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Abstract
Smartphones have come to resemble PCs in software
complexity, with complexity usually leading to bugs and
vulnerabilities. Moreover, as smartphones are increas-
ingly used for financial transactions and other privacy-
sensitive tasks, they are becoming attractive targets for
attackers. Unfortunately, smartphones are quite different
from PCs in terms of resource constraints imposed on
the design of protection mechanisms, as battery power
is an extremely scarce resource. As a consequence, se-
curity solutions designed for PCs may not be directly ap-
plicable to smartphones, as they may reduce battery life-
time significantly. Worse, as no single protection mecha-
nism offers 100% security, it may be desirable to tighten
up security further by applying multiple security solu-
tions at the same time, thus increasing attack coverage
and accuracy. Doing so exacerbates the problem.

In this paper, we explore a design where the detec-
tion of attacks is almost completely decoupled from
the phone. We propose an architecture where all de-
tection mechanisms are placed on a separate, loosely-
synchronised security server which hosts one or more
exact replicas of the smartphone. As the security server
is not subject to the battery power constraint, we can ap-
ply a host of expensive detection techniques that would
otherwise be too heavy-weight to ever consider imple-
menting on the actual phone. We evaluate an implemen-
tation of the architecture on the HTC Dream / Android
G1 phone platform and show that the overhead, in terms
of computation and power consumption, is acceptable,
even though we are applying extremely heavy-weight

attack detection techniques based on dynamic taint anal-
ysis.

Categories and Subject Descriptors D.4.6 [Security
and Protection]: Invasive software

General Terms Security, Mobile phones

Keywords Android, Decoupled security

1. Introduction
Smartphones have come to resemble general-purpose
computers: in addition to traditional telephony stacks,
calendars, games and addressbooks, we now use them
for browsing the web, reading email, watching online
videos, and many other activities that we used to per-
form on PCs. A plethora of new applications, such as
navigation and location-sensitive information services,
are becoming increasingly popular.

The Problem As software complexity increases, so
does the number of bugs and exploitable vulnerabili-
ties [18, 33, 21, 32]. Vulnerabilities in the past have al-
lowed attackers to use Bluetooth to completely take over
mobile phones of various vendors, such as the Nokia
6310, the Sony Ericsson T68, and the Motorola v80. The
process, known as bluebugging, exploited a bug in Blue-
tooth implementations. While these are older phones,
more recent models, such as the Apple iPhone have also
shown to be susceptible to remote exploits [29, 25].

Moreover, as phones are used more and more for
commercial transactions, there is a growing incentive
for attackers to target them. Credit card numbers and
passwords are entered in phone-based browsers, while
Apple, Google, Microsoft and other companies oper-
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ate online stores selling applications, music and videos.
Furthermore, payment for goods and services via mo-
bile phones is provided by Upaid Systems and Black
Lab Mobile. Companies like Verrus Mobile Technolo-
gies, RingGo, Easy Park, NOW! Innovations, Park-Line,
mPark and ParkMagic all use phones to pay for park-
ing, and yet others focus on mass-transit, such as for in-
stance, HKL/HST in Finland and mPay/City Handlowy
in Poland that both allow travellers to pay for public
transport by mobile phone over GSM.

We see that both opportunity and incentive for at-
tacking smartphones are on the rise. What about pro-
tective measures? On the surface, one might think this
is a familiar problem: if phones are becoming more like
computers, there is existing technology and ongoing re-
search in fighting off attacks to PCs and servers. Unfor-
tunately, it may not be feasible to apply the same secu-
rity mechanisms in their current form.

While smartphones are like small PCs in terms of
processing capacity, range of applications, and vulner-
ability to attacks, there are significant differences in
other respects, most notably power and physical loca-
tion. These two aspects matter when it comes to secu-
rity. First, unlike normal PCs, smartphones run on bat-
tery power, which is an extremely scarce resource. For
instance, one of the main points of criticism against Ap-
ple’s iPhone 3G concerned its short battery life [26].
Vendors work extremely hard to produce efficient code
for such devices, because every cycle consumes power,
and every Joule is precious.

As a consequence, many of the security solutions that
work for desktop PCs may not be directly portable to
smartphones. Anti-virus file scanners [24], reliable in-
trusion detection techniques [10], and other well-known
techniques all consume battery power. While the occa-
sional file scanning may be relatively cheap, more thor-
ough security checks in light of the increasing software
complexity and the threat of code injection attacks are
pushing the likely security overhead upwards. Further-
more, for many organisations, such as law enforcement,
banks, governments, and the military, the use of phones
is both critical and sensitive, and cannot be subjected
to the same aggressive security restrictions at the policy
level that are common for their office intranets1.

For high-grade security, it is desirable to run a host
of attack detection methods simultaneously to increase
coverage and accuracy. However, doing so exacerbates
the power problem and may even incur some unaccept-
able slowdowns. Indeed, some of the most reliable secu-

1 A high-profile case in point is US president Barack Obama’s struggle
to keep his Blackberry smartphone, after he was told this was not
possible due to security concerns. Eventually, it was decided that he
could keep an extra-secure smartphone and months of speculation
followed about which phone, its additional security measures, and the
tasks for which he is permitted to use it.

rity measures (like dynamic taint analysis [7, 28]) are so
heavy-weight that they can probably never be used on
battery-powered mobile devices, unless we make signif-
icant changes to the hardware. Battery life sells phones,
and consumers hate recharging [26]. The likely result is
that both vendors and consumers will trade security for
battery life.

Second, phones are required to operate in unpro-
tected or even hostile environments. Unlike traditional
computers, phones go everywhere we go, and attacks
may come from sources that are extremely local. A per-
son with a laptop or another smartphone in the same
room could be the source of a Bluetooth or WiFi spoof-
ing attack [2]. That means that traditional perimeter se-
curity in general is insufficient, and even mobile phone
security solutions that are based exclusively on “up-
stream” scanning of network traffic [8] will never even
see the traffic involved in attacking the phone.

Worse, phones are small devices, and we do not al-
ways keep an eye on them. We may leave them on the
beach when we go for a swim, slip them in a coat or
shopping bag, forget them on our desks, etc. Theft of a
phone is much easier than theft of a desktop PC or even
a laptop. Attackers could ‘borrow’ the phone, copy data
from it, open it physically, install back-doors, etc. For
instance, after the bluebugging vulnerability mentioned
above was fixed, phones could still be compromised as
long as the attacker was able to physically access the de-
vice [21]. This is an important difference with the PCs
we have sitting on our desks.

In summary, the trends are not favourable. On the one
hand, mobile phones are an increasingly attractive target
for attackers. On the other hand, because of power limi-
tations and increased exposure to hostile environments,
phones are inherently more difficult to protect than tra-
ditional computers.

Our approach: attack detection on remote replicas
At a high-level, we envision that security (in terms of
detecting attacks) will be just another service to be de-
volved from the mobile device and hosted in a separate
server, much like storage can be hosted in a separate file
server, email in a mail server, and so on. Whether or not
this is feasible at the granularity necessary for thwart-
ing today’s attacks has been an open research question,
which we attempt to answer in this paper.

More specifically, we explore the feasibility of de-
coupling the security checks from the phone itself, and
performing all security checks on a synchronised copy
of the phone that runs on a dedicated security server.
This server does not have the tight resource constraints
of a phone, allowing us to perform security checks that
would otherwise be too expensive to run on the phone
itself. To achieve this, we record a minimal trace of the
phone’s execution (enough to allow the security server
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to replay the attack and no more), and subsequently
transmit the trace to the server for further inspection.
The implementation of the full system is known as Mar-
vin. It is illustrated in Figure 1.

Our approach is consistent with the current trend to
host activities in centralised servers, possibly consoli-
dated in a cloud, including security-related functions.
For instance, Oberheide et al. have explored anti-virus
file scanning in the cloud [30], and have more recently
highlighted the opportunity for doing the same for mo-
bile devices [31].

Although we subscribe to this trend at a high-level,
we take a more aggressive approach to protection, espe-
cially considering the underlying threat landscape. Soft-
ware on smartphones itself has frequently shown to be
vulnerable to attacks for which the file scanning model
is insufficient [21, 15, 32]. We therefore aim to prevent
attacks on the phone software itself, focusing on ex-
ploits against client applications (like the browser, me-
dia player, email program, and calendar), and also cov-
ering misbehaving code installed by the user, and even
cross-site scripting attacks. This is much more involved
than scanning files for signatures. Nevertheless, our de-
sign still enables all the security checks to be pushed to
an external security server.

Our solution builds on work on virtual machine (VM)
recording and replaying [13, 41, 27, 9, 14]. Similar to
these approaches, we record the execution of software
running on a mobile phone and replay the exact trace on
the security server. Rather than recording and replaying
at VM level, we record the trace of a set of processes.
We tailor the solution to smartphones, and compress and
transmit the trace in a way that minimises computational
and battery overhead. In addition to the replaying tech-
nique itself and the steps we take towards minimising
the trace size, an important contribution of this paper
is therefore the new application domain for replaying:
resource-constrained devices that cannot provide com-
prehensive security measures themselves.

With the recorded trace, we can apply any security
measure we want (including very expensive ones) and
we can run as many detection techniques as we desire.
By allowing heavy-weight attack detection solutions, we
are able to detect attacks that could not possibly be de-
tected otherwise. Not only that, but we make it possi-
ble to study the attack in detail. We can replay attacks
arbitrarily, possibly with more detailed instrumentation.
And as not all phones are active at the same time, it is
highly likely that replicas of multiple phones can share
one physical machine.

An additional advantage is that loss or theft of a
phone does not mean the loss of the data on it. All data,
up to and including the last bytes transmitted by the
phone, is still safely stored on the replica.

Contribution To the best of our knowledge, we are the
first to use decoupled replaying to provide security for
resource constrained mobile devices. More broadly, we
claim that this is the first architecture capable of offer-
ing comprehensive security checks for devices that are
increasingly important for accessing the network, of-
ten store or use sensitive information, exhibit a grow-
ing number of vulnerabilities (thus forming attractive
targets), and cannot reasonably afford the security mea-
sures developed for less constrained systems.

Furthermore, we have fully implemented the secu-
rity architecture on a popular smartphone (the HTC
Dream/Android G1 [19]). The implementation demon-
strates that the approach is feasible, while our experi-
mental analysis suggests that the tracing and synchro-
nisation cost is reasonable when compared to the kind
of security offered on the server side. While the imple-
mentation is tied to Android, the architecture is not, as
our dependencies on a specific phone or even operating
system are very limited, and the Marvin design applies
to other models also.

Paper Outline Implementing a project on the scale of
Marvin involves several person years in programming
effort, much of which is spent on solving low-level en-
gineering problems. Rather than trying to cram these
details into our paper, we limit ourselves to the most
interesting aspects of the architecture and implementa-
tion, and only discuss details when they are essential
for understanding the bigger picture. The remainder of
this paper is organised as follows. Section 2 presents a
brief overview of the threat model and the likely config-
uration in terms of function placement. Section 3 out-
lines the proposed system architecture and the key de-
sign decisions and trade-offs. Section 4 provides details
on the tracing techniques and how they can be made effi-
cient to mminimise synchronisation overhead, and Sec-
tion 5 outlines the server-side environment for replicat-
ing phone state and performing security checks. Our ex-
perimental analysis of the Android-based implementa-
tion is presented in Section 6. Section 7 discusses re-
lated work that has influenced our design, and Section 8
summarises our research findings.

2. Threat model and example
configuration

We assume that all software on the phone, including the
kernel, can be taken over completely by attackers. In
practice, a compromise of the kernel takes place via a
compromised userspace process. We do not care about
the attack vector itself. We expect that attackers will be
able to compromise the applications on the phone by
means of a variety of exploits (including buffer over-
flows, format string attacks, double frees, integer over-
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Figure 1. Marvin architecture

flows, etc.). Nor do we care about the medium: attacks
may arrive over WIFI, 3G, Bluetooth, infra-red, or USB.

In the absence of exploits, an attacker may also per-
suade users to install malicious software themselves by
means of social engineering. Typical examples include
trojans disguised as useful software.

Depending on the attack detection solutions that we
provide on the security server, Marvin allows us to de-
tect any and all of these types of attacks. To illustrate the
power of the design, we implemented a security server
that implements detection of code injection attacks by
way of dynamic taint analysis [11, 28, 10].

Dynamic taint analysis is a very powerful intrusion
detection technique that is able to detect exploits (buffer
overflows, format string attacks, double frees, and so
on) that change the control flow of the program. For in-
stance, it detects when the program tries to use a func-
tion pointer that has been manipulated by the attacker
by means of a buffer overflow, or it will detect that the
victim program starts executing instructions provided by
an attacker. Dynamic taint analysis is very accurate and
incurs practically no false positives. However, it is also
extremely expensive. The overhead is typically orders of
magnitude. For this reason, it is unlikely that taint anal-
ysis can ever be applied on the phone itself. In practice,
taint analysis is only provided on honeypots.

3. Architecture
A high-level overview of the Marvin architecture is il-
lustrated in Figure 1. We sketch the basic idea first and
zoom in on various optimisations (such as the proxy and
secure storage) in later sections. A tracer on the phone
intercepts system calls of, and signals to, the set of pro-
cesses that need protection. This set comprises all pro-

cesses on the phone that may be attacked. It is typically
a large set that includes the browser, media players, sys-
tem processes, and so on). A replayer on the security
server subsequently replays the execution trace, exactly
as it occurred on the phone, while subjecting the execu-
tion to additional instrumentation. The transmission of
the trace is over an encrypted channel.

3.1 A naive implementation: sketching the basic
idea

A naive implementation would intercept and record all
signals, all system calls, all the system calls’ results, and
all reads from and writes to shared memory. As soon as
it records any of these events, it would transmit it im-
mediately to the security server. The security server ex-
ecutes exactly the same processes on an exact replica of
the system. Like the tracer, the replayer also intercepts
all system calls and signals. Whenever it encounters a
system call, it looks in the trace for the same call. At
that point, it will not really execute the system call, but
instead return the results that it finds in the trace.

Signals need special treatment. Because of their
asynchronous delivery, they introduce non-determinism.
More precisely, since we do not know the exact moment
of delivery on the phone and on the replica, they may
cause race conditions. To ensure that signals are de-
livered at the same point both in the phone and in the
mirrored execution on the security server, we do not de-
liver signals until the target process performs a system
call. When the system call returns, we post the signal
for immediate delivery. As both sides handle signals in
exactly the same way, we synchronise signals delivery
on the phone and the security server.
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This way, we are almost able to replay the execution
faithfully. The remaining issue concerns thread schedul-
ing. As the kernel-level schedulers in phone and replica
operate independently, it may be that threads on the
replica are scheduled in an order different from that on
the phone. For unrelated processes this is not a problem,
but for threads that share memory (e.g., multi-threaded
applications), it is important that the scheduling order is
preserved.

The simplest and fastest way to solve this problem
is to modify the kernel scheduler. Of course, doing so
limits portability and makes it difficult to apply our
architecture to closed source systems. For now, we will
assume that we have a kernel scheduler that schedules
the threads exactly the same in both the phone and the
security server. In Section 4, we will show an alternative
way that enforces a schedule on the threads over the
schedule generated by the kernel. Either method works
as long as it satisfies the following two requirements:
(1) two memory-sharing threads should never run at the
same time, and (2) scheduling should be deterministic.

For now, we want to point out the flexibility that we
have in terms of security measures. Given the trace, we
can replay the execution as often as we like and employ
any security measure we want, either one after another,
or in parallel. For instance, we can look for anomalies
in system call patterns [35, 16], while at the same time
applying dynamic taint analysis [11, 28, 10], and n-
version virus scanning [31, 30].

A possible drawback is that there is a lag between the
attack and its discovery (and possibly analysis). How-
ever, if the alternative is that the attack would not be
detected at all, detecting an attack a few seconds after it
infected the device still seems quite valuable [9].

As long as we can keep the cost of recording and
transmitting the execution trace within reasonable bounds,
the design above yields a powerful model to detect,
stop and analyse attacks. We will shortly discuss var-
ious techniques to bring down the costs. There are three
more issues that we need to discuss first: (i) where to
place the security server, (ii) when to transmit the trace
data, and (iii) how to warn the user when an attack is
detected.

3.2 Location of the security server
Where to host the security server is a policy decision
beyond the scope of this paper. Rather than prescribing
the right policy, we discuss three possible models. While
the first of these models is the simplest and allows for
most optimisation, we do not preclude the others. In
practice, the optimal location of the security server is
a trade-off between costs, privacy concerns, reliability,
and performance.

In the most straightforward model, the security server
is a service offered by the provider. The provider can
use its security service to differentiate itself from other
providers and to generate income by charging for the
service. In addition, it is ideally suited for offering the
service. Much of the data to and from the mobile phone
is routed via the network provider. Routing the traffic
via a security server is easy and cheap. While there may
be concerns about privacy, we observe that even today
many applications and data already reside in various
‘clouds’ and that much of the private data is already
passing through the equipment of the providers. We trust
the providers to respect the privacy of their clients.

However, alternative models are also possible. In a
business environment where phones are provided by a
company, the company may host its own security server.
Sensitive business data will be stored only on com-
pany computers and the organisation can decide for it-
self what security measures to apply. The model requires
that all phone communication is routed through the se-
curity servers in the company’s server room. An extreme
case would allow end users to run the replicas on their
home machines. Doing so gives users full control over
their data, at the cost of paying the provider to reroute
the traffic plus the cost of the security server itself.

3.3 When to transmit trace data
So far, we have assumed that the phone transmits the
trace data immediately. In practice, however, this is
probably not necessary. As the transmission cost per
byte in power is lower if multiple events can be batched,
we should try to batch as much as we can. The key in-
sight is that we only need to transmit if there is a chance
that the phone is compromised [36]. This is the case
when the phone receives data from the network (be it
over 3G, WIFI, USB, or Bluetooth), but not when pro-
cesses on the phone exchange messages or when users
update their calendars. In other words, we may be able
to batch the trace data until we receive data that could
potentially lead to a compromise.

Moreover, if the phone is fitted with secure storage
that cannot be tampered with even if the phone is com-
pletely under the control of the attacker (e.g., storage
protected by hardware or in a separate VM), we may
batch data arbitrarily. In that case, we save all the trace
data in secure storage and sync with the security server
at a convenient time (for instance, every hour, or once a
day). In the extreme case, we switch to offline checks,
where the phone only synchronises when it is recharging
and battery life is thus no longer an issue.

Secure storage means that the attacker may falsify the
events sent to the trace since the attack, but not any of
the events that lead to the attack [40]. Keeping the trace
in storage for longer, also means that the attack can be
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active for a longer time. However, we will eventually
discover it. Moreover, it means minimal overhead in
battery consumption.

We shall see in Section 4.3 that Marvin includes a
secure storage implementation in the kernel (shown as
a kernel module in Figure 1). We will also discuss our
new, ongoing work on truly secure storage where a com-
promised kernel will not jeopardise the trustworthiness
or even the availability of the trace data.

3.4 Informing the user about an attack
When Marvin detects an attack, it needs to warn the
user, so that the user can start recovery procedures. This
is not trivial. Sending an SMS or email message to say
that the phone has been compromised may not work,
as the phone is under the control of an attacker and the
attacker may block such messages. We need a signalling
channel beyond the control of the attacker.

The nature of this channel is not very important for
this paper and various options exist. For instance, we
could use what is known as a ‘kill pill’ on BlackBerry
phones: hardware that allows administrators to thrash all
data on a stolen or lost phone via a remote connection. A
more advanced version could display a warning message
on the display. Without hardware support, we could ren-
der the phone incommunicado on GSM, GPRS, UMTS
and other networks under control of the operator. This
will inform the user that something is wrong. Similarly,
we may insert warning messages in all voice and data
connections on these networks.

A pragmatic approach might be to start with SMS
messages and take more draconian measures if the user
does not initiate the appropriate recovery procedures
within a certain time frame.

Users who know that their phones have been hacked
will restore them to a safe state. We do not worry about
this aspect in this paper, and simply restore to ‘factory
settings’. However, we envision that we can do much
better than that. We can use the availability of the secu-
rity servers (which have an exact copy of the file system
on the devices) to restore the phone to a recent safe state,
as long as we can determine a lower bound on the time
of the attack.

4. Recording in practice
To make our architecture practical, we argued in Sec-
tion 3 that the overhead of recording and transmitting
the execution should be kept small both in computa-
tion and size. In this section, we will discuss how we
achieved this in practice by means of various optimi-
sations of the design. The implementation is known as
Marvin and runs on an HTC Dream / Android G1, one of
the latest 3G smartphones based on the open source An-
droid software platform and operating system. The G1
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in its default configuration comes with a host of appli-
cations, including a browser, mail client, media player,
and different types of messaging applications.

The security server runs one or more replicas of the
phone on a Qemu-based Android emulator, which is
part of the official SDK. Each replica runs a specific
attack detection method, ranging from n-version virus
scanning, to dynamic taint analysis.

4.1 Tracing on Android
For our implementation of Marvin on Android, we
adopted a userspace approach based on the ptrace
system call, which allows us to attach to arbitrary pro-
cesses, and intercept both system calls and signals. By
using ptrace we are able to track a system’s processes,
and receive event notifications each time they interact
with the kernel. Events received include system call en-
try and exit, creation and termination of threads, signal
delivery, etc.
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4.1.1 Tracing from the start
Marvin ensures that the tracing of relevant programs
starts from the first instruction by means of a clean, two-
step procedure that is illustrated in Figure 3. In UNIX
tradition, Android uses the init process to start all
other processes, including the client applications such
as a browser and media players, but also the JVM, and
so on). Init in Marvin brings up the tracer process
first. The tracer initialises a FIFO to allow processes
that need tracing to contact it. Next, init starts the
other processes. Rather than starting them directly, we
add a level of indirection, which we call the exec stub.
So, instead of forking a new thread and using the exec
system call directly to start the new binary, we fork and
run a short stub. The stub writes its process identifier
(pid) to the tracer’s FIFO (effectively requesting the
tracer to trace it) and then pauses. Upon reading the pid,
the tracer attaches to the process to trace it. Finally, the
tracer removes the pause in the traced process, making
the stub resume execution. The stub immediately execs
to start the appropriate binary with the corresponding
parameters.

4.1.2 Issues
Several complicating factors demand further attention.

SIGKILL Ptrace cannot delay the delivery of SIGKILL
and hence will not let the tracer intercept and defer it.
To overcome this we intercept the signal at the source
instead of the destination. Whenever a process sends a
SIGKILL to another process, the tracer circumvents the
kernel, and takes over the task of delivering the signal
to the target, as well as recording the event.

Userspace scheduling A userspace implementation
poses a challenge for the two scheduling requirements
discussed in the previous section: (1) two threads that
share memory should never run at the same time, and
(2) scheduling should be deterministic. Rather than as-
suming that we can modify the kernel scheduler (or even
receive scheduling events from the kernel), we opt for a
userspace-only solution to allow our system to be ported
to less open systems than Android.

Recall that the tracer intercepts both system call entry
and exit, and signal delivery events. When the tracer re-
ceives such an event, it can decide to resume the thread,
or delay its execution (e.g., by placing it on a wait-
ing queue for later resumption). In other words, we
have the functionality to determine which thread is run
when. The aim is to enforce our own scheduling over
the scheduling by the kernel.

We organise threads that share memory in task
groups and maintain a run queue of runnable threads
that are waiting to be run. Each of the threads can be in

one of five states (see Fig. 2 for the finite state machine
that controls the transitions):

1. RUNNING: the thread is currently running;

2. RUNNABLE: the thread is ready to run but waiting
in the run queue;

3. INSYSCALL: the thread has entered a syscall;

4. SIGWAIT: the thread is waiting for a signal;

5. SINGLESTEPPING: a special state that is used to
detect spinlocked threads (discussed later).

To satisfy requirement (1) we ensure that only one
thread per group is in the RUNNING or SIGWAIT state.
These states comprise all threads that are ‘active’. From
the perspective of our scheduler, threads that enter the
kernel on a system call are not active. They are not on
the run queue either, since they are not ready to run. A
thread waiting for a signal to be delivered (SIGWAIT) is
‘pre-running’ and makes a transition to the RUNNING
state immediately upon signal delivery. A thread exit-
ing from a system call is not resumed immediately, but
is instead appended in RUNNABLE state to the back
of the group’s queue. The scheduler will decide on the
scheduling and ensures that a thread can only make a
transition to SIGWAIT or RUNNING if no other thread
of the group is in either of these states. To satisfy re-
quirement (2) we set the scheduler to run right after a
deterministic event. Since system calls are determinis-
tic, the scheduler is called after entry to or exit from a
system call. When that happens it schedules the task at
the head of the queue, and any pending signal is also
delivered.

Sometimes processes share memory using mecha-
nisms in the kernel. As in multi-threaded applications,
such sharing memory may introduce non-determinism
in the system. To cater to this issue, we have extended
the scheduler to merge the run queue of processes that
share a memory segment. Doing so ensures that all
the threads sharing some memory are scheduled exclu-
sively.

Spinlocks The scheduling solution above works well
in practice. However, the scheduling that we force upon
threads may lead to deadlocks when userspace threads
use spinlocks. Spinlocks are considered to be bad pro-
gramming practice for mobile device applications, be-
cause in terms of CPU cycles they are a wasteful way to
perform locking. We have not encountered such dead-
locks in Android, where other “sleeping” methods such
as futexes are preferred (futexes perform a system call
in case of contention). Nevertheless, we dealt with this
potential issue by means of a spinlock detector which
we tested on synthetic examples.
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Marvin periodically activates a spinlock detector to
look for tasks that are potentially within a spinlock. The
detector marks tasks as ‘possibly spinlocked’ if they are
in the RUNNING state (see Figure 2) and the time since
their last system call exceeds a threshold. As the situ-
ation is so rare, we optimistically set the threshold to
a few seconds so that spinlock detection creates mini-
mal overhead. A possibly spinlocked thread is moved to
the SINGLESTEPPING state. We then single-step the
thread to check whether it really is within a spinlock
(e.g., we check whether it is running in a tight loop and
we may test other properties also). When the thread is
not spinlocked, it returns to RUNNING. If it is, however,
Marvin sets the thread’s state to RUNNABLE, appends
it to the back of the run queue and schedules another
thread. As the thread that is holding the lock will even-
tually run, the deadlock is removed.

Memory mapped by hardware Some memory, like the
frame buffer, is mapped by hardware. This is not a prob-
lem in practice, as the memory access is essentially
write only (e.g., the hardware writes bits to the frame-
buffer, which are not read by applications). However, it
could be a problem in the future in a different hardware/-
software combination, if processes were to read the val-
ues produced by the hardware. In that case, we will
probably have to record all reads to this memory area (to
reproduce the same values at the replica). For instance,
by mapping the area inaccessible to the reader, we could
intercept all read attempts to this memory as page faults,
but doing so would be expensive. Fortunately, we have
had no need for this in our implementation.

I/O control Finally, I/O control, usually performed us-
ing the ioctl system call, is part of the interface be-
tween user and kernel space. Programs typically use
ioctls to allow userland code to communicate with the
kernel through device drivers. The interface is very flexi-
ble and it allows the exchange of data of variable length
with few restrictions. Each ioctl request uses a com-
mand number which identifies the operation to be per-
formed and in certain cases the receiver. Attempts have
been made to apply a formula on this number that would
indicate the direction of an operation, as well as the size
of the data being transferred [5]. Unfortunately, due to
backward compatibility issues and programmer errors
actual ioctl numbers do not always follow the con-
vention. As a result, the tracer needs knowledge of each
command number, so that it is able to identify and log
the data being read into userspace. Obtaining this meta-
data is a tedious procedure, since it requires referring
to the kernel’s source code. Luckily, a lot of meta-data
for common ioctl commands are available in various
userspace emulators which saved us a lot of time.

4.2 Pruning redundant data: trimming the trace
The design above allows us to trace any process and re-
play it to detect attacks at the mirrored execution on the
security server. Using ptrace is attractive, as it allows
us to implement the entire architecture in userspace,
with the sole exception of secure storage (see Sec-
tion 4.3 for details about secure storage). A userspace
implementation facilitates portability and allows the
Marvin architecture to be applied to other phones even if
the software on these phones is closed by nature, as long
as they provide a tracing facility comparable to ptrace.
However, from a performance point of view, system call
interception in userspace is not the most optimal so-
lution, as context switching is computationally costly.
Most of the overhead can be removed by implementing
system call interception in the kernel.

The main challenge in either case is to minimise
transmission costs. All aspects of the execution that can
be reconstructed at the security server should not be
sent. In the next few sections, we will discuss how we
were able to trim the execution trace significantly. Each
time, we will introduce a guiding principle by means
of an example and then formulate the optimisation in a
general rule.

Assuming that the phone and the replica are in sync,
we are only interested in events that (a) introduce non-
determinism, and (b) are not yet available on the replica.
In principle, replica and phone will execute the same in-
struction stream, so there is no need to record a system
call to open a file or socket, or to get the process iden-
tifier, as these calls do not change the stream of instruc-
tions being executed. Phrased differently, they do not in-
troduce non-determinism. We summarise the above in a
guiding principle:

RULE 1. Record only system calls that introduce non-
determinism.

Similarly, even though the results of many system
calls introduce non-determinism in principle, they still
can be pruned from the trace, because the results are also
available on the replica. For instance, the bytes returned
by a read that reads from local storage probably influ-
ence the subsequent execution of the program, but since
local storage on the security server is the same as on the
phone, we do not record the data. Instead, we simply ex-
ecute the system call on the replica. The same holds for
local IPC between processes that we trace. There is no
need to transmit this data as the mirror processes at the
security server will generate the same data. As data in
IPCs and data returned by file system reads constitute a
large share of the trace in the naive implementation, we
save a lot by leaving them out of the trace. Summarising
this design decision:
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RULE 2. Record only data that is not available at the
security server.

In some cases, we can even prune data that is not
immediately available at the security server. Data on
network connections is not directly seen by the replica.
However, it would be a serious waste to send data first
from the network (e.g., a web server) to the phone, and
then from the phone back to the network to make it
available to the security server. Instead, we opted for a
transparent proxy that logs all Internet traffic towards
the phone and makes it available to the security server
upon request (see also Figure 1). As a result, whenever
the replica encounters a read from a network socket, it
will obtain the corresponding data from the proxy, rather
than from the phone. In general, we apply the following
rule:

RULE 3. Do not send the same data over the network
more than once. Use a proxy for network traffic.

Besides deciding what to record, we can further trim
the trace by changing how we record it. By encoding the
produced data to eliminate frequently repeating values,
we can greatly reduce its size. An out of the box solution
we employed was stream compression using the stan-
dard DEFLATE algorithm [12] which is also used by
the tool gzip. Compression significantly reduces the size
of the trace, but being a general purpose solution leaves
room for improvement. We can further shrink the size of
the trace by applying delta encoding on frequently oc-
curring events of which successive samples exhibit only
small change between adjacent values. We found an ex-
ample of such behaviour when analysing the execution
trace after applying guidelines 1-3. System calls such
as clock_gettime and gettimeofday are called very
frequently, and usually return monotonically increasing
values. By logging only the difference between the val-
ues returned by two consecutive calls we can substan-
tially cut down the volume of data they produce. Special
provisions need to be made for clock_gettime, since
the kernel frequently creates a separate virtual clock for
each process. As a consequence we must calculate the
delta amongst calls of the same process alone for higher
reduction.

In theory, delta encoding could be applied to all
time related system calls with similar behaviour. How-
ever, doing so does not always reduce the trace size.
For instance, we applied the technique to reads from
/proc/[pid]/stat files, which also generated signifi-
cant amounts of data. /proc/[pid]/stat files are files
in Linux’ procfs pseudo file system that are used to
track process information (such as the identifier of the
parent, group identifier, priority, nice values, and start
time, but also the current value of the stack pointer and
program counter). Typically, the entire file is read, but

only a small fraction of the file actually changes between
reads. As we will show in Section 6 the manual delta en-
coding of such reads may even lead to an increase in log
size. The reason is manual encoding may replace high
frequency data with less efficient encoding. In the final
prototype, we therefore dropped this ‘optimisation’.

We use related, but slightly different optimisations
when items in the trace are picked from a set of possible
values, where some values are more likely to occur
than others. Examples include system call numbers and
return values, file descriptors, process identifiers, and
so on. In that case we prefer Huffman encoding. For
instance, we use a single bit to indicate whether the
result of a system call is zero, and a couple of bits to
specify whether one or two bytes are sufficient for a
system call’s return value, instead of the standard four.
We summarise the principle in the following rule:

RULE 4. Use delta encoding for frequent events that ex-
hibit small variation between samples and Huffman en-
coding when values are picked from a set of possible
values with varying popularity. Check whether the en-
coding yields real savings in practice.

4.3 Secure storage
We argued in Section 3.3 that transmitting trace infor-
mation to the security server as soon as it is generated
uses a lot of power, reducing battery life. It also requires
a continuous connection to the network, which is un-
likely. Instead, data are batched on the mobile device
until we receive data over the network (which could po-
tentially lead to an intrusion).

Batching introduces two security concerns [36]:
firstly, the attacker must be prevented from tampering
with the trace information to hide the evidence of an at-
tack; and secondly, the attacker must be prevented from
erasing the trace data.

We solve the problem of modified trace data by using
digital signatures. Trace data in the secure storage is
signed with a secret key when it is stored. The data
and signature is transmitted to the replica, where the
signature is checked for validity. To be effective, the
secret key must be stored in a location inaccessible to
the attacker. Trace data is only removed on the explicit
and signed request of the security server, preventing
attackers from wiping the log. Note that transmission of
the trace is eventually performed by unprivileged user
space processes. However, since the trace is signed by
the kernel, there is no way for user space to tamper with
the contents. If the phone fails to deliver the trace data
even when it is connected for recharging, the security
server assumes that the phone has been hacked.

Secure storage alleviates the problem of having to
transmit data constantly. Current smartphones like the
Apple Iphone 3G and the Android G1 already support
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microSDHC cards with 16GB of storage. We shall see
in Section 6 that with this amount of storage we are able
to store an entire day’s worth of activity locally and only
synchronise with the security server when we recharge
the phone at the end of the day.

There are several implementation options for secure
storage. Our current implementation offers secure stor-
age on the phone by way of a kernel module which
stores and signs trace data. The key is stored in mem-
ory only accessible to the kernel module. By changing
the key by means of a one-way hash each time a record
is stored in the log, even a compromised kernel cannot
tamper with an existing log. After all, an attacker has no
way of recovering the keys that were used to sign exist-
ing entries. A kernel implementation protects log avail-
ability against attacks which gain access to user space,
but is ineffective against attacks which compromise the
kernel. In other words, the log can be deleted. However,
a missing log is a clear indication of an attack.

Work on a more complete solution for secure storage
which also protects against log deletion is ongoing. The
design is straightforward. Truly secure storage requires
keys and logs to be inaccessible even to the kernel. This
can be achieved with custom hardware or, more realis-
tically, by making use of a microkernel-based hypervi-
sor in an arrangement similar to that of L4Linux [17]
or Wombat [22]. If secure storage resides in a domain
protected by hardware or by a hypervisor, we assume
that it is a tamper-proof implementation of Schneier and
Kelsey’s trusted machine [36]: attackers can falsify the
new data that is sent to secure storage, but they cannot
tamper with existing logs.

We have opted for a hypervisor-based solution [4].
We currently run the security storage in a separate do-
main that communicates with a tracer on Linux on
the appropriate ARM processor, but we still need to
port the hypervisor to the full G1 hardware and para-
virtualise the specific kernel used by Android. Using a
hypervisor for logging combines the security benefits
of dedicated hardware, such as well-defined separation
from the guest and a narrow interface, with the cost-
effectiveness and malleability of software [6]. The solu-
tion is a bit more portable than our kernel module as it
can be also be used on other hypervisor-based systems.

4.4 Local data generation
While we can save on data that is already available
’in the network’ (at the security server or the proxy),
no such optimisations hold for data that is generated
locally. Examples include key presses, speech, down-
loads over Bluetooth (and other local connections),
and pictures and videos taken with the built-in cam-
era. Keystroke data is typically limited in size. Speech
is not very bulky either, but generates a constant stream.

We will show in Section 6 that Marvin is able to cope
with such data quite well.

Downloads over Bluetooth and other local connec-
tions fall into two categories: (a) bulk downloads (e.g., a
play list of music files), typically from a user’s PC, and
(b) incremental downloads (exchange of smaller files,
such as ringtones, often from other mobile devices). In-
cremental downloads are relatively easy to handle. For
bulk downloads, we can save on transmitting the data if
we duplicate the transmission from the PC such that it
mirrors the data on the replica. However, this is an opti-
misation that we have not used in our project.

Pictures and videos incur significant overhead in
transmission. In application domains where such activ-
ities are common, users will probably switch to offline
checks, storing the data in secure storage and synchro-
nising only when recharging the phone. Video confer-
encing is not possible at all on most smartphones, in-
cluding the Android and Apple Iphone models, as the
cameras are mounted on the back.

5. The security server
The security server decrypts and decompresses the trace
it receives from the phone, and writes it to a file. In case
the phone batched the trace events in secure storage,
the security server will check the trace’s signature and
acknowledge the reception of a set of events with a
signed request to the phone, to remove these events from
the log.

The replicas run exact mirrors of the execution of
the code on the phone in the Android emulator. The
emulator is a QEMU-based application that provides a
virtual ARM mobile device on which one can run real
Android applications. It provides a full Android system
stack, down to the kernel level. On top, we run the exact
same set of applications as on the phone. Each replica
implements one or more security checks and uses the
trace file to remove potential non-determinism in the
execution (as described previously). Initial execution
starts with the same processor, memory and file system
state.

A simple security measure is to scan files in the
replica’s file system using traditional virus scanners. To
increase accuracy and coverage we may employ multi-
ple scanners at the same time, as suggested in the Clou-
dAV project [31]. Even more interesting is the appli-
cation of more heavy-weight protection measures that
could not realistically be applied on the phone itself.

To illustrate the sort of heavy-weight security checks
that are possible with Marvin, we modified the Android
emulator to include dynamic taint analysis [11, 28, 10].
Taint analysis is a powerful, but expensive method to
detect intrusions. The technique marks (in the emula-
tor) all data that comes from a suspect source, like the
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Function Time Spent %
ptrace() % 33.63
waitpid() % 32.68
deflate slow() % 7.62
pread64() % 6.78
mcount interval() % 2.84
event handler run() % 2.15

Table 1. Time consumed in various parts of the tracer

network, with a taint tag. The tag is kept in separate
(shadow) memory, inaccessible to the software. Taint is
propagated through the system to all data derived from
tainted values. Specifically, when tainted values are used
as source operands in ALU operations, the destinations
are also tainted; if they are copied, the destinations are
also tainted, etc. Other instructions explicitly ‘clean’ the
tag. An example is ‘MOV R2,#0’ which zeroes the R2
register on the ARM and cleans the tag. An alert is raised
when a tainted value is used to affect a program’s flow
of control (e.g., when it is used as a jump target or as an
instruction).

Taint analysis works against a host of exploits (in-
cluding zero-days), and incurs practically no false pos-
itives. The overhead is quite high, typically orders of
magnitude [10]. Alex Ho et al. show that it may be pos-
sible to bring the overhead down to a factor 2-3 [1], but
this requires the presence of both a hypervisor and an
emulator on the device, which is not very realistic on a
smartphone. Moreover, even a factor 2-3 is probably too
high for practical deployment on phones.

6. Results
In this section we evaluate our userspace implementa-
tion of Marvin. The recording side (tracer) was ran on an
Android G1 developer phone, while the security server
side (replica) ran on the Qemu-based Android emula-
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tor, which is part of the official SDK. We will attempt
to quantify various aspects of the overhead imposed by
the tracer on the device, and also evaluate the various
optimisations we described in earlier sections.

6.1 Data generation rate
We have frequently mentioned that data transmission is
costly in terms of energy consumption and consequently
battery life. As such, the amount of data that our im-
plementation generates and transmits to the replica con-
sists a critical overhead metric. We calculated the rate
the tracer generates data under different usage scenar-
ios. Figure 4 shows the average rate measured in KiB/s.
The tasks evaluated are from (left to right): booting the
device, idle operation, performing and receiving a call,
browsing the WWW using randomly selected URLs
from a list of popular links [3], browsing random lo-
cations using the Google Maps application, and finally
audio playback.

We also evaluate the effectiveness of the optimisa-
tions described in Section 4.2. Six different configura-
tions (c1-c6) were tested in total. Each configuration
introduces another data trimming optimisation, start-
ing from c1 were no optimisations are used. C2 adds
huffman-like encoding for event headers. Event head-
ers comprise of common information logged for all
system calls. Such information include the call num-
ber, the pid of the sender, return value, etc. C3 and c4
add delta encoding for clock_gettime, and reads from
/proc/pid/stat respectively. Finally, c5 uses a proxy
to cache network data, and c6 performs delta encoding
for gettimeofday.

Compression was tested with all configurations,
since it significantly reduces data volume. Fig. 4 shows
that DEFLATE is the most efficient step in finding and
eliminating repetition than any of our optimisations
when network data are not involved, but the other opti-
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misation also reduce the already small trace even more.
Network access scenarios show that caching data using
a proxy is necessary to keep overhead reasonable. Also,
as mentioned earlier, the /proc/pid/stat delta encod-
ing is counter-productive, since the encoding substitutes
high frequency data with less compressable data. We do
not use it in the prototype,

A mobile device usually spends most of its time idle,
or it is used for voice communication. Fig. 4 shows
that the data generation for these two scenarios is really
negligible, with and average of just 64 B/s and 121 B/s
for idle and calling respectively. These rates also show
that employing secure storage (sec. 4.3) to store even an
entire days of execution trace locally is feasible using
devices such as the G1 (and also the Iphone).

6.2 Battery consumption
Transmission and reception of network data, along with
the CPU, and the display are the largest energy con-
sumers on mobile devices. Marvin directly affects two
of these components, since it requires to transmit gener-
ated data and uses CPU cycles to operate. We evaluated
the effect of the tracer on battery consumption, by us-
ing the device to browse the web in a similar fashion
as earlier. Additionally, SSL encryption was employed
to protect the data being transmitted. Encryption itself
is probably decremental to battery life, but it is neces-
sary. In the future, specialised hardware performing en-
cryption cheaply could be included in mobile devices,
allowing for broader adoption of encryption.

Figure 5 shows how battery levels drop in time while
browsing. As expected battery levels drop faster when
using Marvin than running Android natively. We also
used both 3G and WiFi to evaluate their impact on bat-
tery life as well. When not using the tracer it is clear that
WiFi is more conservative energy-wise. On the other
hand, when using Marvin it is unclear if one is better
than the other. On the positive side, our implementa-
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tion incurs only a minor overhead on battery life, which,
even for a costly operation such as browsing, does not
exceed 7%.

6.3 Performance
The tracer also incurs a performance overhead. Figure 6
shows the mean CPU load average during the exper-
iment described in sec. 6.2. In both cases CPU load
was higher when using the tracer. Using profiling tools
we analysed the tracer to identify bottlenecks. Table 1
shows the top calls where time was spent in the tracer.

A bit more than 65% is spent in system calls that are
responsible for controlling or waiting for events con-
cerning the traced processes. On the other hand, DE-
FLATE only takes up 7.62%. A more optimised, and
platform dependent kernel-space implementation could
shed most of the overhead we see here by eliminating
context switching and notification costs, as well as data
copying between address spaces.

6.4 Security server lag
For particularly CPU intensive analysis, we expect that
the security server will sometimes lag behind the tracer.
Figure 7 shows how varying the average load will affect
the ability of the replayer to keep up with the tracer. The
experiment consists of running a test program that re-
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peatedly compresses and decompresses 64 KByte worth
of data. To vary the load, we insert a sleep between
the compression and decompressing step with the pa-
rameter shown on the x-axis of the graph (useconds).
The y-axis shows the elapsed time result of running the
compression/usleep/decompression test 500 times. The
tracer runs of the G1 hardware, and the replayer runs
on a modified Qemu emulator that implements full dy-
namic taint analysis on an AMD Athlon64 3200+. The
emulator is essentially the open source Argos attack de-
tector [34] ported to the Android emulator.

The replayer cannot keep up with the real hard-
ware when it comes to compression and decompres-
sion. However, the replayer does not have to execute
the blocking system call (usleep). Therefore, increas-
ing the time spend in blocking system calls reduces the
lag of the replayer. The results for 0, 10000, and 20000
microseconds delay show that replayer is essentially un-
affected by the delays and takes constant time. With the
delays of 30000 and 40000 microseconds the replayer
has to wait for results from the tracer and will therefore
run at the same speed as the tracer.

7. Related work
The idea of decoupling security from execution has been
explored previously in a different context. Malkhi and
Reiter [23] explored the execution of Java applets on a
remote server as a way to protect end hosts. The code
is executed at the remote server instead of the end host,
and the design focuses on transparently linking the end
host browser to the remotely-executing applet. Although
similar at the conceptual level, one major difference is
that Marvin is replicating rather than moving the actual
execution, and the interaction with the operating envi-
ronment is more intense and requires significant addi-
tional engineering.

The Safe Execution Environment (SEE) [38] allows
users to deploy and test untrusted software without fear
of damaging their system. This is done by creating a
virtual environment where the software has read access
to the real data; all writes are local to this virtual envi-
ronment. The user can inspect these changes and decide
whether to commit them or not.

The application of the decoupling principle to the
smartphone domain was first explored in SmartSiren [8],
albeit with a more traditional anti-virus file-scanning
security model in mind. As such, synchronisation and
replay is less of an issue compared to Marvin. However,
as smartphones are likely to be targeted through more
advanced vectors compared to viruses that rely mostly
on social engineering, we argue that simple file scanning
is not sufficient, and a deeper instrumentation approach,
as demonstrated in Marvin, is necessary for protecting
current and next generation smartphones. Oberheide et

al. [31] explore a design that is similar to SmartSiren,
focusing more on the scale and complexity of the cloud
backend for supporting mobile phone file scanning, and
sketching out some of the design challenges in terms of
synchronisation. Some of these challenges are common
in the design of Marvin, and we show that such a design
is feasible and useful.

The Marvin architecture bears similarities to BugNet [27]
which consists of a memory-backed FIFO queue effec-
tively decoupled from the monitored applications, but
with data periodically flushed to the replica rather than
to disk. We store significantly less information than
BugNet, as the identical replica contains most of the
necessary state.

Schneier and Kelsey show how to provide secure log-
ging given a trusted component much like our secure
storage component [36, 37]. Besides guaranteeing the
logs to be tamper free, their work also focuses on mak-
ing it unreadable to attackers. We can achieve similar
privacy if the secure storage encrypts the log entries.
Currently, we encrypt trace data only when we transmit
it to the security server.

Related to the high-level idea of centralising secu-
rity services, in addition to the CloudAV work [30]
which is most directly related to ours, other efforts in-
clude Collapsar, a system that provides a design for for-
warding honeypot traffic for centralised analysis[20],
and Potemkin, which provides a scalable framework for
hosting large honeyfarms[39].

8. Conclusion
In this paper, we have discussed a new model for pro-
tecting mobile phones. These devices are increasingly
complex, increasingly, vulnerable, and increasingly at-
tractive targets for attackers because of their broad ap-
plication domain, and the need for strong protection is
urgent, preferably using multiple different attack detec-
tion measures. Unfortunately, battery life and other re-
source constraints make it unlikely that these measures
will be applied on the phone itself. Instead, we presented
an architecture that performs attack detection on a re-
mote security server where the execution of the soft-
ware on the phone is mirrored in a virtual machine. In
principle, there is no limit on the number of attack de-
tection techniques that we can apply in parallel. Rather
than running the security measures, the phone records a
minimal execution trace. The trace is transmitted to the
security server to allow it to replay the original execu-
tion in exactly the same way. The architecture is flexible
and allows for different policies about placement of the
security server and frequency of transmissions.

The evaluation of an implementation of the architec-
ture in userspace, known as Marvin, shows that trans-
mission overhead can be kept well below 2.5 KiBps
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after compression even during periods of high activity
(browsing, audio playback) and to virtually nothing dur-
ing idle periods. Battery life is reduced by 7%. We con-
clude that the architecture is suitable for protection of
mobile phones. Moreover, it allows for much more com-
prehensive security measures than possible with alterna-
tive models.
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