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Abstract

Applications use only a small set of the system calls made available

by the operating system. Modifying programs to debloat or disal-

low unused system calls is a mitigation technique that can both

reduce kernel attack surface and attacker capabilities for when an

application gets compromised. To achieve this, existing systems

generate a sound function call graph of the application and its

dependent libraries and based on that, determine the minimum

set of system calls used. Techniques that refine the call graph by

determining the possible targets of indirect function calls have,

in theory, the potential to also improve system-call debloating. In

this paper, we evaluate the effects of state-of-the-art indirect calls

refinement technique and we find that even though it improves

the application call graph, it does not have any significant effect

on system call policies. In contrast, we find that standard C library

(libc) being used plays a more important role on restricting system

calls. Context-sensitive and path-sensitive call graph refinement

on libc could bring benefits to system call debloating.
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1 Introduction

Applications interact with the operating system through system

calls (syscalls). There are more than 400 system calls in the latest

Linux kernel. Attackers can employ techniques like control-flow

hijacking to divert the control flow of a program to a system call

code causing privilege escalation. Most applications only use a

subset of these 400+ syscalls. System call debloating is a mitigation
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technique where unused system calls of an application as well as its

libraries are filtered/blocked. This can minimize the kernel attack

surface as well as reduce attacker capabilities. Existing system call

debloating techniques like [8, 11, 18] have shown to be effective

in mitigating kernel vulnerabilities, thwarting exploit payloads,

among others.

Generating precise system call filters requires producing a sound

call graph that includes all possible code paths that may execute.

Soundness of the call graph is very critical so as to ensure that

no system call which is actually required by the application is

filtered. Hence, static analysis is preferred over dynamic analysis

for generating the call graph and system call policies.

Generation of sound call graphs for applications can be chal-

lenging due to the presence of indirect control-flow constructs like

indirect calls (icalls), indirect jumps (ijumps), etc. The general ap-

proach to resolving these indirect calls is to over-approximate the

list of targets for an indirect control-flow instruction to the set of all

functions whose address is taken/referenced in the program. While

this approach ensures soundness, it results in a bloated control-flow

graph, which in turn causes an over-approximated system call set.

This reduces the effectiveness of system call debloating.

In this paper, we investigate how different indirect call target

resolution techniques affect system call debloating. We also study

the effect of libc and its different implementations on the system

call filters.

2 Background

System call debloating is a technique that filters unused system calls

of an application and its dependent libraries. While some works

focus on filtering out unused system calls for the entire application

and its libraries [8], other works focus on filtering unused system

calls for different phases of the applications [11] [18]. The funda-

mental steps in building a system that performs system call filtering

are:

(1) Determine the point in the code where system call filter has

to be installed (partition boundary).

(2) Obtain the system calls reachable from the partition bound-

ary and determine the system calls to be filtered.

(3) Enforce the system call filter at the partition boundary.

In case of sysfilter [8], the system call filter is placed at the

beginning of the application while in case of TSP [11] and Sys-

Part [18], it is placed at the start of the serving phase of the server.

System call filters are enforced using seccomp-BPF, which is a Linux

kernel facility for installing system call filters. System calls filtered

using Seccomp-BPF cannot be re-enabled later in the program ex-

ecution in order to prevent an attacker misusing it in case of a

compromised application.
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One of the fundamental steps in obtaining the list of system calls

to be filtered for an application is generating a sound function call

graph of the application. Soundness of call graph is very important

so as to ensure a correct system call filter, which does not miss any

needed system call. Call graph recovery is challenging due to the

presence of indirect control-flow transfers like indirect function

calls, indirect jumps, virtual functions etc. The general approach

for call graph recovery is to overapproximate the list of call targets

for an indirect control flow to the list of functions whose address is

taken/referenced anywhere in the program. This overapproxima-

tion can bring in a lot of system calls which might not be actually

used in the code executed in the partition.

There have been works that focus on refining the call graph

by employing pointer analysis techniques like Andersen’s analy-

sis [11] [12] or type based matching of icall sites to address-taken

functions [16] [23] [21].

In this paper, we try to answer the following questions:

• How does the statically determined system call set compare

against the system calls that is seen dynamically?

• Does different indirect call refinement techniques have an

effect on the system calls filtered?

3 Statically Defined Filters vs. Dynamically

Observed Syscalls

We first compare the statically determined system calls to the sys-

tem calls observed dynamically. We evaluate the SPEC CINT2006

(SPEC) benchmark. For static analysis, we generate call graph of

the application and its dependent libraries such that indirect calls

(icalls) target all address-taken (AT) functions in the application and

dependent libraries. We use SysPart’s [18] AT algorithm for gen-

erating callgraphs and use its syscall generation algorithm, which

is an improvement over Egalito’s [22] FindSyscalls() pass to

determine syscalls invoked from all functions. These results are

used by a graph algorithm to compute the syscalls reachable from

main(). For dynamic analysis, we run SPEC ref benchmark and

obtain the inputs to the benchmarks, followed by which we run the

benchmarks with those inputs and get the executed system calls

using strace.

SPEC CINT2006 Benchmark
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Figure 1: # Syscalls observed statically vs dynamically.

The results are shown in Figure 1. We observe that only around

20% of statically observed system calls is seen dynamically.

4 Analysis of Static Techniques

To better understand this massive difference observed in the pre-

vious section, we analyze the number of system calls statically

deemed necessary under following scenarios. The scenarios we

examine are listed below, while results are shown in Figure 2.

(1) Whole call graph: Syscalls reachable from main() with

icalls of app and glibc call graph resolved to AT functions

in entire code of application and dependent libraries.

(2) Whole call graph with reachable AT: Syscalls reachable

from main() with icalls in app and libraries resolved to AT

functions that are address-taken in functions reachable from

main() (algorithm in Nibbler [3]).

(3) Whole app call graph + direct glibc call graph: Syscalls

reachable frommain() with icalls of app resolved to reachable

AT functions while for glibc we only consider the direct

edges.

(4) Direct app call graph + direct glibc call graph: Syscalls

reachable from main() by only considering direct edges of

both app and glibc.
(5) Reachable from AT functions: System calls which are

reachable through direct edges from reachable AT functions.

We see a significant (approximately 44%) drop in system calls

when icall targets are pruned to those AT functions which are

taken in reachable functions from main(). Even with this drop,

only around 31% of statically analyzed syscalls (item 2) are seen

dynamically. Syscalls by including only direct edges account (item 4)

for around 73.31% of total syscalls observed statically (item 2), which

implies around 36.69% is contributed through indirect call edges.

Syscalls reachable from AT functions (item 5) account for almost

98.83% of total syscalls (item 2).

In case of applications like servers, we observe that certain code

paths are only executed if a certain configuration is enabled. Identi-

fying configuration-specific code as well as rarely executed paths

like error code requires deeper understanding of the application-

specific code. Removing unused paths can be helpful in implement-

ing effective code and syscall debloating for the applications. Addi-

tionally, reducing the AT function list and/or completely resolving

icall targets could improve the call graph precision, that can further

improve syscall debloating.

5 Effect of libc
In case of C programs,most system calls are invoked fromwithin the

C standard library. glibc [1] is GNU implementation of libc and

is widely used, while muslc [2] is a lightweight implementation of

the C standard library. We compare the number of icall sites and AT

functions in SPEC applications to that found in glibc and muslc
in Table 1. The number of icall sites is significantly high in glibc as

compared to the applications, while muslc has significantly lesser

icall sites and AT functions than glibc.
We also looked at the number of syscalls reachable from com-

monly used C standard library functions in glibc and muslc using

SysPart’s AT implementation. The results along with the reduc-

tion in syscalls when glibc is compared with muslc are shown
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Figure 2: # Syscalls observed statically with different sets of call graphs/functions.

Table 1: #Icall sites and AT functions in different SPEC ap-

plications, glibc and muslc

Benchmark #Icalls #AT

401.bzip2 23 2

429.mcf 3 0

445.gobmk 47 1786

456.hmmer 14 19

458.sjeng 4 7

462.libquantum 3 1

464.h264ref 353 39

471.omnetpp 882 1016

473.astar 4 3

999.specrand 3 0

glibc 1080 536

muslc 96 73

in Table 2. muslc’s implementation of commonly used memory

allocation functions like malloc() and free() reduces the system

calls by 93.05% and 97.22% when compared with that of glibc.
Inspection of glibc code has shown that the callgraph of glibc is

highly complex with a lot of cyclic dependencies between C func-

tions. Also, glibc consists of condition based code as well as error

handling code, which are executed very rarely. For example, we

observed that in glibc, some syscalls are implemented to be can-

cellable by invoking __pthread_enable_asynccancel(). This
function contains an indirect call in its call path and hence the

size of statically determined set of syscalls for accept4() which

is implemented to be cancellable is 72. While not considering this

call path makes the syscall set size to be 1. Another example, is in

case of glibc implementations of malloc() and free(). The call

paths of these functions contain call to the function __tunable_-
get_val(), which contains an indirect call. Excluding this call

path would reduce the statically computed number of system calls

of these functions by 75%. Hence, identifying and understanding

the context of such indirect call paths is essential to devise methods

that can effectively handle them, either by resolving those indirect

calls or by applying separate system call partition for those rarely

executed code. This can significantly improve syscall debloating.

Also, most functions that handles errors do not return and the

program exits after that. Excluding non-returning paths in Nginx

servers has shown to reduce the system calls of the program by

12%.

Table 2: #Syscalls reachable from glibc and muslc imple-

mentations of commonly used C standard library functions

using static analysis

C function glibc muslc % reduction

accept 72 47 34.72

close 72 47 34.72

execve 1 1 0

exit 72 47 34.72

free 72 2 97.22

getaddrinfo 72 51 29.16

send 72 47 34.72

printf 72 47 34.72

malloc 72 5 93.05
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shown.

6 The Effect of Icall Resolution Techniques

There have been many static analysis based techniques that aim to

resolve indirect call targets of programs. They can be categorized

as pointer analysis techniques and type-based matching techniques.

Some of them are source-code based approaches while others work

on binaries. We use some of these tools to study the effect of indirect

call refining on system call debloating. The following tools were

chosen for our analysis, mainly because they are publicly available

and functional.

Andersen’s algorithm with type based pruning (TSP): Ander-

sen’s analysis is a pointer-analysis algorithm that derives possible

targets of pointers in a program. The SVF implementation of An-

dersen’s analysis is field-sensitive but not context-sensitive or path-

sensitive. In TSP [11], this graph is further refined by performing

icall target matching based on types as well as including only those

AT functions taken in the reachable part of the program.

BPA: BPA [14] is a binary-level points-to analysis framework that

works on binaries. It performs static points-to analysis for resolving

targets of indirect calls of binaries. We observed that BPA produces

the icall targets of only the application and not the dependent li-

braries, and hence we have used it to produce call graphs of the

application only.

SysPart: SysPart’s call graph generation works on binaries and

performs the following techniques to refine icall targets:

• Include only those AT which is taken in functions reachable

from main()

• Employ use-def analysis to resolve icall targets

• Employ use-def analysis to refine AT list by removing those

AT which does not flow into global variables or is returned

from a function or passed as argument to a function. Also,

AT functions which are only used as targets of icalls are also

removed from the AT list.

We explored various call graph refinement techniques to refine

glibc callgraph. Most source code based icall resolution techniques

are LLVM/Clang based and building glibc with LLVM/Clang cor-

rectly is a laborious and error-prone task. Binary based call graph

techniques like BPA could not handle huge shared library like

glibc. Hence, due to the lack of a practical call graph refinement

technique for glibc, we could analyze glibc with only SysPart.

For this experiment, we generated application call graphs of

SPEC benchmark using SysPart and BPA, muslc call graphs using

SysPart and TSP and glibc call graph using SP. We computed

system calls with combinations of the application call graph and

libc call graph. The results are shown in Figure 3.

We observed that there is a significant difference in system calls

(around 25%-47% reduction) when glibc is replaced with muslc.
Refining only the call graph of the application results in only slight

reduction in system call numbers with the maximum being 16.66%
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syscall reduction for 456.hmmer when its callgraph is generated

by BPA when compared to SysPart.

7 Key Take Aways

Using muslc instead of glibc can significantly reduce the num-

ber of syscalls determined statically. We also observe that the im-

plementation of various C standard library functions in glibc is

more complex than muslc and uses condition based code and er-

ror handling code. Nevertheless, the number of syscalls observed

dynamically for these C functions using both implementations is

similar. Hence, employing a context-sensitive and/or path-sensitive

static analysis approach to handle different control flow paths in

glibc can produce refined system call filters. Further, complex

applications with more icalls and AT functions can benefit from

context-sensitive analysis, if combined with a refined glibc call

graph.

8 Related Work

System Call Filtering: There has been significant work in the

field of system call filtering, where the main focus lies in the tech-

nique of generating system call policies. Static based approaches

like Abhaya [17], Chestnut [7], Confine [10], and sysfilter [8]

generate an over-approximated control-flow graph and generate

the system calls to be filtered. Most of them are source-code based

except sysfilter, which works on binaries. SIT[24] uses a combi-

nation of static and dynamic analysis to generate system call policy.

BASTION [13] introduces the concepts of call type integrity, control-

flow integrity and argument integrity for system calls which can

be used to enforce correct use of system calls at runtime. TSP [11]

introduces a temporal system-call filtering technique for server ap-

plications. It tailors different filter rules for different server phases.

SysPart [18] provides an automated, binary-only, and robust tem-

poral system-call filtering for servers. Confine [10] is a system call

filtering system that limits the system calls within containerized

applications. While TSP, SysPart and Confine enforce system call

filters using seccomp-BPF, which can only disable system calls

and doesn’t allow re-enabling once disallowed system calls, SysX-

CHG [9] introduces a system that allows programs to exchange

filters at runtime during execve. This enables programs to run

with a reduced set of system calls, regardless of the system calls

required by its child programs which will be executed in the future.

Indirect call resolution:Call graph generation techniques have

been studied for over decades now. Earlier works in call graph

generation focussed on pointer analysis to determine all possi-

ble values of each memory location and thereby determine the

value of function pointers used to invoke indirect call. Ander-

sen’s analysis[12] and Steengard’s[20] algorithm are examples of

this. Value-Set Analysis[5] and BPA[14] are points-to analysis tech-

niques for binaries. While pointer analysis techniques are precise,

they are not scalable due to the large number of memory operations

that it involves [11] [19].

Function signature analysis (FSA) [4] resolves icalls by match-

ing the types of function pointers with the ones of AT functions.

FSA is scalable, but suffers from imprecision [16]. TypeArmor [21]

presents an arity-based icall refining technique for binaries where

icalls are matched against those AT functions by matching its ar-

ity and return information. Lin et al. [15] presents how compiler

optimization impacts function signature recovery in binaries and

proposes improved policies to recover function signatures for arity-

based icall refining. Works like TSP [11] proposes refining the icall

targets through type based matching of struct arguments. MLTA

[16] and SMLTA [23] considers field types of multi-layer structures

to refine icall targets. Kelp [6] proposes a hybrid approach com-

bining type analysis with regional pointer information to generate

precise icall targets in a scalable way.

9 Conclusion

In this paper, we study the effect of indirect call refining on system

call debloating. We perform our analysis on SPEC benchmarks. We

compare system calls computed using static analysis techniques

to that observed dynamically and observe that only around 20% of

statically computed system call is seen dynamically. Further, we ob-

serve that around 73% of syscalls computed statically is contributed

through direct edges and syscalls contributed by AT functions is

around 98.83%. Hence, deeper understanding of application code

through context-sensitive and path-sensitive analysis could shed

light on which paths can be excluded during syscall computation

analysis that can potentially improve syscall debloating. Also, we

study the effect of different standard C library implementations

on the system calls. We observe that muslc implementations of

commonly used C functions reduce the number of system calls

in a significant way when compared to glibc. We conclude that

context-sensitive static analysis combined with further refinement

of icalls mainly in glibc can produce better system call filters.
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