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Abstract

The fairly fast packet filter (FFPF) is an approach to
network packet processing that adds many new fea-
tures to existing filtering solutions like BPF. FFPF is
designed for high speed by pushing computationally
intensive tasks to the kernel or even network proces-
sors and by minimising packet copying. By providing
both a richer programming language and explicit ex-
tensibility, it is also considerably more flexible than ex-
isting approaches. FFPF provides a complete solution
for network monitoring that caters to all applications
available today. Using its extensibility, the language
can even be used as a meta-filter to ‘script’ together
filters from other approaches, such as BPF. If In this
paper, we present the FFPF architecture as well as the
current implementation.

1 Introduction

Most network monitoring tools in use today were
designed for low-speed networks under the assump-
tion that computing speed compares favourably to
network speed. In such environments, the costs of
copying packets to user space prior to processing
them, are acceptable. In today’s networks, this as-
sumption is no longer true. The number of cycles
that is available to process a packet before the next
one arrives (the cycle budget) is minimal. Moreover,
the processing requirements are increasing. Con-
sider the following monitoring applications:

1. An intrusion detection system (IDS) that
checks the payload of every packet for the oc-
currence of worm signatures [21].

2. A ‘Coralreef’ application that keeps track of
the ten most active flows [16].

3. Atool interested in monitoring flows for which
the port numbers are not known a priori. Such
flows are found, for example, in peer-to-peer
and H.323 multimedia flows where the control
channels use well-known port numbers, while
the data transfer takes place on dynamically as-
signed ports [25].

In high-speed networks, none of these applica-
tions are catered for in the kernel in a satisfactory
manner by existing solutions such as BPF [18]. In
our view, they require a rethinking of the way pack-
ets are handled in the monitoring platform. Specif-
ically, to deal with speed most of the processing
should take place at the lowest level in the pro-
cessing hierarchy, i.e., the kernel or even the hard-
ware [8]. Similarly, much more flexibility is re-
quired to support such applications.

In this paper, we discuss the implementation of
the fairly fast packet filter (FFPF). FFPF provides
a complete solution for filtering and classification
at high speeds, either in the kernel or on a network
processor, while minimising copying. As the name
implies, speed is not the only goal for FFPF. Al-
though it needs to be fast and compare favourably
to existing solutions, flexibility is at least as impor-
tant. Fo this reason, FFPF is explicitly extensible
with native code and facilitates packet processing at
the lowest levels of the processing hierarchy. FFPF
is designed as an alternative to kernel packet filters
such as CSPF [19], BPF [18], mmdump [25], and
XPF [12]. All of these approaches rely on copy-
ing many packets to userspace for complex process-
ing (such as scanning the packets for intrusion at-
tempts). On the other hand, FFPF is not meant to
compete with monitoring suites like Coralreef that
operate at a higher level and provide libraries, appli-
cations and drivers to analyse data [16]. Also, unlike
MPF [26], Pathfinder [2], DPF [9] and BPF+ [3], the
goal of this research is not to optimise filter expres-



sions. Indeed, our filter interpreter is probably infe-
rior to any of these approaches. Instead, the aim of
FFPF is to implement a complete, fast, and safe fil-
tering architecture that caters to the needs of most
if not all monitoring applications in existence to-
day and to provide extensibility for future applica-
tions. In addition, FFPF should be capable of oper-
ating at high speeds with a minimum of copying.
Moreover, FFPF provides so much flexibility that
all of the above approaches can be used by mak-
ing them available as external functions (discussed
in Section 3.3.1). As the BSD Packet Filter is the
most popular among the filtering approaches, most
of our comparisons will be against BPF.

Like BPF, FFPF allows users to process network
packets in the kernel or even on the network card.
The contribution of this paper is that filtering is ex-
tended with many new capabilities.

1. FFPF removes all copies from kernel or hard-
ware to userspace. All packets remain in ker-
nel/hardware buffers from where they can be
accessed directly by the applications.

2. Instead of simple filters, FFPF also allows full
packet processing programs to be loaded in the
kernel. Filters, classifiers, and other applica-
tions are equally easy to implement.

3. FFPF provides these programs with persistent
storage. The storage can be used to keep flow-
specific state, such as counters.

4. Users and administrators alike are able to ex-
tend the system’s APl with native functions
that can be called from the kernel-based user
code. Native functions are able to interact with
kernel code and the userspace application, e.g.
via the flow’s persistent storage. They are used
to implement computationally intensive func-
tionality, that would be prohibitively expensive
to perform in interpreted programs.

5. FFPF supports multiple ‘security groups’. A
security group consists of a number of appli-
cations that have the same access rights to net-
work packets. Members in a group are allowed
to read all packets received by other members
of the group, but not those of other groups.

6. The expressions injected by the user in the ker-
nel may modify themselves. This is particu-
larly useful in case the ports that are used by
applications are not known a priori.

7. Fine-grained admission control is added to pre-
vent, for instance, unauthorised access to secu-
rity groups, illegal invocation of external func-
tions, or ‘stupid filters’.

To our knowledge, few solutions exist that sup-
port any of these features and none that provide all
in a single, intuitive, architecture. In this paper,
we present the FFPF architecture and implementa-
tion®. FFPF is implemented in the Linux kernel on
top of netfilter [22] and a prototype exists on
the IXP1200 network processor [11]. Throughout
the text, ‘FFPF’ refers to the implementation in the
Linux kernel, unless explicitly stated otherwise. The
remainder of this paper is organised as follows. In
Section 2, a high-level overview of the FFPF ar-
chitecture is presented. In Section 3, the imple-
mentation details and the filtering language are dis-
cussed. The implementation is evaluated and com-
pared to BPF in Section 4 . Related work is dis-
cussed throughout the text and summarised in Sec-
tion 5. Conclusions are drawn in Section 6.

2 FFPF high-level overview

A high-level overview of the architecture is shown
in Figure 1. It shows that most of FFPF is imple-
mented as a single kernel module. The two applica-
tions that are currently monitoring the network are
each provided with three different buffers which are
known as: (1) the main packet buffer (PktBuf),
(2) a flow-specific index buffer (Indexz(f)), and
(3) a flow-specific memory array (My). The main
packet buffer is shared between the applications.
The idea behind FFPF is simple. Users load (in
the kernel) ‘expressions’ that process the packets.
If a packet is classified as ‘interesting’, it is pushed
in the shared PktBu fand a pointer to the packet is
placed in the application’s index buffer. An appli-
cation uses the index buffers to find the packets in
which it is interested in the shared PktBuf. The
third buffer is used for exchanging information be-
tween the application and the expression in kernel
space or to store persistent state. For instance, the
expression may use it to store flow statistics. All
buffers are memory mapped, so no copying between
kernel and userspace is necessary. The expressions
that are loaded in the kernel are able to call exten-
sions in the form of ‘external functions’ that may
have been loaded either by the system administra-
tor or the users themselves. The external functions

1Available from
projects/ffpf/
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contain highly optimised native implementations of
operations that would be too expensive to execute in
a bytecode interpreter (e.g., pattern matching, MD5
message digest). While this may appear as a poten-
tial safety problem, it will be shown that both speed
and safety are explicitly provided.

2.1 FFPF: instantiating flows

In FFPF, a flow is any stream of packets that is of
interest to an application. Examples include: ‘all
packets containing specific IP addresses and TCP
ports’, “all UDP packets’, ‘all UDP packets contain-
ing a worm signature plus all TCP SYN packets’,
etc. An application may open multiple flows at the
same time. Flows are opened in 4 steps. Firstly, a
flow is created. Creating a flow sets up a user-space
data structure which is returned as a flow identifier,
but does not result in any packets being captured.
Secondly, the data structure is populated by speci-
fying for instance a filter, or a callback function for
the flow. Thirdly, the flow must be connected. Only
at connect time the flow is instantiated in the ker-
nel, provided it passes the admission control check.
Fourthly, an instantiated flow by itself still does not
capture any packets; it first needs to be activated.
Conversely, an activated flow can be paused (and
subsequently re-activated). Finally, a flow can be
closed. When a flow is closed all corresponding
state is destroyed.

2.2 FFPF: security groups

A concept not found in other packet filters is that of
security groups. A security group is a set of appli-
cations with the same access rights to packets, i.e.,
if one application in the group is allowed to read a
packet, all other applications in the group are also
allowed to access it. Security groups are used to
minimise packet copying. Applicactions in the same
group share a common packet buffer (PktBuf).
PktBuf contains all packets for which one or more
applications in the group have expressed interest.
If more than one group expresses interest in the
packet, it is copied only once per group, unlike BPF
which copies the packet to each application sepa-
rately. This makes FFPF cheaper than BPF when
supporting multiple applications. A special group,
Gy, Qets zero-copy access (provided this is sup-
ported by the hardware). Gy is statically assigned
to all applications owned by r oot . As a result, ina
common environment in which only the r oot runs
monitoring applications, all flows access the same
zero-copy packet buffer.

2.3 FFPF: processing

In FFPF almost all processing takes place at the low-
est possible level, e.g. in the kernel or network pro-
cessor. Beware that in general the ‘lowest possible
level’ only means the level that has the fewest inter-
mediate layers beneath it in packet processing. Ac-
cordingly, if specialised hardware is able to deliver
packets directly to the address space of an applica-
tion (without intervention of the kernel), kernel and
userspace are at the same level. This is the case, for
instance, for DAG cards [7]. The principle, however,
remains valid: as much as possible of the processing
should happen at the lowest possible level (e.g. the
DAG card). This is also exemplified by our imple-
mentation of FFPF on 1XP1200 network processors,
where packet processing and buffer management is
handled entirely by the network card.

3 Implementation

3.1 The Buffers

Both PktBuf and all index buffers are circular
buffers of N fixed size slots, with N constant for
all circular buffers. PktBuf slots are large enough
to hold the maximum packet length, while the slots
in the index buffers can hold no more than two 32 bit
values: an index into PktBu f and the packet’s clas-
sification result. Whenever an ‘interesting’ packet is
received on flow f, it is pushed to PktBuf (un-
less a copy already exists) and a reference to the
packet as well as the result of the classification is
placed in Index(f). A packet is considered ‘in-
teresting’, if the flow expression ‘Expr(f)’ pro-
cessing the packet returns a non-zero result. Each
valid slot in Index(f) contains a result pair, con-
sisting of (1) the index of the corresponding packet
in PktBuf, and (2) the classification result returned
by Expr(f).

Applications read the packets that are received for
a specific flow f by indexing PktBu f with the val-
ues in Index(f). A configuration parameter deter-
mines whether the link layer header should also be
captured (the default is to capture from IP header
onwards). As applications access the index buffers,
the results of classification are immediately avail-
able. Although the indices only point to the pack-
ets in which they are interested, applications are
also able to see what other applications in the same
security group have received (but not what is re-
ceived by other groups). The buffers in security
group Go need not be copied at all. For instance,
the FFPF implementation on the 1XP1200 network
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Figure 1: The FFPF architecture

processor receives all packets in Go’s PktBuf di-
rectly and this buffer is memory mapped in its en-
tirety to user space. Other groups do incur a sin-
gle copy per packet in which they are interested (al-
beit not from kernel to userspace). PktBuf and
Index(f) are mmap-ped ‘read only’. It will be
shown shortly that the flow-specific memory array
is mapped read/write for the application.

3.1.1 Circular packet buffers

Circular buffers in FFPF have two indices to indi-
cate the current read and write positions. These are
known as R and W. Whenever W catches up with
R the buffer is full and the packet is dropped. Both
R and W are mapped read-only to an application’s
address space and updated in the kernel (or in the
case of FFPF on IXP1200s: the network card). The
packet receiving code in the kernel (or network card)
writes data ina group’s Pkt Bu f and updates W un-
til the buffer is full. ‘Full” means that ¥ has caught
up with the slowest reader in the group. Thus, the
slowest reader in a group may block all other flows
in that group (but not those in other groups). The
R value of the slowest reader will be denoted by R.
The values of R are updated explicitly by the ap-
plications. One of the keys to speed is that R need
not be incremented by 1 for every packet of a flow
that is processed. Instead, it is possible that an ap-
plication processes 1000 packets of a flow and then
increments the value of R by 1000 in one go. Do-
ing so saves 999 kernel boundary crossings. A sim-
ilar mechanism is used for DAG cards as described
in [7].

As an example, in the implementation of FFPF
on 1XP1200 network processors, the implementa-
tion of packet processing and buffer management
is handled entirely by the IXP. The IXP receives
a packet, places it in Go’s PktBuf, updates W,
receives the next packet, and so on. Meanwhile,
the flow expressions are executed in independently
running processing engines on the network proces-
sor and determine whether a reference to the packet
should be placed in the flows’ index buffers. Appli-
cations access packets immediately, as the buffers
are mapped through to userspace. While the appli-
cations are processing the packets, the kernel is not
used at all. Only after an application has processed
n packets of a flow and decides to advance its R
explicitly, the kernel is activated. On the reception
ofanadvance_read_poi nter () call, the ker-
nel will calculate the new value of R and store it
on the IXP so that it can be used by the packet re-
ceiving code. In the extreme case, where only a sin-
gle flow is active, the IXP code and the application
work fully independently and the number of inter-
rupts and context switches can be kept to a min-
imum (e.g., context switch only on the occasional
advance_read_i ndex() call and on timer in-
terrupts).

3.1.2 Flow-specific memory array

The third buffer in Figure 1 is the flow’s memory
array My. It is used by both the flow expression
(Expr(f)) in the kernel and the userspace applica-
tion. User applications have read and write access
to the memory arrays of their flows, so the arrays



can be used to exchange data between the applica-
tion and a flow expression. The flow-specific mem-
ory area is persistent, i.e., its contents remain valid
across multiple invocations of Expr(f). Itis argued
in [12] that the absence of persistent state is one of
the major drawbacks of BPF. While [12] describes
how BPF can be extended to also allow for persis-
tent memory (and explicit switching between per-
sistent and non-persistent memory is needed), this
paper describes an approach in which it is part of
the design from the outset.

A simple use case is a flow f which treats the
entire memory array as a hash table that is used to
count the number of packets received on all TCP/IP
flows. The corresponding Expr(f) first checks
whether a packet is TCP/IP. If so, it calculates a hash
of the <i psrc, i pdest, srcport, dst port>
tuple and increments the counter stored at that loca-
tion in the memory array. The result is that without
intervention by the user application, the memory ar-
ray contains the packet counts of all TCP/IP flows
seen by the system (assuming the hash table is large
enough). The implementation of this example con-
sist of one line of FFPF code which is shown in Fig-
ure 3 and discussed in Section 3.3.1.

3.2 The Flows

After a flow is created, and prior to instantiation, the
flow can be populated with a flow specification. Cur-
rently, the following features are supported:

1. device - limits the flow to packets received on a
specific interface;

2. callbacks - call back the application after n
packets of a flow have been received,;

3. ‘wait_for_n’ - if part of the flow specification, it
means that each call to activate the flow will
block until at least n packets have been re-
ceived;

4. flow expressions - programs loaded in the ker-
nel responsible for filtering, classifying, and
other operations that need to be performed on
the packets in the flow.

If device is not specified, the default is taken. The
default is specific to an FFPF implementation and
may well correspond to more than one interface. In
the case of an FFPF implementation on IXP1200s,
for instance, the default will be “all ports of the net-
work processor board’, while in the case of FFPF
on top of a Linux netfilter hook [22], this means “all
devices of which packets are received at the hook’.

After instantiation, each flow has read access
to its R and W values and a userspace function
cbuf _readspace() returns the number of un-
read packets currently in the buffers. The simplest
way to print the packets in the circular buffers for a
flow f is therefore:
for (;;) {

n = cbuf _read_space (f);

for (i=0; i<n i++)

print_pkt (f->buffer [f->R+i]);

advance_read_pointer (f, n);
sleep (10);

While this code works reasonably efficient (espe-
cially compared to solutions where every packet re-
sults in a kernel-userspace interaction), callbacks
and ‘wait_for_n’ give applications more control over
when to process the packets in a flow.

3.3 The Language

Flow expressions are among the most complex fea-
tures of FFPF. The language in FFPF is more ex-
pressive than, for instance, BPF. In addition, it is ex-
plicitly extensible, so that functionality that is hard
to implement in FPL-1 (the FFPF programming lan-
guage) can still be accessed through a “service inter-
face’, not unlike that of SNAP [20].

3.3.1 FPL-1

FPL-1 is a low-level stack language with support
for most simple types and all common binary and
logical operators. In addition, FPL-1 provides re-
stricted looping and explicit memory operations to
access the flow’s persistent memory array. Flow ex-
pressions in FPL-1 are compiled to byte code and
inserted in the FFPF kernel module by means of a
special purpose code loader (discussed later).

Each time a packet arrives on one of the moni-
tored interfaces, the FPL-1 expression of a flow f
is called to see whether or not f is interested in
this packet, i.e. if Expr(f) returns a result not
equal to zero (see also Figure 1). If so, the packet
is copied to PktBuf and both a reference to the
packet and the result of Expr(f) are placed in
Index(f). FPL-1 is an extremely simple language
with few keywords. The entire language is sum-
marised in Figure 2. Comma’s and brackets have no
use other than grouping and making the code more
readable. It is realised that the terse assembly-like
language is a little intimidating to users accustomed
to tools like snort [21] and pcap [14]. For this rea-
son, we have implemented most of the monitoring
API (MAPI) proposed by the SCAMPI project [8]



on top of FFPF. The MAPI is a standardised moni-
toring API that is more expressive than existing ap-
proaches. While simple enough to support existing
approaches (e.g. there exists an implementation of
pcap on top it), MAPI is expressive enough to per-
mit advanced queries like ‘scan all packets for the
occurrence of a string and return only the packets
that match’. In the future, we intend to develop a
compiler that takes rules from pcap and snort and
translates them to FPL-1.

Although it is beyond the scope of this paper to
discuss FPL-1 in detail, in the remainder of this sec-
tion the most interesting features of the language
are briefly explained. FPL-1 employs low-level,
assembly-like instructions with post-fix notation to
access the packets. A trivial example of an FPL-1
expression is the following program which returns
1 if the IP packet that it processes is a UDP packet
(i.e., byte 9 equals 17) and it is sent to port 54321
(i.e., short 11 equals 54321):

(c9, N17, =) (s11, N54321, =) &&

The constructs c9 and s11 are interpreted as offsets
from the start of the packet. The logical AND opera-
tion (&&) can be used as a conditional statement and
is evaluated lazily. In other words, if (c9, N17, =)
is false, it will not evaluate the second part. The
value returned by the expression is either the value
on top of the stack when the ‘RET’ is called, or the
value that is left on the stack when the evaluation
completes.

Subexpressions and offsets  Often in packet mon-
itoring, it is necessary to access data at an offset that
depends, for instance, on the length of the header
(or the length of the packet). For this purpose, FPL-
1 uses the notion of a subexpression, indicated by
square brackets. As a simple example, given that
t ot _I en, the total packet length in IP is deter-
mined by the 3rd and 4th bytes of the IP header (i.e.,
the short integer at offset 1), the following expres-
sion tests whether the byte at offset ‘t ot _| en — &’
is equal to O:
(C[(Sl, N8, ')] » NO, :)

The result of the subexpression (the expression be-
tween the square brackets), is used as if this value
appeared at this place in Exzpr(f). For instance,
‘c[ NN NO] ]’ is equivalent to ‘c[ NO] * which in
turn is equivalent to cO, i.e., the first byte of the
packet. It is possible to return from a subexpres-
sion explicitly using the ‘RET’ statement. Also,
subexpressions may be nested and may contain ar-
bitrary expressions themselves. They provide a flex-
ible way to access fields from the packet at variable
offsets.

Restricted ‘For’ loops For resource safety, the
For loop construct is limited to loops with a pre-
determined number of iterations. Users specify both
start and end values of the iteration variable, as well
as the amount by which the loop variable should
be incremented or decremented after each iteration.
The For Br eak instruction, allows one to exit the
loop ‘early’. In this case (and also when the loop
finishes), execution continues at the instruction fol-
lowing the For End construct. For loops can be
used to test a small range of bytes in the packet or
even to scan the entire packet payload for the occur-
rence of a pattern. However, as string searching is
expensive, this operation is better implemented us-
ing external functions (as shown in Figure 1 and as
discussed in Section 4).

Persistent state  Stacks are useful for calculations,
but not for persistent state. For example, FPL-
1 expressions start with a fresh stack each time a
packet is received, so that state across invocations
of the flow expression (e.g. packet counters) cannot
be kept on the stack. Instead, FPL-1 has explicit
commands to access the flow’s persistent memory
array. The operations LD and ST specify a memory
address in the array to read from or write to. All
accesses to M are checked for bounds violations.

As an example of how to use the memory, and
also as an example of the compactness of FPL-1
code, consider Figure 3. The code implements the
flow f that was mentioned in Section 3.1.2 an that
keeps track of how many packets were received on
each TCP connection. For this, the code uses a hash
table that is stored in M[1] ..M¢[n + 1] (where
n is the size of the hash table. A/¢[0] is used to
store a temporary variable. All operations in Fig-
ure 3 (i.e., ‘=, Hash, +, ST’and ‘&&”) pop two val-
ues off the stack and push the result back on. For ST
the first pop provides the location in M where the
value should be stored and the second pop provides
the value to be stored (this is also pushed back on
the stack again). A LD works in an analogous man-
ner except that just a single value is popped off the
stack (the position in M from which to read) and
the value that is found at the corresponding memory
location is pushed on the stack. The hash function
‘Hash’ used in the expression is the default FPL-1
hash function that calculates a hash over a byte se-
quence of arbitrary length. The return value is less
than the size of the flow’s memory array divided by
two, so that it can easily be used as an index in the
array.

The code works as follows. If the packet
is a TCP segment (byte 9 of the packet



types simple operations other operations

‘b’: bit ‘I, =" (not) equal ‘[ expr] ’: sub expression

‘c’:int8 “+,-,*, 1, % &, | ’: arithmetic | ‘For. . For Br eak. . End’: looping
‘s’ intl6 ‘<, <=, >, >=": other relational ‘Ext ern’ f oo’ ’: external function
‘i’ int32 ‘&&, | | ’: logical and/or ‘LD, ST’: load from, store to memory
‘N’ int32 constant | ‘Hash’: simple hash function RET: return top of stack

Figure 2: FPL-1 language overview

# if this is tcp, hash the tcp connection fields and count the pkts
((c9, N6, =) ((((((N14,N12, Hash), N1, +), NO, ST), LD), N1, +), (NO, LD), ST), &&), 0, &&

Figure 3: Realistic example of FPL-1 code: count TCP flow activity

equals 6), a hash is calculated over bytes
14-23 of the packet (in other words, over the
<i psrc,ipdest,srcport,dstport> tu-
ple). Next, this value is incremented by 1 (to make
sure it is always > 1) and the result is stored in
M¢[0] using the ST instruction (which also pushes
the value on the stack). Let’s call this value h. The
script then loads the value of M[h], increments it
by 1 and pushes it on the stack. Let’s call this value
C (for count). Next, h (saved earlier in M [0])
is loaded again and C' is stored at M¢[h]. The
counting is now done. At that point C'is also the top
of the stack. This value is logically “AND’ed with
the result of (¢9, N6, =) and the outcome of that is
logically ‘AND’ed with “0’, to ensure the value that
is returned by this function is always zero, so that
no packets will be stored in Index(f). Assuming
the hash table is big enough, Exzpr(f) tracks the
activity in all TCP flows, without requiring a single
computation in userspace.

External functions An essential feature of FFPF
is its extensibility and the concept of an ‘external
function’ is another key to speed. It is possible for
both users and administrators to register FFPF ker-
nel functions (fully optimised native code) that can
be called from within the filter expression. The only
difference between code registered by users and by
administrators is in what this code is allowed to do.
This will be discussed in more detail in Section 3.5.
In FPL-1, an external function is called using the
Ext er n construct. For instance, Ext ern’ f 00’
will call external function f oo. When f oo returns,
its return value is placed on the stack. In Figure 1, an
external function called ‘st r sear ch’ is called by
the flow expression of flow B. External functions
allow users to call efficient C implementations of
computationally expensive functions, such as check-
sum calculation, or pattern matching.

An external function takes as parameters pointers

to the packet and to the flow’s persistent memory
array. If the function was registered by the system
administrator it is also provided with a pointer to
the flow expression itself, so that even FPL-1 code
modification can be easily implemented (the useful-
ness of this is discussed below). External functions
can process the packet just like normal flow expres-
sions and are able to place results either in the flows’
memory arrays as well as in their return values.

External functions are identified by users by their
names. Internally, however, the string is mapped on
a unique integer identifier. The mapping from string
to integer is done (1) when the function is registered,
and (2) when the user code is compiled. The advan-
tage is that calling the external function, which hap-
pens on the fast path, does not involve a string search
for the appropriate function name. Instead, indexing
a table of function pointers is all that is required.

A small library of external functions has been im-
plemented. One of the more useful functions in
the library is for instance an implementation of the
Aho-Corasick algorithm for efficient pattern search-
ing with a large number of patterns [1]. The imple-
mentation will be evaluated in Section 4. Another
interesting example of an external function is one
that calls a BPF filter. In other words, FFPF pro-
grams can be used as a meta-expression. Provided
the corresponding external function is implemented,
FFPF is able to provide to its users practically all fil-
tering techniques available in the literature (includ-
ing BPF+ [3], DPF [9], PathFinder [2], etc.) and
may even ‘script together’ filters from different ap-
proaches (much like a shell script on UNIX).

Self-modification External functions that are
loaded by the system administrator have one addi-
tional feature: they allow for automatic modification
of the flow expression from which the function was
called. This is useful for applications that employ
dynamic port allocation. Such applications use con-



trol channels with well-known port numbers, while
data transfer takes place over ports that are nego-
tiated dynamically and hence not known a priori.
Examples can be found in peer-to-peer networks
and multimedia streams that employ control proto-
cols like RTSP, SIP and H.323 [24, 13] to negoti-
ate port numbers for data transfer protocols such as
RTP [23].

These data flows are complex to monitor and
the problem was considered important enough to
develop a special-purpose tool known as mdunp
(based on tcpdunp) to handle it [25]. Like
XPF [12], nmdunp adds statefulness to the
pcap/BPF architecture and in addition allows filters
to be self-modifying. A filter may capture and in-
spect all control packets and if they contain the port
number to be used for data, modify itself to also cap-
ture these packets.

This behaviour is supported in FFPF by allowing
an external function to modify the FPL-1 expres-
sion from which it was called. For instance, given
that RTSP packets are sent on port 554, the filter
in Figure (4.a) captures all RTSP/UDP packets and
calls an external function called handl e_RTSP
to process them further. The return value of the
function handl e_RTSP is 0, so that RTSP pack-
ets are not delivered to the user. When called, the
function scans all RTSP session packets for the oc-
currence of ‘Transport’, ‘cl i ent _port’ and
‘server _port ’to find the transport protocol and
the port numbers that will be used for data trans-
fer (e.g., audio and video). It will add this infor-
mation to the original filter by appending an expres-
sion for each of the port numbers. For instance, if
one of these port numbers is 8000, the expression
in Figure (4.b) will do the same as the expression in
Figure (4.a), while also delivering the corresponding
RTP packets to the user.

3.3.2 FPL-2

FPL-1 is a straightforward interpreted stack lan-
guage. Although the bytecode is fairly efficient, run-
ning it in an interpreter hurts performance. More-
over, as observed by McCanne and Van Jacobson:
for modern processor architectures, stack-based lan-
guages are less efficient than register-based ap-
proaches [18]. We have not investigated to what
extent this is still true more than a decade later. In-
deed, many stack languages are still developed to-
day and some even enjoy huge popularity (e.g., Java,
PostScript, and .Net’s Common Language Runtime
which runs for instance programs written in C#).
Register-based approaches also have issues with

portability and code size. Even so, it is certainly eas-
ier to map register-based languages on a matching
load-store architecture efficiently. For this reason,
the language issue has recently been reconsidered
and we are now adding support for a new language
that (1) compiles to fully optimised object code, and
(2) is based on registers and memory, and (3) con-
tains all of BPF’s instructions in addition to a whole
set of new instructions. A configuration switch de-
termines whether to use ‘old-style’ FPL-1, or ‘new-
style’ FPL-2.

Although in the current implementation it is actu-
ally possible to load, run and remove FPL-2 filters
(as native code), the compiler itself is still under de-
velopment. For this reason only the principles are
discussed in this paper. FPL-1 and FPL-2 compil-
ers are able to generate ‘resource safe’ code, i.e., it
is possible to check at compile time how many re-
sources can be consumed by an expression, which
external functions are called, how many loop itera-
tions may be incurred, etc. Neither language sup-
ports pointers and interaction with the rest of the
kernel is limited to the explicitly registered external
functions. As a result, a simple admission check re-
jects flow expressions that do not agree with the lo-
cal safety policy and no runtime checks for resource
consumption are necessary. At runtime FFPF only
checks for array bound violations, divide by zero,
etc.

In an approach modelled after the OKE (see Sec-
tion 3.5), the FPL-2 compiler takes the flow expres-
sion, checks whether it is safe and if so, compiles
it to a linux kernel module which is subsequently
compiled by gcc. It also generates a compilation
record, which proves that this module was generated
by the local (trusted) FPL-2 compiler. The proof
contains the MD5 of the object code and is signed
by the compiler (Figure 5).

"credential s" conpil e and ’'sign

—| _rmodule C |

trusted

user Ker nel conpi |l er conpiTation
nodul e record

resource
restrictions

Figure 5: User compiles kernel module

To load an FPL-2 flow expression, users provide
the code loader with the object code, as well as the
code’s compilation record. The code loader checks
whether the code is indeed FPL-2 code generated
by the local compiler and if this is the case, loads it
in the kernel. The user has now loaded a fully op-
timised register-based expression in the kernel (see
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Figure 4: RTSP example: (a) captures RTSP packets, (b) same, but also sends RTP packets to user
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Figure 6: User loads module in the kernel

3.4 Admission Control

In reality, the code loader’s admission check is more
complex, as it is also used to check additional cre-
dentials provided by the user. These credentials de-
termine, for instance, whether or not the user is al-
lowed to load an expression in this security group (or
at all). Both for FPL-1 and FPL-2, admission con-
trol is implemented as a stand-alone daemon that is
called at flow connect time. Recall that a flow is con-
nected (or instantiated) after it has been created and
populated, where populating a flow means adding,
for instance, a flow expression, requests for specific
callbacks, etc.

At instantiation time, the complete flow specifica-
tion is combined with authentication/authorisation
information and sent as an instantiation request to
the FFPF kernel module. The kernel module pushes
the instantiation request on a queue that is read by
the admission control daemon. The daemon reads
the request, compares the flow specification both
with the user’s credentials and with the host’s lo-
cal security policy and returns a verdict (“accept’ or
‘reject’). Credentials and trust management in FFPF
are implemented in KeyNote [4]

In addition to ensuring that users do not attempt to
create flows in security groups to which they have no
access, the admission control daemon also provides
much finer-grained control. For instance, it possible
to specify for a specific user that a flow f will be
accepted only if in Expr(f) the first occurrence of

external function f oo is preceded by the first occur-
rence of function bar , or that the number of calls to
bar is always less than the number of calls to f 0o,
etc.

Observe that flow creation and instantiation are
deliberately decoupled. The alternative is to create
a flow which immediately captures packets and to
add filters and functions to it incrementally. Not
only may the latter approach result in capturing
and processing ‘unwanted’ packets for a brief pe-
riod of time, it also prevents fine-grained admis-
sion control. Consider for example, the follow-
ing safety policies (1) a call to an external func-
tion st rsearch is permitted for packets arriv-
ing on NIC-1 (but not for other NICs) only if it
is preceded by a sampling function, (2) all calls to
a functionpr oduce_end_resul t must be fol-
lowed by a return statement, (3) if no call is made
to an external sampling function, the callback that
is requested should wait for at least 1000 packets
(e.g., to limit the number of callbacks). These poli-
cies can only be checked if the entire flow specifica-
tion is available. The examples show that admission
control guard against ‘unsafe’ flows, but can also
be used to guard against ‘stupid errors’. A slightly
modified version of the FFPF admission control dae-
mon is also used in the SCAMPI network monitor-
ing project [8].

3.5 Third-party external functions

Normally, external functions that are coded in C
and compiled as kernel modules can only be loaded
by the system administrator. However, in previ-
ous work we have shown how third-party users can
load fully optimised native code in the Linux ker-
nel, without compromising safety in any way us-
ing the Open Kernel Environment (OKE?). OKE
support was added to FFPF, so that even non-root
users are allowed to load fast native functions in the
kernel and register them with FFPF. Subsequently,
these functions can be called by flow expressions
just like ordinary external functions. The details
of the OKE safety mechanisms are published else-

2Available
projects/oke/

from www . Iiacs.nl/"herbertb/



where (e.g. [5, 6]), so in this section only the results
are summarised.

The FPL-2 way of injecting code was directly
modelled after the OKE, so here the same compile
and load steps are followed as sketched in Figures 5
and 6, except that gthe language used in the OKE
is Cyclone , a ‘crash-free’ version of C [15]. Un-
like FPL-2, this is a language that supports pointer
memory allocation and full interaction with the ker-
nel. Accordingly, to be able to generate ‘resource
safe’ code, the compiler must check and instrument
the user code much more strictly.

Depending on the credentials provided by the user
the OKE compiler will restrict the user code in
terms of access to resource, e.g. in terms of CPU,
heap, and stack usage, access to APIs, access to
sensitive fields in packets at zero runtime overhead
(e.g., access IP addresses), accesses to kernel heap,
etc. Many of the safety mechanisms are enforced
by ‘environment-setup-code’ that is automatically
prepended to the code. For instance, in the case of
FFPF, the environment setup code determines that
the user registers an external function that matches
the prescribed format, and explicitly provides the
API to the rest of the kernel.

The amount of restrictions may vary from user
to user. Highly-privileged users may have unre-
stricted heap space, while others may get only a
small amount (and yet others may get no heap what-
soever). The result is that the OKE compiler is
able to generate fully optimised, native code that is
guaranteed to be crash free and resource safe with
respect to a local safety policy. These policies,
the trust management and the credentials that used
throughout FFPF are implemented in KeyNote [4].
Given the appropriate credentials, user are permitted
to load code of a specific type, i.e., with a specific set
of resource restrictions. The credentials are checked
by admission control.

FFPF users are allowed to load external OKE
functions in the kernel and register them for use in
FPL-1 nd FPL-2, provided the resource restrictions
that were applied to the user’s code agree with the
local safety policy and the user is in possession of
the appropriate credentials. Once loaded, the code
runs natively at full speed, although any resource
constraint that cannot be checked statically incurs
a runtime check. The advantage of external OKE
functions is that users do not depend on the root user
to load the desired functionality as an external func-
tion. The disadvantage is the overhead incurred by
the OKE runtime checks. In practice, the cost of full
resource control in the OKE is less than 10%.

4 Experimental analysis

FFPF is evaluated by comparing its performance to
BPF. While the main benefit of FFPF may well be
the extended functionality, FFPF is shown to out-
perform pcap/BPF on all accounts, despite the slow,
stack-based implementation of FPL-1. First, exper-
iments are evaluated that do not exploit any of the
advanced features of FFPF. Next, experiments with
multiple applications and external functions are dis-
cussed. All measurements were taken on a 1.8 GHz
P4 running a 2.4.18 kernel connected via a 64/66
PCI bus to a gigabit ethernet interface. The system
is capable of handling a maximum rate of roughly
400 Mbps (using UDP packets of 1470 bytes) with-
out significant packet loss.

FFPF was implemented in the Linux kernel on top
of netfilter. There is also a prototype implemen-
tation on IXP1200 network processors (currently
without external functions). Only the latter provides
true zero-copy functionality. To be fair to BPF and
evaluate equivalent systems, only the former imple-
mentation is used in the comparison. It captures
packets on the netfilter PRE_ROUTI NG hook, i.e.
just before the protocol stack determines where this
packet should go. Unfortunately, this implementa-
tion is far from optimal, as a packet incurs a sig-
nificant amount of processing in the Linux kernel
even before it arrives at the netfilter hook. For in-
stance, the packet is queued in a backlog buffer, a
soft IRQ is scheduled and handled, and if needed,
defragmentation is performed. Only after all this has
completed the packet arrives at the hook. As a re-
sult, FFPF incurs significant overhead that has little
to do with FFPF itself. BPF does not suffer from this
to the same extent, as it receives the packets much
earlier in the processing path. To decrease the over-
head, we are currently porting a driver that captures
packets in the FFPF circular buffer directly® (with-
out any kernel processing). It is expected that this
will improve performance dramatically.

Also, the current implementation of FPL-1 is not
very fast. For instance, a filter that (a) tests whether
a packet is UDP/IP with a specific port number and
(b) copies the packet to a group’s PktBuf costs
2700 cycles in FPL-1. The same filter in FPL-2
(with manual translation from FPL-2 to C) takes
480 cycles. In this section, however, we only evlu-
ate FFPF with FPL-1. The BPF version used is the
vanilla implementation in the Linux 2.4.18 kernel.

Figure 7 shows the per-packet overhead for BPF
and FFPF when executing a simple filter at different
rates. The filter tests whether the packet is UDP/IP

3We are indebted to Luca Deri for sending us the code.



sent to destination port 4333. The pcap implemen-
tation is a pcap_| oop that blocks until it has re-
ceived 100 packets. The equivalent for FFPF is a
‘wait_for(100)’ operation that does the same. What
is shown as per-packet overhead in all figures in this
section, is the time it takes to receive 100 pack-
ets in the application, divided by 100. This is not
the overhead due only to the filters or the copies;
it also includes sleeping while waiting for pack-
ets, etc. While micro-measurements, such as the
cycle counts mentioned above, more accurately re-
flect what overhead is caused by what component
of the architecture, we take the view that user ex-
perience is what matters. It means that much of
the time in the measurements is spent ‘waiting’ for
packets. The figures show that the difference be-
tween FFPF and pcap is minimal and that FFPF is
marginally cheaper, despite its inferior interpreter.
The lines drop for increasing rate because the time
that is spent ‘waiting for packets’ which dominates
the overhead at low speeds decreases at high speeds.
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Figure 7: BPF and FFPF overhead for simple packet
filtering

In Figure 8, we also plot the drop rates for pcap

and FFPF at different speeds. FFPF starts to lose
packets at 500 Mbps, when it drops 0.0003% (or 51
packets). However, this is without taking into con-
sideration the performance of netfilter. For rates be-
low 500 Mbps, netfilter does not drop packets, but
at 500 Mbps, close to 20% of the packets is lost by
netfilter. Even so, at that rate, pcap loses 68% of the
packets.
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Figure 8: BPF and FFPF drop rates at various speeds

Next, we modify our experiment to TCP across a
single link and measure the throughput that can be
achieved on the connection while monitoring is ac-
tive. Besides changing from UDP to TCP, the num-
ber of packets for which the applications wait is in-
creased to 1000. For comparison, an implementa-
tion that blocks waiting for a single packet is also
shown. The amount of time spent sleeping in this
case is less, but as expected the maximum through-
put drops. There is still only a single connection
and a single application. The results are shown in
Table 1. FFPF outperforms pcap both in overhead
per packet and packet loess (pcap takes 1.5 times as
long and loses roughly 10% of the bandwidth).

After these basic measurements, in the remainder



Experiment per-pkt | max rate
overhead | (Mbps)
pcap-loop_1000 | 43.3usec 382
ffpf_wait_1000 28.5usec 408
ffpf_wait_1 31.8usec 357

Table 1: Maximum TCP throughput while monitoring

Experiment per-pkt overhead
pcap_loop-100 4 applications 78usec
ffpf_wait_100 4 applications 29usec

Table 2: Overhead with 4 applications

of this section, more complex experiments are con-
sidered. Table 2 shows what happens to the over-
head per packet at 400 Mbps if the number of appli-
cations interested in the packet is greater than one.
The table shows the result for 4 identical applica-
tions. For pcap, the overhead per packet increases
significantly (presumably due to additional copy-
ing), while the overhead for FFPF actually decreases
somewhat (as the number of copies per packet re-
mains 1). The results confirm that FFPF is less ex-
pensive when multiple overlapping flows are active
simultaneously.

In the final experiment, the usefulness of external
functions is demonstrated. The application uses an
advanced string matching algorithm known as Aho-
Corasick to filter packets based on keywords [1].
One of the advantages of the Aho-Corasick algo-
rithm is that the number of strings to look for
hardly influences the time it takes to process a sin-
gle packet. It is therefore ideally suited for scan-
ning network traffic in domains like intrusion de-
tection. Indeed, the latest version of the intrusion
detection system known as Snort also employs the
algorithm [21].

The application in this experiment is interested in
capturing only those packets that contain the strings
www, VWAV ht t p, or HTTP. The experiments were
conducted twice. The first time (‘min work’), the
matching packets all have the string in the first few
bytes of the 1470 byte long payload. The sec-
ond time (‘max work’), the string sits in the last
few bytes. This represents maximum and minimum
overhead created by Aho-Corasick. In the FFPF im-
plementation, the algorithm is executed in the ker-
nel as an external function and only the matching
packets are transferred to userspace. As BPF is not
able to perform Aho-Corasick in the kernel, the pcap
version applies the code to all packets in userspace.
The percentage of packets that match is set to 10%,
50% and 90%, respectively. Again, we measure in

userspace how long it takes to receive 1000 pack-
ets and divide this number by 1000. The algorithm
alone takes 412 clock cycles for ‘min work’ and
12016 for ‘max work’, which translates to an over-
head that ranges between 0.2 us and 6.7 us. The
results are shown in Figure 9 for a rate of 400 Mbps.
Especially when the percentage is low (as would
normally be the case), pcap/BPF wastes a lot of ef-
fort copying packets to user space that are subse-
quently discarded. FFPF performs better (approxi-
mately twice as well), as it only needs to push up
the right packets. In addition, Figure 10 shows that
the number of dropped packets is much worse for
pcap than for FFPF. Actually, again no packets are
dropped by FFPF itself, and all packet loss can be at-
tributed to netfilter. As the percentage that matches
decreases below 10%, the dropped packets ratio for
pcap is greater than 50%.
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Figure 9: Overhead for Aho-Corasick algorithm

External functions provide an advantage over
pcap mainly in cases where (1) the processing can-
not realistically be done in BPF, (2) the copying
overhead compared to the processing overhead is
significant, (3) many packets are not interesting to
the user application anyway. However, even for a
fairly expensive operation like string search, FFPF
performs significantly better than pcap.

5 Related work

Many attempts were made to extend and improve
BPF. For example, both xPF and mmdump add per-
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Figure 10: Drop rate for Aho-Corasick algorithm

sistent state to BPF. The tool mmdump was tailor-
made for multimedia applications with dynamically
allocated ports and for this purpose allows for filter
modifications[12, 25]. This feature has been gener-
alised in FFPF by the flow-specific memory arrays.

MPF enhances the BPF virtual machine with
new instructions for demultiplexing to multiple ap-
plications and merges filters that have the same
prefix [26].  This approach is generalised by
PathFinder which represents different filters as pred-
icates of which common prefixes are removed [2].
PathFinder is interesting in that it is amenable to
implementation in hardware. DPF extends the
PathFinder model by introducing dynamic code
generation [9]. BPF+ [3] shows how an interme-
diate static single assignment representation of BPF
can be optimised, and how just-in-time-compilation
can be used to produce efficient native filtering code.
All of these approaches target filter optimisation es-
pecially in the presence of many filters, and as a re-
sult are not supported directly in FFPF (although it is
simple to add any of these approaches as an external
function). With FPL-2, FFPF relies on gcc’s opti-
misation techniques to combine filters from multiple
flows and on external functions for expensive oper-
ations.

Operating systems like Exokernel, and the orig-
inal Nemesis [10, 17] allow users to add code to
the oprating system and implement single address
spaces to minimise copying. While FFPF no doubt
can be efficiently implemented on either of these

systems, one of the most important features is that it
minimises copying on a very popular OS that does
not have a single address space.

Most closely related to FFPF is the SCAMPI ar-
chitecture [8]. SCAMPI borrows heavily from the
way packets are handled by DAG cards [7]. It is
assumes the hardware is able to write the pack-
ets immediately in the applications’ address spaces
and implements access to the packet buffers through
a userspace daemon. Traditional network cards
are supported but handled much like pcap handles
packet processing: packets first have to be pushed
to userspace. Moreover, SCAMPI does not support
user-provided external functions and relies on tra-
ditional filtering languages (BPF). Unlike FFPF, fi-
nally, SCAMPI allows only a non-branching (linear)
list of functions to be applied to a stream.

6 Conclusions

In this paper, the architecture and first implementa-
tion of the fairly fast packet filter is discussed. FFPF
provides a complete monitoring platform that caters
to a variety of applications. It was shown to be both
more flexible and more efficient than an approach
based on the BSD packet filter. If necessary, exist-
ing filtering approaches can be added as extensions.
Speed is gained by minimising packet copying and
by allowing users to execute computationally expen-
sive functions as native code in the kernel. While
it is clear that some components of FFPF need to
be optimised (e.g. the expression language and the
combination of multiple filters), it is our belief that
the FFPF architecture q represents a significant step
forward from common approaches like BPF.
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