
Prospector : a protocol-specific detector of polymorphic buffer overflows

Asia Slowinska, Georgios Portokalidis, and Herbert Bos
Vrije Universiteit Amsterdam

{asia,porto,herbertb}@few.vu.nl

Abstract

While future attacks are likely to be increasingly

polymorphic, current intrusion detection methods

tend to be either powerless in the face of attack

mutation, or too inaccurate to be used as intrusion

prevention filters. Our system, known as Prospector

consists of three components. First, an emulator-

based honey-pot uses taint analysis to detect zero-

day intrusion attempts with great accuracy. Sec-

ond, a signature generator uses protocol knowledge

to generate signatures for use in filters. Third, a

filter engine functions as an intrusion prevention

system, scanning incoming traffic for many differ-

ent signatures simultaneously in an efficient manner

and dropping streams containing attacks. No false

positives are incurred on either the detection or the

filtering phase. The Prospector IPS is implemented

both on a general purpose CPU and on a network

processor embedded on a network card.

1 Introduction

During an informal discussion at the 17th TF-CSIRT
meeting in Amsterdam several CERTs complained
about the lack of defense against automated polymor-
phic attacks. In the future polymorphism is expected to
be common and the need for counter-measures is urgent.
Not surprisingly, research on automatic signature gener-
ation for such attacks has become a hot topic [3,5–8,15].
Most of the proposed solutions target detection rather
than prevention and incur unacceptable false positives
(FP) ratios to be used in filters. However, with worm
propagation rates beyond human response times, pre-
vention and containment are crucial [4, 14].

In this paper we discuss Prospector , a protocol-
specific detector of polymorphic buffer-overflow attacks
to be used as an IPS. Prospector consists of three com-
ponents. First, an emulator-based honey-pot uses taint
analysis to detect zero-day intrusion attempts with

great accuracy. Second, a signature generator uses pro-
tocol knowledge to generate signatures for use in filters.
Third, a filter engine functions as an IPS, scanning in-
coming traffic for many different signatures simultane-
ously in an efficient manner and dropping streams con-
taining attacks. While we refrain from claiming a guar-
anteed FP ratio of zero, in practice, we found no FPs
for either detection or filtering and for now we do not
see how they could occur in practice.

Prospector is founded on the same principles as
COVERS which uses knowledge about the protocols be-
ing used to trace buffer overflows to protocol fields [8].
In this approach a host-based IDS pinpoints the ad-
dress that caused a control flow diversion as a result
of a buffer overflow. Next, the address that causes the
alert is matched with a a value in a specific protocol
field by the protocol-aware signature generator. The
signature generator generates a signature, for instance
by determining the maximum length L for the protocol
field. This value can then be used to check all traf-
fic that corresponds to this protocol. If the length of
the protocol field exceeds L the message will also cause
an overflow, regardless of its actual contents. In other
words, we focus on vulnerabilities rather than exploits.

The contributions of this paper are as follows. First,
we improved the protocol-specific method to make it
more accurate, incurring fewer false positives (FPs) and
false negatives (FNs). Second, Prospector is based on
different detection methods and arguably implements a
more mature IPS. Third, we have experimented with
different implementations of Prospector to try out dif-
ferent application scenarios. Concretely, Prospector IPS
is implemented both on a general purpose CPU (for
host-based protection) and on a network processor em-
bedded on a network card such as might be used by a
line card in a router, close to the edge.

The remainder of this paper is organised as follows.
Section 2 discusses related work. In Section 3 we de-
scribe our architecture which we evaluate in Section 4.
We conclude in Section 5.

2 Related Work

A crude approach to detect polymorphic attacks is by
looking at flow aggregates, e.g., detection techniques
that trigger alerts for unusual numbers of connections to
unique IP addresses [15], or anomalies in webtraffic [12].

Hamsa’s signature generator is based on the invari-
ant bytes in attacks. It is fast and offers bounded FPs
and FNs [7]. Polygraph, which precedes Hamsa, is also
based on invariant byte strings common to different mu-
tations of a worm [5]. As specific contiguous byte se-
quences, such as protocol framing strings and the high
order bytes of buffer overflow return addresses, nor-
mally remain constant across instances of a polymor-
phic worm, these can be used to generate a worm sig-
nature. As we aim for use in IPS, our goal differs from
that of Hamsa and PolyGraph in that we try to reduce
the number of FPs to zero.

Prospector centers on what may be termed
vulnerability-based signatures. Compared to the
vulnerability-based system in [3], our signatures are
simpler, without requiring extensive preprocessing of
the applications to generate/use the signatures.

The problem of polymorphic attacks is also ad-
dressed in [6] which employs structural analysis of bi-
nary code to identify structural similarities between dif-
ferent worm mutations. Again, the goal of [6] differs
from our approach in that it targets detection rather
than prevention. Phrased differently, they do not need
to reduce the FP ratio to zero. Also, it seems that struc-
tural analysis is difficult if the exploited protocol fields
are encoded (e.g., URL encoding).

Vigilante offers zero FPs and limited protection
against polymorphism [9], but it is fairly easy to gen-
erate polymorphism beyond its capabilities. Also, the
signature generator relies on replaying attacks, which
may be very hard (especially in the face of chal-
lenge/response authentication).

A different approach is to exploit knowledge about
the protocol fields. Like Covers [8], we trace the ad-
dress that causes the control flow diversion to a specific
(higher-level) protocol field and capturing characteris-
tics (such as the length of the field) that are subse-
quently used as a signature. Covers uses address space
randomisation (ASR) to detect an attack. Any at-
tempts to divert the control flow will, with high proba-
bility, crash the process with a memory fault. If so, the
OS is queried to find the address Mt that caused the
crash (Figure 1). Next, the (logged) traffic is scanned
for the address A and some bytes in its vicinity, thus
approximating Nt. Using knowledge about the proto-
col, Covers determines the protocol field that caused an
overflow, and uses the length of this field as a signature,
as all messages with the same field with this length lead

to the same overflow. By employing properties like field
length, signatures are independent of actual content and
hence resilient to polymorphism.

Prospector builds on the same principles, but differs
in important aspects. First, rather than the somewhat
error-prone ASR, we use taint analysis for detecting in-
trusions. With ASR there is a non-negligible chance
that the attack does not cause a memory fault immedi-
ately, but crashes after executing a few random instruc-
tions which would render the address useless. Second,
by tracking the origins of tainted data in memory in
the network trace the correlation between memory and
network trace can be exact. In our experience the prob-
ability of making the wrong guess as to the origins Nt

of the address A that overflows Mt in the network trace
is high [11]. Worse, if protocol fields are encoded in
the network trace (e.g., URL encoding), scanning for
occurrences of the target fails altogether.

Third, Covers is unable to stop sophisticated over-
flows which are caused by more than one protocol field
(e.g., Apache-Knacker [13]). Consider, for instance,
chunking and multiple host headers in HTTP1, where
multiple chunks or headers end up in the same buffer.
Such attacks may lead to FPs in Covers, but are cor-
rectly identified by Prospector .

Fourth, while Covers uses L1, the length of the entire
protocol field, Prospector is more precise and considers
only distance L2, from the start of the protocol field
to the point where the control flow diversion occurred.
Using L1 may cause FNs, as a signature generated for
a long version of the protocol field will not find attacks
with shorter fields, even if they contain the exploit. We
speculate that Covers takes the entire field because it
is unable to pinpoint Nt accurately, as jump targets
are often repeated in the exploit to handle differences
in offset (as indicated by multiple occurrences of A in
Figure 1).

Fifth, the way multiple signatures are used in [8] is
not specified. We have developed an efficient tree-like
structure for dealing with large numbers of signatures
as explained in Section 3.4.

Sixth, Prospector has an option to scan for and reject
malformed protocol messages (protocol scrubbing).

3 Architecture

Prospector protects hosts from buffer overflow attacks
by tracing the address that causes the control flow diver-
sion to a specific (higher-level) protocol field and cap-
turing characteristics (such as the length of the field)
that are subsequently incorporated in an attack signa-
ture. The signature consists of what we call critical field

1Throughout this paper, we use HTTP as a running example,
but we stress that Prospector caters to any protocol.

2

properties (e.g., a maximum length for the URL field)
combined with value fields that characterise the context
(e.g., that the URL field should be checked in HTTP
GET messages).

3.1 Attack Detection

For attack detection we use Argos, an efficient and re-
liable emulator that tags and tracks untrusted network
data and triggers an alert whenever the use of such data
violates security policies [11]. Tagging and tracking net-
work data is commonly known as taint analysis [10].
In other words, data originating from the network is
marked as tainted, whenever it is copied to memory or
registers, the new location is tainted also, and whenever
it is used, say, as a jump target, we raise an alarm.

Argos extends the Qemu [1] emulator by providing
it with the means to taint and track memory and reg-
isters, and to generate memory footprints in case of a
detected violation. Qemu translates all guest instruc-
tions to host native instructions by dynamically linking
blocks of functions that implement the corresponding
operations. Tracking tainted data involves instrument-
ing these functions to manipulate the tags, as data are
moved around or altered. In summary, all network traf-
fic is tagged and tainted.

Most of the observed attacks today gain control over
a host by redirecting control to instructions supplied
by the attacker (e.g., shellcode), or to already avail-
able code by carefully manipulating arguments (return
to libc). For these attacks to succeed the instruction
pointer of the host must be loaded with a value supplied
by the attacker. In the x86 architecture, the instruction
pointer register EIP is loaded by the following instruc-
tions: call, ret and jmp.

By instrumenting these instructions to make sure
that a tainted value is not loaded in EIP, we identify all
attacks employing such methods. While these measures
capture a broad category of exploits, they alone are not
sufficient. For instance, they are unable to deal with
format string vulnerabilities, which allow an attacker
to overwrite any memory location with arbitrary data.
These attacks do not directly overwrite critical val-
ues with network data, and might remain undetected.
Therefore, we have extended dynamic taint analysis to
also scan for code-injection attacks that would not be
captured otherwise. This is accomplished by check-
ing that the memory location pointed to by EIP is not
tainted. Finally, to address attacks that are based solely
on altering arguments of critical functions like system
calls, we may check system call arguments.

When a violation is detected, an alarm is raised and
the signature generation phase starts. To aid signature
generation, Argos dumps all tainted blocks to file, with

markers specifying the address that triggered the viola-
tion, the memory area it was pointing to, etc.

In addition, we employ a novel technique to auto-
mate forensics on the code under attack. When an at-
tack is detected, Argos does not yet know which pro-
cess is causing the alarm. To unearth additional infor-
mation about the application (e.g., process identifier,
executable name, etc.), we inject our own shellcode to
perform forensics. In other words, we ‘exploit’ the code
under attack with our own shellcode.

The dump of the memory blocks (tainted data, reg-
isters, etc.) plus the additional information obtained
by our shellcode is then used for correlation with the
network traces in the trace database.

3.2 Information Correlation

This step correlates the address causing the violation
with the network trace, in order to determine the spe-
cific packet, and the tainted memory block within this
packet that is responsible for the attack. In buffer over-
flow attacks part of the input packet gets copied to a
buffer that is too small and the victim program does
not perform appropriate bounds checking. If the at-
tack is properly crafted, the input overwrites a pointer
value that is past the end of the buffer (Figure 1). As
mentioned earlier, Argos detects such an attack when
this corrupted pointer is about to be used, since that
violates security policies. In the correlation phase, we
attempt to link Mt to Nt.

Tracking data origins. Before the information cor-
relation step takes place, the collected network traces
are preprocessed by reassembling TCP streams. With-
out reassembly, we would not be able to detect attacks
that are split over multiple packets either intentionally,
or as a part of TCP fragmentation. Next, rather than
scanning the network trace for occurrences of a target
value (as done by Covers), we track accurately the ori-
gins of tainted memory values, by remembering where
they came from in the network trace.

We modified the original Argos release to make it
track exactly to what byte in the network trace each
tainted byte in memory corresponds from the moment
it enters the system via the network card. This is not
trivial and fairly expensive on the memory as tainted
words may be combined. For instance, if two tainted
values are added, the destination register should be
tainted also and the administration should keep track of
the constituent values in the network trace (e.g., as off-
sets). Obviously, this is only needed for bytes that are
tainted and only for the physical memory space given
to the Argos system. Accurate tracking has been im-
plemented in our prototype as origin pointers for each

3

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

tN
2L

L1

Mt

A A AM t

Nt

this address will
overwrite target

repeat address
to handle different
offsets

network trace

vulnerable

target

buffer

memory

(full protocol field)

Legend

= target address/return
= address of target

A = address to store in target
= offset in network trace of the

bytes that overwrite the target

target

Figure 1: Tracing buffer-overflow attacks to protocol fields.

tainted memory location. As instructions take a maxi-
mum of 3 operands, each location has a 3-tuple of point-
ers that each refer to a memory location used to gener-
ated the value. More precisely, they refer to the set of
origin pointers for that location, which point to other
pointers, and so on. The leaves of the tree that is thus
formed point to bytes in the network trace.

Multiple fields in a buffer. Sophisticated overflows
may be caused by more than one protocol field. An ex-
ample is chunking and multiple host headers in HTTP,
where multiple chunks or headers end up in the same
buffer of the vulnerable application. For instance, the
Apache-Knacker exploit [13] consists of a GET request
containing multiple host headers. The server concate-
nates the two host fields into one buffer, leading to an
overflow. In this case, we need to consider all respon-
sible protocol fields. To the best of our knowledge, we
are the first to address this problem. It should be men-
tioned that the current mechanisms required a substan-
tial modification of Argos.

Without going into details, we sketch the mechanism
used by Prospector . As Argos provides not just Mt, the
target of the attack, but also all tainted space that was
used in the overflow (the shaded area beneath Mt in
the figure), we can walk up the stack to see where in
the network trace values originate. As a result, we are
able to trace all constituent fields that contributed to
the overflow. Care was taken to make the method work
even if multiple buffers are adjacent on the stack. A
potential problem might be caused by the occurence of
stale tainted data in the current stack frame, i.e., data
that was used in a previous function call and is never
untainted. For this reason we make Argos clean tainted
memory that is stale by untainting a stack frame’s resid-
ual memory on a return statement.

The mechanism works well for stack-smashing at-
tacks. Heap overflows may be more complex and in
rare cases will not be handled properly using the above
method due to stale data in allocated chunks (memory
chunks that were first allocated and later freed). To
remedy this we use a solution for heap-based attacks
that is less elegant than for stack-smashing and con-
sists of interposing on the OS’s malloc functions, to
make sure all memory is initialised to zero (automati-
cally untainting stale data). The trick solves the prob-
lem of stale tainted data and ensures we can use our
mechanism for both heap overflows and double frees,
at the cost of a wafer-thin OS-specific wrapper around
the memory allocation functions. Summarizing, we pin-
point all packet fragments which cause an alert when
copied to a vulnerable buffer in an application.

3.3 Signature Generation

After the preceding step has indicated malicious data in
memory and generated a one-to-one mapping with bytes
in the network trace, we generate signatures capable of
identifying polymorphic buffer overflow attacks. Using
knowledge about the protocol governing the malicious
traffic, we determine which protocol field contained the
data that led to the violation, considering the fields pre-
ceding or containing the bytes that caused overflow only.
We call these fields critical.

Note that vulnerable code usually handles specific
protocol fields. Thus, attackers wishing to exploit a cer-
tain vulnerability within this code, embed the attack in
these protocol fields (or sets of protocol fields in the case
of exploits like Apache-Knacker [13]). If values in such
fields contain more bytes than can be accommodated
by the buffer, an overflow is sure to occur.

4

3.3.1 Vulnerabilities rather than attacks

We decided to generate signatures by specifying the
overflow vulnerability rather than the attack itself. We
do so by indicating the protocol fields that should col-
lectively satisfy a condition. In particular, in the cur-
rent version they should collectively have a length that
should not exceed some maximum L2 (refer to Figure 1)
lest they overflow important values in memory (e.g., a
function pointer on the heap, or the return address of
a function). In the simple case with only one protocol
field responsible for the attack, L2 describes the dis-
tance between the beginning of the protocol field and
the offset of Nt, containing the value that overwrites the
target. Otherwise, L2 is augmented with the lengths of
the remaining critical fields. In both cases L2 is greater
or equal to the length of the vulnerable buffer.

Observe that whenever an application with a given
vulnerability receives network data containing the cor-
responding critical fields with a collective length exceed-
ing L2 bytes, it will not fit in the application buffer, even
if it does not contain any malicious data. Consequently
passing it to the application would be inappropriate.
In other words, regardless of content, the signatures are
unlikely to incur false positives.

Indeed, by focusing on properties like field length,
the signatures are independent of the actual content of
the exploit and hence resilient to polymorphism. As a
result, they can detect different attacks exploiting the
same vulnerability, but containing different payloads.
Such behavior is quite common, especially if part of the
payload is stored in the same vulnerable buffer.

As the signatures generated by Prospector identify
vulnerabilities, they are application specific. Indeed, we
may generate a signature that causes control flow diver-
sion in a specific version of an application, but there is
no guarantee that this is also the case for a different ver-
sion of the same application. In other words, we need
precise information about the software to protect. The
implication is that the Prospector runs at the edge of
the network.

The critical fields and the condition that should be
satisfied constitute the first, unpolished signature. In
practice, however, we want to characterise more pre-
cisely what messages constitute an attack. For instance,
when the URL field is the critical field that overflows a
buffer in a Webserver, it may be that the overflow only
works on GET requests and not for POST requests. In
our protocol-specific approach we therefore add a prot-
col module that determines per protocol which fields
may be considered important (e.g., the request type in
HTTP) and should therefore be added to the signature.
We call such fields value fields as explained presently.

3.3.2 The signatures

Every signature consists of a sequence of value fields and
critical fields. A value field specifies that a field in the
protocol should have this specific value. For instance,
in the HTTP protocol a value field may specify that the
method should be GET for this signature to match, or it
could provide the name of a vulnerable Windows .dll.
Critical fields, on the other hand, should collectively
satisfy some condition. For instance, in the current im-
plementation the critical fields should collectively have
a length that is less than L2. Figure 2 illustrates two
trivial example signatures.

type: VALUE_FIELD
name: HTTP_REQUEST

type: VALUE_FIELD
name: HTTP_METHOD
value: HTTP_POST

type: VALUE_FIELD
name: HTTP_METHOD
value: HTTP_GET

type: VALUE_FIELD
name: HTTP_REQ_RELATIVE_URI_PATH
value: /_vti_bin/vti_aut/fp30reg.dll

type: VALUE_FIELD
name: HTTP_HEADER
descr: HTTP_HDR_TRANSFER_ENCODING
value: chunked

type: VALUE_FIELD
name:
value:

HTTP_REQ_RELATIVE_URI_PATH
/default.ida

type:
name:

CRITICAL_FIELD
HTTP_REQ_RELATIVE_URI_QUERY

type: LENGTH_FIELD
value: 232

type: CRITICAL_FIELD
name: HTTP_CHUNK
descr: 0

type: LENGTH_FIELD
value: 264

type: ROOT_FIELD

Figure 2: Filter tree structure with two signatures

Prospector generates signatures that identify a large
class of polymorphic buffer overflows at application-
level. Both stack and heap overflows are already han-
dled in the current version. However, given an accurate
location of Mt, one may describe format string attacks
in a similar way. We do not handle such attacks reli-
ably now, because in the current version address spaces
in Argos and address spaces of code running without
Argos are not always equivalent (i.e., there is an offset).
The offset stops exploits from taking over the machine
and causes no problems for generating signatures for
buffer overflow attacks, as the overflow occurs relative
to the base of the buffer (and the size of the buffer is
obviously the same both with and without Argos). For-
mat string exploits, however, may end up overwriting
different data than intended, due to their absolute ad-
dresses. As a result, Argos will detect code injection by
format string attacks, but the signatures generated by
Prospector are currently unreliable. Fixing Prospector
for format string attacks is future work.

3.4 Intrusion Prevention

We now present our protocol-specific attack prevention
method. The Prospector IPS contains filters to recog-
nize malicious traffic by matching signatures generated

5

by our system. Unlike the signature generator which
may perhaps take tens of seconds to generate a reliable
signature, the IPS needs to operate at very high speeds,
scanning packets at line rate.

In this section we briefly describe the filter architec-
ture. First, we present its pre-configuration stage. We
explain the way multiple signatures are handled, and
stored in tree-like structure to check efficiently whether
a packet is malicious or legitimate. Next, we show the
tree traversing process itself.

3.4.1 Preconfiguration Step

Recall that every signature consists of a sequence of
value fields and critical fields. In addition, a signature
specifies precisely the vulnerable application, and a con-
dition which the critical fields must collectively satisfy
in order to let a packet/flow be classified as malicious.
For instance, in the current implementation the criti-
cal fields should jointly have a length that is less than
L2 (see Figure 1). While we focus on maximum length
in this paper, other conditions could also be imagined
(e.g., encoding anomalies, byte distribution).

We organize all the signatures in memory like a tree,
so that common prefixes are checked once only. Figure 2
depicts a trivial example consisting of two vulnerabili-
ties. Each significant protocol field is represented by a
structure containing the following information: (1) type
(e.g., VALUE_FIELD or CRITICAL_FIELD), (2) field name
(e.g., HTTP_METHOD or HTTP_BODY), and (3) value, rel-
evant only in the case of value fields, can be either a
constant, (e.g., HTTP_GET or HTTP_POST) or a string of
characters (e.g., chunked).

For efficiency reasons all children of a given node are
arranged in increasing order with respect to their name
(and value, if needed). This saves time in determining
whether a field value in a packet matches a signature.

3.4.2 Processing Packets

We now describe how we check whether a packet
matches any of the signatures contained in the tree de-
scribed in Section 3.4.1. The straightforward solution
would be to (1) construct the complete layer 7 mes-
sage from consecutive TCP segments, (2) dissect this
message, (3) traverse the tree to read off whether the
message corresponds to any of its branches. However,
this approach is rejected for reasons of performance and
security. For performance, we cannot afford to copy so
much data. For security, we want to discover immedi-
ately that the protocol field is too long, rather than
holding on until all TCP segments have arrived (by
which time the exploit may already have occurred).

Having these restrictions in mind, we built a state-
ful signature recognition engine. Whenever it obtains

a TCP segment, its state is retrieved and dissection is
handled by an appropriate protocol dissector. The re-
maining part of the process is straightforward: with
each successive protocol field we descend further down
the signature tree using standard BFS to find out
whether the message we are handling is malicious.

Note that Prospector automatically scans for mal-
formed protocol messages. Since we have protocol-
specific knowledge, it was easy to extend Prospector
to also check whether the application-level interaction
conforms to the protocol. In other words, we scrub
higher-level protocols.

Since most network traffic is legitimate, it would be
desirable to be able to stop dealing with a TCP seg-
ment as soon as we realize that it contains benign data.
Unfortunately, the length of the whole message is not
always known until we completely dissect the stream.
Indeed, multiple requests or replies could be sent over
a single connection which means we may have to chech
the entire stream. For performance reasons we have in-
troduced a configurable optimization into our system.
If the shortcut is turned on, and we do not have enough
knowledge to determine the length of the remaining part
of the layer 7 message, we skip the rest of the current
TCP segment, provided that we have decided that the
current request or reply did not match any signature.
Whenever a continuation of this TCP connection comes,
we check whether it contains a new request or reply. If
not, the segment is also skipped. Otherwise it is passed
to an appropriate dissector. Obviously, the optimisa-
tion can only be safely applied for servers that also im-
plement the shortcut that a message always starts at a
segment boundary.

3.5 Implementation

We implemented the Prospector ’s filter engine both on
a general purpose CPU and on an Intel IXP2400 net-
work processor embedded on a network card. This way
we were able to explore different application domains.
The CPU implementation is intended to be used as a
filter for end-hosts. It protects individual machines and,
indeed, individual services, and constitutes a rather ex-
treme form of distributed firewall. The implementation
on the IXP2400 was part of an effort to push the dis-
tributed firewall a little further into the network, mak-
ing it harder for end-users to tamper with the system.
It was implemented as a line-card solution for an edge
router/switch for which application-awareness may be
exploited by filtering traffic for a small group of hosts.
In addition to Prospector , the IXP2400 in this sub-
project hosts different IDS techniques (e.g., flow-based
techniques and regular expression matching).

6

4 Evaluation

We evaluate Prospector along two dimensions: perfor-
mance and effectiveness. Our experiments were carried
out on Intel Pentium M 1.60 GHz CPU with 504 MB
main memory. The Prospector IPS is implemented ad-
ditionally on an IXP2400 network processor embedded
on a network card.

4.0.1 Signature generation.

The signature generation engine is build on the top of
Ethereal2. During the correlation, it searches through
the network trace and reconstructs the byte streams
of TCP flows. Note that the logs that are considered
by the signature generator are generally fairly short,
because we are able to store separate flows in separate
files by using our FFPF framework [2]. As a result,
Prospector may ignore flows that finished a long time
ago and flows to ports other than the one(s) reported
by forensics. Signature generation times including TCP
reassembly for logs of various sizes is shown in Figure 3.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60

Si
gn

at
ur

e
ge

ne
ra

tio
n

tim
e

(s
ec

s)

Tcpdump log size (MB)

Figure 3: Signature generation times versus log size.

4.0.2 Filtering.

We have benchmarked the Prospector IPS both on a
general purpose CPU and on the IXP2400’s XScale.
Figure 4 shows the throughput of Prospector and for ref-
erence also shows the throughput of a payload-scanning
function (we used Snort’s Aho-Corasick). We show two
versions of Prospector : the basic algorithm that touches
all data, and a configurable optimized version, called
Prospector+3.

Each method processes 4 requests. These are from
left to right: a benign HTTP GET request that is classi-
fied quite easily, a malicious GET request that requires
much more scanning, and two POST requests with bodies

2A network protocol analyzer http://www.ethereal.com/.
3The optimized version relies on HTTP requests being TCP

segment-aligned. Refer to Section 3.4.2

of differing lengths. In the malicious GET case a signif-
icant part of all bytes must be touched (it contains an
excessively long URI).

However, all three other examples show that if you
do not have to touch all bytes – the common case –
protocol-deconstruction is more efficient than scanning.
Looking at the right-most figures, the longest POST re-
quest, we see that the gap with aho-Corasick grows
quickly as the payload grows. The benign GET learns
us additionally that skipping remaining headers when
a classification has been made can result in a dramatic
(here 2-fold) increase in worst-case performance. Note
that this example request does not carry a message
body. of course, this would be skipped by Prospector .
Even without message bodies, performance is contin-
uously above 18.000 requests per second on the XS-
cale and above 120.000 requests per second on the Pen-
tium, making the function viable for in-line protection
of many common services.

4.1 False positives.

To make sure that Prospector does not incur false pos-
itives, we manually compared signatures generated by
our system with exploits and attack descriptions pro-
vided by the Metasploit framework4. We also used
our signatures to scan a benevolent network trace. Be-
sides homegrown traces, we used the RootFu DEFCON5

traces that are publicly available for research purposes.
We first verified that the exploits we were considering
were not present in the traces, by scanning the trace
with open source community snort rules, using rules ob-
tained from bleeding snort6. Next, we scanned it with
the signatures generated by Prospector . There were no
(false) alerts.

5 Conclusions

We have presented Prospector , a protocol specific detec-
tor for (possibly polymorphic) buffer overflow attacks.
It uses Argos, an advanced honeypot to generate sig-
natures for zero-day attacks. In addition, Prospector
includes a filter engine to block malicious traffic with
very few false positives. In the future we plan to ad-
dress the problem of replaying, for two reasons (1) even
more detailed analysis of the attack in a more heavily
instrumented Argos++ to also catch format string at-
tacks, and (2) to determine all versions of an application
vulnerable to a detected attack.

4The Metasploit Project http://www.metasploit.com/.
5http://www.shmoo.com/cctf/
6http://www.bleedingsnort.com

7

 0

 100000

 200000

 300000

 400000

 500000

 0

 1500

 3000

 4500

 6000

re
qu

es
ts

 p
er

 s
ec

on
d

M
pb

s

General Purpose CPU

benign GET malicious GET POST longer POST

Aho-Corasick
Prospector+
Prospector

 0

 100000

 200000

 300000

 400000

 500000

 0

 1500

 3000

 4500

 6000

re
qu

es
ts

 p
er

 s
ec

on
d

M
pb

s

General Purpose CPU

benign GET malicious GET POST longer POST
 0

 15000

 30000

 45000

 60000

 0

 150

 300

 450

 600

re
qu

es
ts

 p
er

 s
ec

on
d

M
pb

s

Network Processor

benign GET malicious GET POST longer POST

Aho-Corasick
Prospector+
Prospector

 0

 15000

 30000

 45000

 60000

 0

 150

 300

 450

 600

re
qu

es
ts

 p
er

 s
ec

on
d

M
pb

s

Network Processor

benign GET malicious GET POST longer POST

Figure 4: Prospector throughput. Wider boxes denote the amount of requests per second (and are scaled by the left
Y-axis), while thinner boxes denote the throughput in Mbps (and are scaled by the right Y-axis).

Acknowledgements

This research is sponsored by the EU FP6 ‘NoAH’
project and the Dutch STW ‘DeWorm’ project. We
are grateful to Willem de Bruijn and Tomas hruby for
their help with the implementation of the Prospector on
the network processor.

References

[1] F. Bellard. QEMU, a fast and portable dynamic trans-
lator. In In Proc. of the USENIX Annual Technical
Conference, pages 41–46, April 2005.

[2] H. Bos, W. de Bruijn, M. Cristea, T. Nguyen, and
G. Portokalidis. FFPF: Fairly Fast Packet Filters. In
Proc. of OSDI’04, San Francisco, CA, December 2004.

[3] D. Brumley, J. Newsome, D. Song, H. Wang, and
S. Jha. Towards automatic generation of vulnerability-
based signatures. In IEEE Symposium on Security and
Privacy, Oakland, CA, May 2006.

[4] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Stan-
iford and N. Weaver. Inside the slammer worm. IEEE
Security and Privacy, 1(4):33–39, July 2003.

[5] B. K. James Newsome and D. Song. Polygraph: Auto-
matically generating signatures for polymorphic worms.
In Proc. of the IEEE Symposium on Security and Pri-
vacy, 2005.

[6] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and
G. Vigna. Polymorphic worm detection using struc-
tural information of executables. In Proc. of RAID’05,
Seattle, USA, Sept 2005.

[7] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez.
Hamsa: Fast signature generation for zero-day poly-
morphic worms with provable attack resilience. In
IEEE Symposium on Security and Privacy, Oakland,
CA, May 2006.

[8] Z. Liang and R. Sekar. Fast and automated generation
of attack signatures: A basis for building self-protecting

servers. In Proc. ACM CCS, pages 213–223, Alexan-
dria, VA, USA, November 2005.

[9] M. Costa, J. Crowcroft, M. Castro, A Rowstron, L.
Zhou, L. Zhang and P. Barham. Vigilante: End-to-
end containment of internet worms. In In Proc. of the
20th ACM Symposium on Operating Systems Principles
(SOSP), Brighton, UK, October 2005.

[10] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation
of exploits on commodity software. In Proc. of the 12th
Annual Network and Distributed System Security Sym-
posium (NDSS), 2005.

[11] G. Portokalidis, A. Slowinska, and H. Bos. Argos:
an emulator for fingerprinting zero-day attacks. In
Proc. ACM SIGOPS EUROSYS’2006, Leuven, Bel-
gium, April 2006.

[12] W. Robertson, G. Vigna, C. Kruegel, and R. Kem-
merer. Using generalization and characterization tech-
niques in the anomaly-based detection of web attacks.
In NDSS’05, February 2005.

[13] SecurityFocus. Can-2003-0245 apache apr-
psprintf memory corruption vulnerability.
http://www.securityfocus. com/bid/7723/discussion/,
2003.

[14] V. P. Stuart Staniford and N. Weaver. How to 0wn
the internet in your spare time. In Proc. of the 11th
USENIX Security Symposium, 2002.

[15] M. M. Williamson. Throttling Viruses: Restricting
Propagation to Defeat Malicious Mobile Code. In Proc.
of ACSAC Security Conference, Las Vegas, NV, 2002.

8

