
Security

 ;login: MONTH YEAR   7

Vasileios Kemerlis is a PhD
student in the Department of
Computer Science at Columbia
University. His research

interests are mainly in software and systems
security, with a focus on automated software
hardening. vpk@cs.columbia.edu

Georgios Portokalidis is a
postdoctoral researcher in
the Department of Computer
Science at Columbia University.

He obtained his doctorate from the Vrije
Universiteit in Amsterdam. His research
interests are mainly around the area of systems
security, but extend to network monitoring,
operating systems, and virtualization
technologies. porto@cs.columbia.edu

Elias Athanasopoulos holds a BS
in physics from the University
of Athens, and an MS and PhD
from the University of Crete. He

is currently a Marie Curie postdoctoral fellow
with Columbia University.
elathan@cs.columbia.edu

Angelos D. Keromytis is
an Associate Professor of
Computer Science at Columbia
University. His research

interests revolve around systems and software
security and reliability. He received his PhD in
2001 from the University of Pennsylvania.
angelos@cs.columbia.edu

Kernel exploits have become increasingly popular over the past several years. We
have developed kGuard, a cross-platform system that defends the operating system
(OS) against a widespread class of kernel attacks. We describe how these attacks
work and how kGuard protects the kernel with only a small decrease in perfor-
mance.

The OS kernel is becoming an attractive target for attackers. The rising number
of kernel vulnerabilities discovered and reported attest to this (see Figure 1). The
reasons behind this trend are numerous. First, the number of applications running
(continuously) with administrative privileges has significantly decreased, mean-
ing that an attacker compromising such programs remotely gains only limited
power over the underlying system. Additionally, programs have become harder to
exploit due to the various defense mechanisms already adopted by modern OSes,
such as address space layout randomization and stack smashing protection. The
most interesting reason is probably that vulnerabilities such as NULL pointer
dereference bugs, which were thought to be impractical, hard to exploit, and had
not received significant attention by the security community, can be used with
ease against the kernel to gain elevated privileges. In fact, some researchers pro-
claimed 2009 as “the year of the kernel NULL pointer dereference flaw” [2]. Last,
exploiting kernel bugs has the added benefit of allowing attackers to mask their
presence on the compromised systems (e.g., by hiding processes or files).

Figure 1: Kernel vulnerabilities (per year) reported to NIST. Over the past decade, the distinct
number of CVE identifiers assigned to kernel vulnerabilities has increased by a factor of 5.

kGuard
Lightweight Kernel Protection

V a s i l e i o s P . K e m e r l i s , G e o r G i o s P o r t o K a l i d i s ,
e l i a s a t h a n a s o P o u l o s , a n G e l o s d . K e r o m y t i s

8   ;login: VOl. XX, NO. XX

Kernel attacks are facilitated by the fact that user and kernel space (i.e., the mem-
ory area where user applications and the kernel reside, respectively), are weakly
separated in modern OSes. As a result, direct transitions from more to less privi-
leged protection domains (i.e., kernel to user space) are permissible, even though
the reverse is not. This is what transforms NULL pointer dereference bugs from
system instability vulnerabilities to privilege escalation threats. When exploited
successfully, they enable local users to execute arbitrary code with kernel privi-
leges, by redirecting the control flow of the kernel to user-controlled memory. Such
return-to-user (ret2usr) attacks have affected all major OSes, including Windows,
Linux, and the BSDs. These attacks are not limited to x86/x86-64 systems, but
have also targeted the ARM, DEC, and PowerPC architectures.

Previous approaches to the problem are either impractical for deployment in cer-
tain environments or can be easily circumvented. For example, the most popular
approach has been to disallow user processes to memory-map the lower part of
their address space (i.e., the one including page zero). This scheme has been cir-
cumvented by various means and is not backwards compatible. The PaX [8] patch
for x86 and x86-64 Linux kernels does not exhibit the same shortcomings, but
greatly increases system call and I/O latency. Recent advances in virtualization
have fostered a wave of research on extending virtual machine monitors (VMMs)
to enforce the integrity of the virtualized guest kernels; however, virtualization
is not always practical. Consider smartphone devices that use stripped-down
versions of Linux and Windows, which are also vulnerable to such attacks. Run-
ning a complex VMM on current smartphones is not realistic due to their limited
resources (i.e., CPU and battery life). On PCs, running the whole OS over a VM
incurs performance penalties and management costs, while increasing the com-
plexity and size of a VMM can introduce new bugs and vulnerabilities. Addressing
the problem in hardware is the most efficient solution, but even though Intel has
recently announced a new CPU feature, named SMEP [5], to thwart such attacks,
hardware extensions are oftentimes adopted slowly by OSes. More importantly,
other vendors have not publicly announced similar extensions.

kGuard is a lightweight solution to the problem. kGuard consists of a compiler
plugin that augments kernel code with control-flow assertions, which ensure that
privileged execution remains within its valid boundaries and does not cross to user
space. This is achieved by identifying all exploitable control transfers during com-
pilation, and injecting compact dynamic checks to attest that the kernel remains
confined. kGuard is to some extent related to previous research on control-flow
integrity (CFI) [1]; however, CFI is not effective against ret2usr attacks, because
its integrity is only guaranteed if the attacker cannot overwrite the code of the
protected binary or execute data. (During a ret2usr attack the control flow is redi-
rected into memory pages whose contents and permissions are fully controlled by
the attacker.)

Background

Virtual Memory Organization

Commodity OSes offer process isolation through private, hardware-enforced
virtual address spaces; however, as they strive to squeeze more performance out of
the hardware, they adopt a “shared” process/kernel memory model for minimiz-
ing the overhead of operations that cross protection domains, such as system calls,
interrupts, and exceptions. Specifically, Windows and UNIX-like OSes divide

 ;login: MONTH YEAR Article Title   9

virtual memory into user and kernel space. The former hosts user processes, while
the latter holds kernel code and data, kernel extensions (modules), and device
drivers. In most architectures, the separation between the two spaces is assisted
and enforced by the following hardware features: CPU modes (or protection rings),
a memory management unit (MMU), and special-purpose instructions. The x86/
x86-64 instruction set architecture (ISA) supports four protection rings, with the
kernel running in the most privileged one (ring 0) and user applications in the least
privileged (ring 3). In fact, modern x86/x86-64 CPUs have more than four rings;
hardware-assisted virtualization and System Management Mode are colloquially
known as ring -1 and -2, respectively. Similarly, the PowerPC and MIPS platforms
have two CPU modes, SPARC has three, and ARM seven. All these architectures
feature an MMU, typically programmed using privileged special-purpose instruc-
tions, which implements virtual memory and ensures that memory assigned to a
certain ring is not accessible by the less privileged ones.

Kernel Exploitation

Code running in user space cannot directly access or jump into the kernel, and
hence, special-purpose instructions and hardware facilities (i.e., interrupts and
exceptions) are provided for crossing the user/kernel boundary. Nevertheless,
while executing privileged code, complete and unrestricted access to all memory
and system objects is available. For example, when servicing a system call for a
process (or during interrupt/exception handling) the kernel executes within the
context of a preempted process and can directly access user memory to store the
result of the call or read user data.

At the same time, OS kernels, which are mostly written in type-unsafe languages
and assembly, suffer the same software flaws that plague applications. For
instance, buffer and integer overflows, pointer arithmetic bugs, use-after-free vul-
nerabilities, and signedness errors can all be exploited to corrupt kernel memory
and hijack control flow, thus executing arbitrary code with elevated privileges. The
ability to trigger such a bug in the kernel, from a local process, provides a unique
standpoint to attackers who totally control (i.e., both in terms of permissions and
contents) part of the address space available to the kernel at any given time. In
other words, “shellcode” can be executed with kernel rights by hijacking a privi-
leged execution path and redirecting it to user space.

ret2usr Attacks

ret2usr attacks have become the most popular kernel exploitation method, for
which a wealth of defensive mechanisms exists [7, 8, 5]. They are manifested by
overwriting kernel data with user space addresses, after exploiting memory safety
bugs in kernel code. As expected, attackers typically aim for control data [10],
such as return addresses, jump tables, and function pointers, since these facilitate
arbitrary code execution; however, pointers to critical data structures, frequently
stored in kernel stack or heap, are also favored targets, since their contents can be
tampered with by mapping fake copies in user space [9]. Most exploits of that kind
target data structures that contain function pointers, or data that affect kernel
execution, so as to diverge the control flow to arbitrary (typically user-controlled)
places.

The end effect of these attacks is that the kernel is hijacked and control is redi-
rected to user space code. Typically, ret2usr exploits use a multi-stage shellcode,

10   ;login: VOl. XX, NO. XX

where the first stage lies in user space and glues together kernel functions (i.e., the
second stage shellcode) that perform privilege escalation or execute a rootshell.
We refer to this type of exploitation as return-to-user [7] because it resembles the
older return-to-libc [4] technique that redirected control to existing code in the C
library. ret2usr attacks are yet another incarnation of the confused deputy problem
[6], where a user fools the kernel (deputy) into misusing its authority and executing
arbitrary, non-kernel code with elevated privileges.

kGuard
kGuard consists of a cross-platform GCC plugin that enforces address space seg-
regation without relying on special hardware or architecture-specific features [8,
5]. It protects the kernel from ret2usr attacks with low-overhead by building on the
following security primitives: inline monitoring and code diversification.

Inline Monitoring

kGuard augments exploitable control transfers, at compile time, with dynamic con-
trol-flow assertions (CFAs) that, at runtime, prevent the unconstrained transition
of privileged execution paths to user space. Figure 2a illustrates the concept. The
injected CFAs perform a small runtime check before each indirect branch to verify
that the target address is always in kernel space. If the assertion is true, execution
continues normally, while if it fails because of a violation, execution is transferred
to a handler that was inserted during compilation. The default handler appends a
warning message to the kernel log and halts the system; however, custom handlers
are also supported for facilitating forensic analysis (e.g., dumping the shellcode for
studying new ret2usr exploitation vectors), selective confinement (i.e., avoiding
instrumenting “legitimate” boundary violators such as VMware’s I/O back door),
and providing protection against persistent threats.

CFA guards come in two flavors, namely CFAR and CFAM, depending on whether
the protected control transfer uses a register or memory operand. Figure 2b shows
an example of a CFAR guard. The code is from the show() routine of the cpufreq
driver in x86 Linux. kGuard instruments the computed branch (call *%ebx) with
three additional instructions. First, the cmp instruction compares the ebx register
with the lower bound kernel address 0xC0000000. The same is also true for x86
FreeBSD/NetBSD (OpenBSD maps the kernel to the upper 512 MB of the virtual
address space, and hence, its base address in x86 CPUs is located at 0xD0000000),

Figure 2a: CFA-based confinement. The
injected guards perform a small runtime
check before each computed branch to
verify that the target address is in kernel
space.

Figure 2b: CFAR guard gets applied on an
indirect call in x86 linux (drivers/cpufreq/
cpufreq.c).

 ;login: MONTH YEAR Article Title   11

whereas for x86-64 the check should be with address 0xFFFFFFFF80000000.
In case the assertion is true, the control transfer is authorized by jumping to the
call instruction. Otherwise, the mov instruction loads the address of the violation
handler (0xC05AF8F1; panic()) into the branch register and proceeds to execute
the call, which will invoke the violation handler.

Similarly, CFAM guards confine indirect branches that use memory operands;
however, these guards not only assert that the branch target is within the kernel
address space, but also ensure that the memory address where the branch target is
loaded from is also in kernel space. The latter is necessary for protecting against
cases where attackers have managed to tamper with data structures that contain
control data, by overwriting data pointers to such structures with user space
addresses and mapping fake copies in user space. Interested readers are referred
to our recent USENIX Security paper for more information regarding the CFAM
guards [7].

Code Diversification

CFAR and CFAM guards provide reliable protection against ret2usr attacks only if
the attacker exploits a kernel bug that allows him partially to control a computed
branch target (e.g., by zeroing out certain bytes); however, vulnerabilities where the
attacker can overwrite kernel memory with arbitrary values also exist [3]. When
such flaws are present, exploits could attempt to bypass kGuard.

B y Pa s s T r a m P o L i n e s

To subvert kGuard, an attacker must be able to determine the address of a (indi-
rect) control transfer instruction inside the text segment of the kernel. Moreover,
she should also be able to control the value of its operand reliably (i.e., its branch
target). We refer to that branch as a bypass trampoline. Note that in ISAs with
overlapping variable-length instructions, finding an embedded opcode sequence
that translates directly to a control branch in user space is possible. By overwrit-
ing the value of a protected branch target with the address of a bypass trampoline,
the attacker can successfully execute a jump to user space, as depicted in Figure 3.
The first CFA corresponding to the initially exploited branch will succeed, since
the address of the trampoline remains inside the privileged memory segment,
while the second CFA that guards the bypass trampoline is completely bypassed by
jumping directly to the branch instruction.

C o d e i n f L aT i o n

This technique reshapes the kernel’s text area (see Figure 4). kGuard begins with
randomizing the starting address of the text segment. This is achieved by insert-
ing a random NOP sled at its beginning, which effectively shifts all executable
instructions by an arbitrary offset. Next, it continues by inserting NOP sleds of
random length at the beginning of each CFA. The end result is that the location
of every computed control transfer instruction is randomized, making it harder
for an attacker to guess the exact address of a confined branch to use as a bypass
trampoline. The effects of the sleds are cumulative because each one pushes all
instructions and NOP sleds following to higher memory addresses. The size of the
initial sled is chosen by kGuard based on the target architecture.

The per-CFA NOP sled is randomly selected from a user-configured range. By
specifying the range, users can trade higher overhead (both in terms of space and

Figure 3: Subverting kGuard using bypass
trampolines. CFA1 succeeds since the address
of the second branch (trampoline) is in kernel
space. CFA2 is completely bypassed by jump-
ing directly to the branch instruction.

Figure 4: Code inflation reshapes the kernel’s
text area by inserting NOP sleds of random
length at the beginning of each CFA.

12   ;login: VOl. XX, NO. XX

speed) for a smaller probability that an attacker can reliably obtain the address of
a bypass trampoline. An important assumption of the aforementioned technique is
the secrecy of the kernel’s text and symbols. If the attacker has access to the binary
image of the confined kernel or is armed with a kernel-level memory leak, the
probability of successfully guessing the address of a bypass trampoline increases;
however, assigning safe file permissions to the kernel’s text, modules, and debug-
ging symbols is not a limiting factor. This can be trivially achieved by changing the
permissions in the file system to disallow reads, from non-administrative users,
in /boot and /lib/modules in Linux/FreeBSD, /bsd in OpenBSD, etc. In fact, this
is considered standard practice in OS hardening, and is automatically enabled in
PaX and similar patches, as well as in the latest Ubuntu Linux releases. Also note
that the kernel should harden access to the system message ring buffer (dmesg)
and certain files in the proc pseudo-file system, in order to prevent the leakage of
kernel addresses.

C fa m o T i o n

The basic idea behind this technique is the “continuous” relocation of the protected
branches and injected guards, by rewriting the text segment of the kernel, for more
hardening of kGuard against bypasses. Figure 5 illustrates the concept. During
compilation, kGuard emits information regarding each injected CFA, which can
be used later to relocate the respective code snippets. Specifically, kGuard logs the
exact location of the CFA inside the kernel’s text, the type and size of the guard,
the length of the prepended NOP sled, as well as the size of the protected branch.
Armed with that information, kGuard can then migrate every CFA and indirect
branch instruction separately, by moving it inside the following window: sizeof

(nop_sled) + sizeof (cfa) + sizeof (branch). Currently, kGuard only supports
CFA motion during kernel bootstrap. That said, keep in mind that ret2usr viola-
tions are detected at runtime, and hence one false guess is enough to identify the
attacker and restrict his capabilities (e.g., by revoking his access to prevent brute-
force attempts).

results and next steps
The effectiveness of kGuard has been experimentally assessed by instrumenting
different vanilla Linux kernels, both in x86 and x86-64 architectures, and testing
them against real exploits that cover a broad spectrum of different flaws, including
direct NULL pointer dereferences, control hijacking via tampered data structures
(data pointer corruption), function and data pointer overwrite, arbitrary kernel-
memory nullification, and ret2usr via kernel stack-smashing. As expected, kGuard
was able to detect and prevent exploitation successfully in all cases. For more
information regarding the evaluation suite, please refer to our paper in USENIX
Security ‘12 [7].

kGuard exhibits lower overhead than previous work. On average, it imposes a 11.4%
overhead on system call and I/O latency on x86 Linux, and 10.3% on x86-64, as
reported by the LMbench micro-benchmark suite. In the case of IPC bandwidth, it
exhibits an average slowdown of 6% on x86, and 6.6% on x86-64. Additionally, the
size of a kGuard-compiled kernel grows between 3.5% and 5.6%, due to the inserted
checks, while the impact on real-life applications, such as the MySQL RDBMS and
Apache Web server, is minimal (≤ 1%).

Figure 5: CFA motion synopsis. kGuard
relocates each inline guard and protected
branch, within a certain window, by routinely
rewriting the text segment of the kernel.

 ;login: MONTH YEAR Article Title   13

Future steps include investigating how to apply the CFA motion technique while a
kernel is running and the OS is live. Currently, we have developed a Linux pro-
totype that utilizes a dedicated kernel thread, which upon a certain condition,
freezes the kernel and performs rewriting. Thus far, we have achieved CFA reloca-
tion in a coarse-grained manner by exploiting the suspend subsystem of the Linux
kernel. Specifically, we bring the system to pre-suspend state to prevent any kernel
code from being invoked during relocation (note that the BSD OSes have similar
capabilities); however, our end goal is to perform CFA motion in a more fine-
grained, non-interruptible and efficient manner, without “locking” the whole OS.
Further in the future, we also plan to explore custom fault handlers that perform
error virtualization for automatically recovering from attacks.

Conclusion
kGuard is a fast and flexible cross-platform solution that protects the kernel from
ret2usr attacks. It works by injecting fine-grained inline guards during the trans-
lation phase that are resistant to bypass, and does not require any modification
to the kernel or additional software such as a VMM. kGuard can safeguard both
32- and 64-bit OSes that map a mixture of code segments with different privi-
leges inside the same scope and are vulnerable to ret2usr exploits. We believe that
kGuard strikes a balance between safety and functionality, and provides compre-
hensive protection from a widespread class of attacks.

availability
kGuard is freely available at: http://www.cs.columbia.edu/~vpk/research/kguard/.

acknowledgments
We thank Georgios Kontaxis for his valuable feedback on earlier drafts of this
manuscript. This work was supported by DARPA, the US Air Force, and ONR
through Contracts DARPA-FA8750-10-2-0253, AFRL-FA8650-10-C-7024, and
N00014-12-1-0166, respectively. Any opinions, findings, conclusions, or recom-
mendations expressed herein are those of the authors, and do not necessarily
reflect those of the US Government, DARPA, the Air Force, or ONR.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow Integrity,”
 Proceedings of the 12th ACM Conference on Computer and Communications
S ecurity (CCS), 2005, pp. 340–353.

[2] M.J. Cox, “Red Hat’s Top 11 Most Serious Flaw Types for 2009,” February 2010:
http://www.awe.com/mark/blog/20100216.html.

[3] CVE-2010-3904, October 2010: http://cve.mitre.org/cgi-bin/cvename.cgi
?name=CVE-2010-3904.

[4] S. Designer, “Getting Around Non-Executable Stack (and Fix),” August 1997:
http://seclists.org/bugtraq/1997/Aug/63.

[5] V. George, T. Piazza, and H. Jiang, “Technology Insight: Intel Next Generation
Microarchitecture Codename Ivy Bridge,” September 2011: www.intel.com/idf/
library/pdf/sf_2011/SF11_SPCS005_101F.pdf.

14   ;login: VOl. XX, NO. XX

[6] N. Hardy, “The Confused Deputy (or Why Capabilities Might Have Been
Invented),” . SIGOPS Operating Systems Review, vol. 22, no. 4, October 1988,
pp. 36–38.

[7] V.P. Kemerlis, G. Portokalidis, and A.D. Keromytis, “kGuard: Lightweight
 Kernel Protection Against Return-to-User Attacks,” Proceedings of the 21st
 USENIX Security Symposium, USENIX Association, 2012, pp. 459–474.

[8] PaX Team home page: http://pax.grsecurity.net, accessed September 2012.

[9] SecurityFocus, “Linux Kernel ‘pipe.c’ Local Privilege Escalation Vulnerability,”
November 2009: http://www.securityfocus.com/bid/36901/info.

[10] Virtual Security Research, “Linux RDS Protocol Local Privilege Escalation,”
October 2010: http://www.vsecurity.com/resources/advisory/20101019-1/.

