive disassembly and call frames
can already achieve the maximal coverage, and additionally
including other unsafe approaches cannot benefit the coverage
but can hurt the accuracy and reliability of the results. In the
second study, we systematically unveiled and quantified the
errors that call frames can introduce. We further presented
the first approach that can effectively fix nearly all the errors
without introducing side effects.

ACKNOWLEDGMENTS

We would like to thank our shepherd Miklos Telek and
the anonymous reviewers for their feedback. This project was
supported by the Office of Naval Research (Grant#: N00014-
16-1-2261, N00014-17-1-2788, and N00014-17-1-2787) and
NSF (Grant#: CNS-1948489). Any opinions, findings, and
conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views
of the funding agency.

REFERENCES
[1] “Ropgadget,” http://shell-storm.org/project/ROPgadget/, 2011.
[2] N. S. Agency, “Ghidra,” https://www.nsa.gov/resources/everyone/ghidr

a/, 2019.
[3] J. Alves-Foss and J. Song, “Function boundary detection in stripped

binaries,” in Proceedings of the 35th Annual Computer Security Appli-
cations Conference, 2019, pp. 84–96.

[4] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic function
detection in binaries,” in 2017 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, 2017, pp. 177–189.

[5] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley,
“{BYTEWEIGHT}: Learning to recognize functions in binary code,”
in 23rd USENIX Security Symposium, 2014, pp. 845–860.

[6] A. R. Bernat and B. P. Miller, “Anywhere, any-time binary instrumenta-
tion,” in 10th ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools. ACM, 2011, pp. 9–16.

[7] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary
analysis platform,” in International Conference on Computer Aided
Verification. Springer, 2011, pp. 463–469.

[8] X. Chen, A. Slowinska, D. sse, H. Bos, and C. Giuffrida, “Stackarmor:
Comprehensive protection from stack-based memory error vulnerabili-
ties for binaries.” in NDSS, 2015.

[9] D. D. I. F. Committee et al., “Dwarf debugging information format,
version 4,” 2010.

[10] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code randomization resilient to (just-in-time) return-oriented
programming.” in NDSS, 2015.

[11] G. Developers, “Cfi directives,” https://sourceware.org/binutils/docs/as/
CFI-directives.html#CFI-directives, 2020.

[12] A. Docs, “Exception handling abi for the arm architecture - abi 2018q4
documentation,” https://developer.arm.com/documentation/ihi0038/late
st/, 3 2021.

[13] M. Docs, “x64 exception handling,” https://docs.microsoft.com/en-us/c
pp/build/exception-handling-x64?view=vs-2019.

[14] C. Eagle, The IDA pro book. No Starch Press, 2011.
[15] M. Elsabagh, D. Fleck, and A. Stavrou, “Strict virtual call integrity

checking for c++ binaries,” in 2017 ACM on Asia Conference on
Computer and Communications Security. ACM, 2017, pp. 140–154.

[16] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “Xfi:
Software guards for system address spaces,” in 7th USENIX Security
Symposium, 2006, pp. 75–88.

[17] W. He, S. Das, W. Zhang, and Y. Liu, “No-jump-into-basic-block:
Enforce basic block cfi on the fly for real-world binaries,” in 54th Annual
Design Automation Conference 2017. ACM, 2017, p. 23.

[18] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “Ilr:
Where’d my gadgets go?” in 2012 IEEE Symposium on Security and
Privacy (SP). IEEE, 2012, pp. 571–585.

[19] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis,
“Compiler-assisted code randomization,” in 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 2018, pp. 461–477.

[20] H. Koo and M. Polychronakis, “Juggling the gadgets: Binary-level code
randomization using instruction displacement,” in 11th ACM on Asia
Conference on Computer and Communications Security. ACM, 2016,
pp. 23–34.

[21] L. Li, J. E. Just, and R. Sekar, “Address-space randomization for win-
dows systems,” in 2006 22nd Annual Computer Security Applications
Conference (ACSAC’06). IEEE, 2006, pp. 329–338.

[22] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou, “αdiff:
cross-version binary code similarity detection with dnn,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 667–678.

[23] H. Lu, M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell, “System v ap-
plication binary interface,” AMD64 Architecture Processor Supplement,
2018.

[24] X. Meng and B. P. Miller, “Binary code is not easy,” in 25th Interna-
tional Symposium on Software Testing and Analysis. ACM, 2016, pp.
24–35.

[25] P. Muntean, M. Fischer, G. Tan, Z. Lin, J. Grossklags, and C. Eckert,
“τcfi: Type-assisted control flow integrity for x86-64 binaries,” in Inter-
national Symposium on Research in Attacks, Intrusions, and Defenses.
Springer, 2018, pp. 423–444.

[26] B. Ninja, “binary.ninja,” https://binary.ninja/, 2019.
[27] C. Pang, R. Yu, Y. Chen, E. Koskinen, G. Portokalidis, B. Mao, and

J. Xu, “Sok: All you ever wanted to know about x86/x64 binary

disassembly but were afraid to ask,” in 42nd IEEE Symposium on
Security and Privacy (SP), 2021.

[28] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in 2012 IEEE Symposium on Security and Privacy (SP).
IEEE, 2012, pp. 601–615.

[29] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in 2015 IEEE Symposium
on Security and Privacy (SP). IEEE, 2015, pp. 709–724.

[30] A. Prakash, X. Hu, and H. Yin, “vfguard: Strict protection for virtual
function calls in cots c++ binaries.” in NDSS, 2015.

[31] R. Qiao and R. Sekar, “Function interface analysis: A principled
approach for function recognition in cots binaries,” in 2017 47th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2017, pp. 201–212.

[32] radare, “radare2: Unix-like reverse engineering framework and comman-
dline tools,” https://github.com/radare/radare2, accessed Aug 9, 2019.

[33] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in
binaries with neural networks,” in 24th USENIX Security Symposium,
2015, pp. 611–626.

[34] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state
of) the art of war: Offensive techniques in binary analysis,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 138–157.

[35] I. Skochinsky, “Compiler internals: Exceptions and rtti,” Recon, 2012.
[36] V. Van Der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen,

S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, “A
tough call: Mitigating advanced code-reuse attacks at the binary level,”
in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016,
pp. 934–953.

[37] M. Wang, H. Yin, A. V. Bhaskar, P. Su, and D. Feng, “Binary code
continent: Finer-grained control flow integrity for stripped binaries,” in
31st Annual Computer Security Applications Conference (ACSAC’15).
ACM, 2015, pp. 331–340.

[38] P. Wang, Shuai Wang and D. Wu, “Uroboros: Instrumenting stripped
binaries with static reassembling,” in 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
vol. 1. IEEE, 2016, pp. 236–247.

[39] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kruegel, and G. Vigna, “Ramblr: Making reassembly great
again.” in NDSS, 2017.

[40] S. Wang, P. Wang, and D. Wu, “Reassembleable disassembling,” in 24th
USENIX Security Symposium, 2015, pp. 627–642.

[41] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring: Self-
randomizing instruction addresses of legacy x86 binary code,” in 2012
ACM conference on Computer and communications security. ACM,
2012, pp. 157–168.

[42] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan,
P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and W. Aiello, “Shuffler:
Fast and deployable continuous code re-randomization,” in 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), 2016, pp. 367–382.

[43] D. Williams-King, H. Kobayashi, K. Williams-King, G. Patterson,
F. Spano, Y. J. Wu, J. Yang, and V. P. Kemerlis, “Egalito: Layout-
agnostic binary recompilation,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 133–147.

[44] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and randomization
for binary executables,” in 2013 IEEE Symposium on Security and
Privacy (SP). IEEE, 2013, pp. 559–573.

[45] M. Zhang and R. Sekar, “Control flow integrity for cots binaries,” in
22nd USENIX Security Symposium, 2013, pp. 337–352.

http://shell-storm.org/project/ROPgadget/
https://www.nsa.gov/resources/everyone/ghidra/
https://www.nsa.gov/resources/everyone/ghidra/
https://sourceware.org/binutils/docs/as/CFI-directives.html#CFI-directives
https://sourceware.org/binutils/docs/as/CFI-directives.html#CFI-directives
https://developer.arm.com/documentation/ihi0038/latest/
https://developer.arm.com/documentation/ihi0038/latest/
https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=vs-2019
https://binary.ninja/
https://github.com/radare/radare2

	Introduction
	Overview
	Problem Definition
	Existing Solutions
	Research Scopes

	Demystifying Exception Handling
	Exception Handling at the High Level
	Exception Handling under the Hood
	EH_Frame: Key Data Structure for Exception Handling

	Exploring Coverage of Function Start Detection with Call Frames
	Setup of Studies
	Preparation of Datasets
	Generation of Ground Truth

	Answering Question Q1
	Answering Question Q2
	Answering Question Q3
	Moving Towards Full Coverage

	Improving Accuracy of Function Start Detection with Call Frames
	Identifying and Quantifying Errors Due to FDEs
	Fixing Errors Due to FDEs
	Algorithm Evaluation

	Comparing with Other Approaches
	Discussion
	Threats to Validity
	Generality of Study

	Conclusion

