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ABSTRACT
High-frequency memory checkpointing is an important tech-
nique in several application domains, such as automatic
error recovery (where frequent checkpoints allow the sys-
tem to transparently mask failures) and application debug-
ging (where frequent checkpoints enable fast and accurate
time-traveling support). Unfortunately, existing (typically
incremental) checkpointing frameworks incur substantial per-
formance overhead in high-frequency memory checkpointing
applications, thus discouraging their adoption in practice.

This paper presents Speculative Memory Checkpointing
(SMC ), a new low-overhead technique for high-frequency
memory checkpointing. Our motivating analysis identifies
key bottlenecks in existing frameworks and demonstrates
that the performance of traditional incremental checkpoint-
ing strategies in high-frequency checkpointing scenarios is
not optimal. To fill the gap, SMC relies on working set
estimation algorithms to eagerly checkpoint the memory
pages that belong to the writable working set of the run-
ning program and only lazily checkpoint the memory pages
that do not. Our experimental results demonstrate that
SMC is effective in reducing the performance overhead of
prior solutions, is robust to variations in the workload, and
incurs modest memory overhead compared to traditional
incremental checkpointing.

Categories and Subject Descriptors
D.4.5 [Reliabilty]: Checkpoint/Restart

General Terms
Reliability, Algorithms
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Memory Checkpointing; Speculation; Error Recovery; De-
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1. INTRODUCTION
Memory checkpointing—the ability to snapshot/restore the

memory image of a running process or set of processes—has
recently gained momentum in several application domains.
In automatic error recovery applications, memory check-
pointing enables fast and safe recovery to known and stable
program states [20,22,23,32,39,53,54,57,58,62,70]. In de-
bugging applications, it enables users to efficiently navigate
through several program states observed during the execution,
while empowering advanced debugging techniques such as
reverse/replay debugging [27,34,60,61]. Memory checkpoint-
ing also serves as a key enabling technology for important
first-class programming abstractions like software transac-
tional memory [39], application-level backtracking [11, 76],
and periodic memory rejuvenation [68].

Such application domains require very frequent checkpoints
in real-world scenarios. For instance, automatic error recov-
ery techniques rely on frequent checkpoints to mask failures
to the clients [67]. This is typically accomplished by check-
pointing the program state at every client request [22,39]—or
at carefully selected rescue points [33,53,58,62]. In advanced
debugging techniques, frequent checkpoints allow users to
quickly navigate through arbitrary points in the execution
history [33, 34]. Finally, first-class programming abstrac-
tions implemented on top of memory checkpointing, such
as application-level backtracking, typically yield a very high
checkpointing frequency by construction [11].

Traditional memory checkpointing techniques rely on com-
modity hardware—a strategy that provides superior deploy-
ability compared to instrumentation-based strategies [10, 14,
39,40,53,64,65,70,76]—to incrementally copy memory pages
that were modified by the running program [11, 20, 21, 34,
37, 51, 54, 56, 58, 60, 63]. While incremental memory check-
pointing is regarded as an efficient alternative to disk-based
or full memory checkpointing [52], it still incurs nontrivial
memory tracing costs for every taken checkpoint, resulting
in relatively infrequent checkpoints used in practice.

In this paper, we present Speculative Memory Checkpoint-
ing (SMC ), a new technique for high-frequency page-granular
memory checkpointing. SMC seeks to improve upon current
techniques to allow for very high-frequency checkpointing at
a period that is below the one millisecond boundary, even
making it possible to checkpoint every request in a highly
loaded server. To fulfill this goal, SMC sets out to minimize
the memory tracing costs of incremental checkpointing by
eagerly copying the hot (frequently changing) pages, while
lazily tracing and copying at first modification time only cold



(infrequently changing) memory pages. Thus, SMC combines
the advantages of full memory checkpointing (efficient bulk
copies) with that of incremental memory checkpointing (copy
only when needed). The key challenge is to find the optimal
trade-off between eagerly copying too many memory pages—
i.e., unnecessary memory copying costs—and copying an
insufficient number of pages which may result in unnecessary
memory tracing costs for every checkpoint.

To address this challenge, SMC relies on a general writable
working set (WWS) model [15] to detect the memory pages
that change most often—the ideal candidates for our specula-
tive copying strategy. To obtain fresh and accurate estimates,
our implemented SMC framework supports well-established
working set estimation (WSE) algorithms. In addition, we
complement our framework with GSpec, a novel writable
WSE algorithm specifically tailored to high-frequency mem-
ory checkpointing. GSpec follows a blackbox optimization
strategy inspired by genetic computing [45]. The latter ap-
proach provides SMC with a self-tuning and self-adapting
working set estimation strategy by design, which relies on no
program-specific parameters and ensures fresh and accurate
estimates across several different real-world workloads. This
is in stark contrast to traditional WSE algorithms, which,
while well established in several application domains such
as dynamic memory balancing [13, 30, 42, 43, 66, 78], garbage
collection [26,69,72], virtual machine restore [73,74] and live
migration [71], are generally ill-suited to high-frequency mem-
ory checkpointing. In particular, these algorithms impose a
stringent performance-accuracy trade-off that typically re-
sults in a nontrivial overestimation of the real writable work-
ing set [7]. This is perhaps acceptable in many traditional
applications (e.g., dynamic memory balancing with sporadic
memory pressure), but leads to substantial overcopying, and
thus overhead, for SMC.

Contributions.
The contributions of this paper are fourfold. First, we

present an in-depth analysis of prior page-granular memory
checkpointing techniques, evidencing their direct and indirect
memory tracing costs. Our investigation uncovers important
bottlenecks for prior solutions in high-frequency checkpoint-
ing contexts and serves as a basis for our design. Second, we
present Speculative Memory Checkpointing (SMC ), a new
technique for high-frequency memory checkpointing based
on (several possible) WSE algorithms. Third, we introduce
GSpec, a novel WSE algorithm which draws inspiration from
genetic algorithms to speculatively copy memory pages that
are most likely to change in the next checkpointing interval.
Finally, we implemented and evaluated a kernel-module-
based SMC framework with support for GSpec and other
WSE algorithms, demonstrating its performance benefits in
high-frequency checkpointing scenarios. Our results demon-
strate that our WSE-based strategy is accurate, efficient,
robust to workload variations, and effectively reduces the
run-time overhead of high-frequency memory checkpointing
at the cost of modest memory overhead.

2. BACKGROUND
A straightforward way to implement process checkpoint-

ing involves freezing the execution and taking a snapshot
of memory by copying it [5, 16, 24, 36, 49, 55]. Even though
this approach suffices in certain domains, like process mi-
gration, it is wasteful and slow in domains where frequent

checkpoints need to be made, as it requires the process to
stop for a significant amount of time and copies potentially
large amounts of data indiscriminately.

A more efficient strategy is to rely on incremental check-
pointing. Incremental checkpointing builds a checkpoint
gradually—minimizing the time that a process is suspended,
and reducing the amount of data to copy. We can gener-
ate incremental checkpoints in two ways. We can make a
full snapshot in the beginning, and then track and save all
modifications, so we can add them to the snapshot at the
next checkpoint [3, 21, 51, 56, 63]. To roll back, all mem-
ory is restored using the maintained snapshot. Alterna-
tively, we can do the inverse and copy only the data that are
modified after a checkpoint, right before they are overwrit-
ten [11,20,34,37,51,54,58,60]. To roll back we restore only
the overwritten data using their copies. We will refer to the
former solution as “copy new data” (it copies the new data at
checkpoint time), and the latter as “copy old data” (it copies
the old data prior to overwriting them).

Traditional incremental checkpointing mechanisms are usu-
ally page-granular, that is, a memory page is the smallest
data block copied (although more fine-grained techniques ex-
ist [17,39,53,70,76]). Below we discuss the core mechanisms
and techniques employed by these approaches.

Hardware dirty bit.
Incremental checkpointing techniques rely on dirty page

tracking. Modern memory management units (MMUs) in-
clude a dirty bit for each entry in the page tables maintained
by the operating system (OS), which is set by the hard-
ware when a page is written. The bit is used by the OS to,
for example, determine which pages need to be flushed to
disk. Directly using this dirty bit to detect modified pages
is potentially fast, but requires extensive changes to the OS
kernel [5, 21,36,63] which is neither attractive, nor likely to
help deployability.

Soft dirty bit.
Linux also offers a soft dirty-bit mechanism, made available

to user space through the proc file system, which provides
the same functionality with HW dirty bits, albeit not as fast
(see Section 3).

Write Bit.
The write bit [63], also provided by the MMU, controls

whether a virtual memory page can be written. It is often
leveraged for checkpointing. For example, when the dirty bit
is missing, it is used to emulate the functionality. Briefly,
write protecting a page will generate faults on writes. By
capturing the faults, we identify the dirty pages and maintain
our own soft dirty bit.

Copy-on-write (COW) semantics.
“Copy old data” approaches that save memory pages on-

the-fly are in their majority utilizing the write bit and COW
semantics. The most well known use of COW is in the fork

system call in Linux. fork creates a new process, identical
to the parent process invoking it, but instead of duplicating
all memory pages, the two processes share the same pages
which are now marked as read-only and COW. When one
of them writes to a page, a fault is generated, causing the
kernel to create a copy of the page. User-space checkpointing



mechanisms are using fork to copy pages on-demand, but
COW semantics can be also used directly from within the
kernel, by setting the appropriate bits in the page table.

Page Checksums.
An alternative for determining dirty pages without relying

on dirty bits involves periodically calculating the checksum
of pages and comparing them over time. The precision of this
approach is subject to the accuracy of the algorithm used for
computing the checksums [46]. One could also compare the
contents of individual memory pages directly [42], but this
strategy is generally less space-efficient and more expensive
due to poor cache behavior.

3. SMC
Checkpointing based on the write bit, which primarily

includes approaches using COW, does not require changes
within the kernel and can efficiently roll back, but suffers
increasing overhead as the number of pages in a checkpoint
grows. Besides the unavoidable cost of copying pages, han-
dling page faults also induces overhead. Given a way to
establish which pages are going to be modified after a check-
point, we could avoid the page-faulting overhead and copy
only the pages that need to be saved. This is the key idea
behind Speculative Memory Checkpointing (SMC ).

Knowing exactly which pages are going to be written after
a checkpoint is a difficult problem, which is addressed by
SMC through approximation, similar to working set esti-
mation (WSE). Pages that are expected to receive writes
are considered to be hot and not write-protected but ea-
gerly copied when hitting a checkpoint. In “copy old data”
approaches, they are copied and discarded on the next check-
point, while in “copy new data” approaches, they are copied
into the full memory snapshot. The speculative approach
followed by SMC can be examined based on accuracy and
performance.

Accuracy.
A speculative approach is accurate when it can contin-

uously determine the pages that will be written during a
checkpoint. Missing hot pages triggers page faults and de-
grades performance. We refer to such errors as undercopying.
Respectively, marking rarely written pages as hot leads to
more copying than needed, also degrading performance. We
refer to these errors as overcopying.

Performance.
Three key factors affect the performance: the overhead of

the algorithm that speculates the set of hot pages, the number
of undercopying errors, and the number of overcopying errors.
Obviously, a very accurate prediction algorithm can reduce
the number of errors, but if that comes with an elevated
cost, then it overshadows the lack of errors. Similarly, a
large number of errors can make SMC more expensive than
traditional incremental approaches (e.g., if none of the hot
pages are actually written).

Design.
To guide the design of SMC, we carefully evaluated the

impact of common operations performed by traditional in-
cremental checkpointing techniques. Table 1 presents our
results. An immediately evident result is the substantial

# Test CPU cycles

COW tests
1 Write to a page after fork. 4016
2 Write to a page, but also fork and

terminate the child.
139576

Copying tests
3 Copy a page and write into it. 492
4 Same as the above but also checksum

page data.
1228

Soft dirty (SD) bit tests
5 Write to a page, read SD bits, and

copy page.
16136

6 Same as the above, but clear the SD
bits first.

33148

Table 1: Microbenchmarks that test the various
operations performed by incremental checkpointing.
The table lists the average number of CPU cycles
consumed after running each test 1000 times.

overhead introduced by checkpointing strategies using COW
pages from user space. This requires forking a new process,
managing it, and terminating it when taking a new check-
point, while the kernel takes care of copying a page when
it is written. The latter is quite fast taking only 4016 CPU
cycles, while forking, etc. requires 139,576 cycles (see lines
1 and 2 in Table 1). Shedding this overhead is an impor-
tant factor for high-frequency checkpointing which involves
more and potentially shorter (in duration) checkpoints. For
this reason, our SMC framework bases its operations in a
kernel module that exports checkpointing primitives to user
space. A complete user-space solution would have otherwise
incurred significantly larger overhead at runtime, mainly due
to the cost of managing memory and the MMU bits [9].

To estimate the benefits from using SMC, we compare
the time taken to perform a single write when checkpointing
with the different incremental checkpointing strategies we
described above (see lines 1,3, and 6 in Table 1). Under
(accurate) SMC, the page would just be copied once correctly
placed in the writable pages hot set, and the write would
complete normally. When using COW, the kernel would
make a copy of the page, before the write completes. Finally,
with soft dirty bits, the write completes normally but we
then need to read the dirty bits to identify the updated page
and save it. The process takes 492, 4016, and 16136 CPU
cycles respectively. Note that in practice there are other
costs involved with these strategies as well, like calculating
the hot pages, marking all pages as COW in the beginning,
and clearing the dirty bits (Table 1, line 6).

We notice that managing soft dirty bits can be very expen-
sive, and it is preferable to use a page’s checksum to identify
updated pages, when we are examining a small number of
pages. Most importantly, the direct cost of saving a page
when checkpointing is only a small part of the whole pro-
cess, which involves many indirect costs, like fault handling,
managing dirty bits, etc. As a result, a perfectly accurate
speculation algorithm incurs eight times less overhead per-
page, compared to COW ( line1

line3
of Table 1). We also establish

that undercopying and overcopying errors do not cost the
same, as the first will result in a COW (approx. 4016 cycles),
while the latter leads to a wasted copy (approx. 492 cycles).
Thus, on modern architectures, the cost for 1 undercopying
error is comparable to 8 overcopying errors.



Finally, a “copy old pages” approach is more favorable
because it requires less memory space for each checkpoint
(no full snapshot). Other than guiding the design and imple-
mentation of SMC, we later use these findings to derive the
cost factors for our genetically-inspired GSpec WSE strategy.

4. FRAMEWORK OVERVIEW
Figure 1 depicts the high-level architecture of our SMC

framework. To deploy SMC, users install a small kernel
module (ksmc) and link their programs against a user-level
library (libsmc). The library offers convenient memory check-
point/restore primitives to programs and forwards all their
invocations to ksmc through a fast and dedicated SMCall

interface that requires no recompilation or restart of the run-
ning operating system kernel. Our kernel module can handle
requests from a large number of programs in parallel and be
safely unloaded when no longer needed, which ensures a fast
and safe deployment of SMC. Also note that programs not
using speculative checkpointing functionalities are unaffected
by the presence of ksmc.

When a user program issues a memory checkpoint request
via libsmc, our kernel module checkpoints the current mem-
ory image of the calling process and returns control to user
space. This event marks the beginning of a new check-
pointing interval, terminated only by the next checkpoint
(or restore) request. The data (and metadata) associated
with every checkpoint is maintained in an in-kernel jour-
nal by the core checkpointing component (CKPT ) of ksmc.
The journal stores a maximum predetermined number of
K checkpoints on a per-process basis, following a FIFO re-
placement strategy—currently K=1 by default, a common
assumption in traditional memory checkpointing applica-
tions [20, 22, 32, 39, 53, 54, 58, 68, 70]. When necessary, user
programs can issue a memory restore request and allow ksmc

to automatically revert the current memory image to the last
checkpoint k, with k ∈ [1;K].

To speculatively copy frequently accessed memory pages
and reduce memory tracing costs, the checkpointing com-
ponent relies on the speculation component (SPEC ), which
maintains fresh writable working set estimates to drive SMC’s
speculative copying strategy. In particular, at the beginning
of every checkpointing interval, the speculation component
informs the checkpointing component of all the hot memory
pages that should be eagerly copied before returning control
to user space. A copy of these pages is immediately stored
in the current checkpoint, eliminating the need for explicit
memory tracing mechanisms in the forthcoming checkpoint-
ing interval. All the other (cold) memory pages, in turn,
are explicitly tracked and their data copied lazily at first
modification.

4.1 Checkpointing Component
The checkpointing component implements the core memory

checkpointing functionalities in the ksmc kernel module. Its
operations and interface are deliberately decoupled from the
main kernel as much as possible. Its internal structure is fully
event-driven with a number of well-defined entry points. The
main entry point provides user programs with access to a sim-
ple control interface via the libsmc library. Each user process
can register itself with the checkpointing component—that
is enter “SMC mode”—and specify the desired SMC configu-
ration, including the speculation strategy to adopt and the
memory regions to checkpoint. By default, the entire memory

OS Kernel

ksmc

SMCall() Syscall() Syscall()

CKPT SPEC

Regular Process

SMC Process

libsmc

Figure 1: High-level architecture of SMC

image is considered for checkpointing, but user programs may
limit checkpointing operations to specific memory areas—for
example, to implement an SMC-managed heap for a spe-
cialized memory allocator that supports application-level
backtracking. The control interface also allows primitives
to checkpoint/restore the predetermined memory areas or
reset/collect SMC statistics—for example, average number
of pages copied eagerly/lazily per checkpointing interval.

For each process in SMC mode, ksmc maintains a pro-
cess descriptor—with process-specific configurations—a set
of memory area descriptors, and a journal of checkpoint de-
scriptors. Each checkpoint descriptor maintains a number of
page entries with the address and a copy of the original page
to restore the saved memory image starting from the next
checkpoint in the journal—or the current memory image in
case of the most recent checkpoint.

When a process enters SMC mode, ksmc creates new pro-
cess and memory area descriptors as well as an implicit first
checkpoint using a full-coverage memory tracing strategy
akin to incremental checkpointing. This is done by write-
protecting the page table entries associated with all the
memory pages in the virtual address space of the calling
process and intercepting all related page faults to save a copy
of the soon-to-be modified pages.

Page fault events represent the second important entry
point in ksmc, allowing SMC’s memory tracing strategy to
create new page entries in the current checkpoint descriptor,
notify the speculation component of the event, and allow
the kernel to simply copy and unprotect the faulting page
and resume user execution. To avoid slowing down the
normal execution of the main kernel’s page fault handler,
ksmc supports efficient lookups of process and memory area
descriptors to quickly return control to the main kernel
if the last faulting page is not currently being tracked by
SMC. A similar strategy is used when intercepting process
termination events—the third entry point in ksmc—which
the checkpointing component tracks to automatically garbage
collect all the descriptors and page entries associated with
each terminating SMC process.

When a new checkpoint operation is requested, ksmc marks
the current checkpoint descriptor as completed—note that
this is always possible even at the first application-requested
checkpoint by construction—and creates a new checkpoint
descriptor for the forthcoming checkpointing interval. It
subsequently iterates over the page entries in the last check-
point descriptor and requests the speculation component to



determine the optimal copying strategy for each page. For
each memory page subject to an eager copying strategy, ksmc
immediately creates a new page entry in the new checkpoint
descriptor. For other pages, ksmc write-protects the page and
delegates the checkpointing operations to page fault time.

When a new restore operation is requested, ksmc walks the
checkpoint descriptors in reverse order—starting from the
current one and ending with the one requested by the user—
and incrementally restores all the contained page entries.
It subsequently evicts all the visited checkpoint descriptors
(and associated entries) from the journal and notifies the
speculation component of the event.

4.2 Speculation Component
The speculation component enhances the basic incremen-

tal checkpointing strategy implemented by the standalone
checkpointing part with a working set estimation-driven spec-
ulative checkpointing technique at the beginning of every
checkpointing interval. While currently integrated in ksmc,
the speculation component is strictly decoupled from the
checkpointing component and provides a generic specula-
tion framework suitable for both user-level and kernel-level
checkpointing solutions. The speculation component requires
the external checkpointing solution to provide a number of
platform-specific callbacks, including memory allocation, de-
bugging, and configuration primitives. In SMC, our kernel
module implements all the relevant callbacks suitable for
kernel-level execution.

Internally, our speculation component shadows many of
the data structures described in the previous subsection—
descriptors and page entries—but also supports writable
working set contexts for the benefit of the individual specula-
tion strategies implemented in our framework. Each context
stores all page entries associated with the current writable
working set, which our speculation component uses to deter-
mine the memory pages subject to our eager copying strategy
when initializing a new checkpoint descriptor. The current
working set context is established at the beginning of every
checkpointing interval based on user-defined policies.

Each speculation strategy has unrestricted read and write
access to the current writable working set context and can
register hooks to manipulate the context for all the events con-
trolled by our checkpointing module: page fault, checkpoint,
restore, etc. The most conservative speculation strategy
would simply produce empty writable working sets never
populated with any page entries, an approach that would
effectively degrade SMC to traditional incremental check-
pointing. More effective speculation strategies, including our
genetic speculation and other more traditional working set
estimation strategies, are discussed in the following sections.

5. SPECULATION STRATEGIES
In the course of this work, we have considered a num-

ber of speculation strategies for SMC, drawing from classic
working set tracking techniques and black box optimization
algorithms. We now discuss these strategies in more detail.

5.1 Classic WSE Strategies

Scanning-based techniques.
Scanning-based strategies periodically scan all the memory

pages of a running process and determine the current writable
working set from the recently modified pages. Scanning-

based strategies are generally too expensive for short scan-
ning intervals—strategies involving lightweight dirty page
sampling have suggested using intervals of around 30 sec-
onds [66]—due to high costs associated with frequent ref-
erence bit manipulation. The latter also suffers from the
deployability limitations evidenced in Section 2. These short-
comings hinder the applicability of scanning-based strategies
to high-frequency SMC.

Active-list-based techniques.
Active-list-based techniques divide all memory pages into

two lists: active and inactive. On first access, pages are put
on the active list, which are considered hot, that is eagerly
copied at the beginning of a new checkpoint interval. On
the contrary, inactive pages are copied on demand triggering
a COW event. We implemented two active-list-based tech-
niques, Active-RND and Active-CKS, which mainly differ in
their active list eviction strategy.

Active-RND relies on dynamically determining the size
of the WWS through periodic sampling. This is done by
write-protecting the whole address space during the sampling
runs, whereas the WWS size is calculated as the running
average of the number of pages accessed during these runs.
Whenever the active list has reached the estimated size and a
new page faults in, Active-RND randomly evicts a page from
the list. We chose a random page replacement strategy over
other well known page replacement algorithms, like FIFO or
the LRU-like CLOCK algorithm [12] and its variations [8,29],
because the latter either performed significantly worse in
early experiments (FIFO), or require dirty page tracking or
page-table entry reference-bit manipulation.

Active-CKS relies on the observation that copying and
calculating a checksum is still significantly cheaper than
copying a page in COW fashion. While pages also enter the
active list when first accessed, Active-CKS will only evict a
page when its checksum did not change during the last N
checkpoint intervals, with N = 5 (the top performer in our
experiments).

Oracle.
The Oracle strategy considers all the pages that will be

accessed during the next interval as hot. Since this strategy
is directly based on knowledge of the future (and due to the
lack of a time machine), SMC implements only an optimistic
approximation of this algorithm based on profiling data. For
each checkpoint c, it logs the number of modified pages Nc

offline and pre-copies Nc dummy pages online. While this
strategy lacks correctness, it gives a good estimate of what
performance improvements can be expected by SMC given
an ideal speculation strategy.

5.2 Genetic Speculation
Our genetic speculation strategy—or GSpec—aims to esti-

mate the current writable working set using a methodology
inspired by genetic algorithms [45]. Such algorithms provide a
widely employed blackbox optimization method for problems
with a large set of possible solutions. Genetic algorithms are
inherently self-tuning and self-adapting, matching the strin-
gent accuracy and adaptivity requirements of high-frequency
memory checkpointing. Inspired by biological evolution, such
algorithms allow candidate solutions, also called individuals,
to compete against each other. In our case an individual
represents a set of hot pages, whereas the information of



which pages are considered to be hot is encoded in the indi-
viduals’ chromosomes—typically represented by a bit string.
All current individuals form a population. They are periodi-
cally evaluated using a cost function, which measures their
respective fitness. After each evaluation period, a new gener-
ation of the population is formed by selecting the most fit
individuals (selection) and recombining their chromosomes
(crossover). Over time the population’s solutions are meant
to converge to a minimum of the cost function.

Chromosome representation and cost function.
GSpec maintains a global list of all the memory pages cur-

rently known by the algorithm, ordered by page appearance.
Each individual’s chromosomes represent a set of candidate
memory pages, stored in a WWS bitmap—a generic bit string.
If a bit in the WWS bitmap is set, the corresponding page
is marked as hot, that is, part of the writable working set—
otherwise the page is considered cold. Whenever a memory
page is marked as cold by all the individuals, the page is
removed from the global page list, that is, the algorithm
forgets about the page.

GSpec models its cost function based on the memory copy-
ing costs caused by a given individual. Each memory page
copied during a checkpointing interval contributes to the
total cost associated with the current individual. Memory
pages copied lazily are weighted more to reflect the memory
tracing costs associated with the COW semantics. Although
weighted less, pages copied eagerly are still assigned a nonzero
cost, preventing GSpec from greedily copying all the known
memory pages. The cost values are directly derived from our
analysis in Table 1, with a value of 1 and 8 accounted for
every page copied eagerly and lazily, respectively.

Speculation phase.
The population has a predetermined size of N =5 individu-

als, a standard value adopted in prior work on micro-genetic
algorithms to ensure an efficient and fast-converging im-
plementation [35]. For each checkpointing interval, GSpec
selects one individual from the population in a round-robin
fashion and requests the checkpointing component to copy
all the hot pages eagerly. The costs for the eagerly copied
pages (1) are attributed to the current individual. For each
page that faults in during the current interval, the respective
cost (8) is assigned to the current individual. If a faulting
page is currently not in GSpec’s global list, it is added to
the WWS bitmap of the current individual with unbiased
probability p=0.5.

Forming a new generation.
After every individual had its turn, GSpec computes a new

generation of individuals to evolve the current population.
Each new individual thereby inherits the combined genetic
information from selected parent individuals of the current
population. Common selection strategies adopted by tradi-
tional genetic algorithms are tournament selection [44] and
roulette wheel selection [41].

Both strategies select two parent individuals P1 and P2

to generate each individual in the new generation. GSpec
implements a roulette wheel selection strategy, which yields
a simpler implementation and is known to accurately model
many real-world problems [18]. This strategy stochastically
selects individuals with a higher probability for lower cost
values. GSpec, achieves that by keeping track of the lowest

cost Cmin in the population and selecting a random indi-
vidual IR with a cost CR as parent with a probability of
p=Cmin/CR. This process is repeated until two parents are
assigned to each individual of the new generation.

Once the parent individuals for the next generation have
been selected, GSpec mixes the writable working sets of each
parent pair P1 and P2 to generate each new individual. This
operation is commonly referred to as crossover, with two
dominant strategies used in the literature: n-point crossover
and uniform crossover [45].

GSpec opts for a uniform crossover strategy, which gener-
ally yields an unbiased and more efficient exploration of the
search space in practice [59]. This strategy selects each chro-
mosome bit from P1 (instead of P2) with a predetermined
probability p. GSpec selects the individual chromosome bits
with the standard probability p=0.5 commonly adopted in
prior work in the area [59].

To avoid local minima, genetic algorithms occasionally mu-
tate the recombined chromosomes after the crossover phase.
GSpec implements a simple bit-flip mutation strategy, flip-
ping the individual chromosome bits with a predetermined
probability p. In the current implementation, GSpec opts
for a bit-flip mutation probability p= 0.01, again, a value
commonly adopted in the literature [45].

6. IMPLEMENTATION
We implemented SMC in an architecture-independent load-

able kernel module for the Linux kernel. Our implementation
initially targeted Linux 3.2, comprising a total of 2227 LOC 1

for the checkpointing component and 1466 LOC for the spec-
ulation component—implementing our genetic speculation
strategy and the alternatives (Active-RND, Active-CKS, and
Oracle) considered in the paper. We subsequently tracked
all the mainline Linux kernel changes until the recent 3.19
kernel release and, despite the fast-paced evolution of the
Linux kernel interfaces, we added a total of only 20 extra
LOC to our original implementation. This acknowledges our
efforts into decoupling SMC from the mainline kernel, relying
on a minimal and stable set of kernel APIs—currently a total
of 45 common kernel routines for memory allocation, page
table manipulation, interfacing, and synchronization.

Driven by the same principles, we implemented SMC’s
page fault interception mechanism using kernel probes [4],
the standard Linux kernel instrumentation facility which
allows modules to dynamically break into any kernel routine—
handle_mm_fault, for our purposes—in a safe and nondisrup-
tive fashion. We adopted the same mechanism to intercept
process termination events—the do_exit and do_execve ker-
nel routines—and automatically perform all the necessary
process-specific cleanup operations. To implement SMC’s
dedicated SMCall interface, in turn, we allowed our kernel
module to export a new kernel parameter accessible via the
sysctl system call from user space. Our user-level libsmc
library—implemented in one header file of 114 LOC—hides
the internals of the sysctl-based communication protocol
with the kernel module to user programs.

To support common request-oriented recovery models with
minimal user effort [22, 39], SMC is also equipped with a
profiler that automatically identifies suitable checkpointing
locations at the top of long-running request loops and a trans-

1Source lines of code reported by David A. Wheeler’s SLOC-
Count.
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Figure 2: Throughput degradation induced by dif-
ferent SMC speculation strategies (program only).

formation module that subsequently prepares the program
for speculative memory checkpointing using the identified
locations. The profiler and the transformation module rely
on link-time instrumentation implemented using the LLVM
compiler framework [38], for a total of 728 LOC. The profiling
instrumentation tracks all the loops in the program for the
benefit of our profiler—coped with an interposition library to
track all the processes in the target program—implemented
in 3,476 LOC. The latter allows the user to instrument the
target program, run it using a given test workload, and re-
ceive a complete report on all the process classes identified
in the program and their long-running request loops—loops
that never terminate during the test workload. The report is
subsequently used by the transformation module to produce
the final SMC-ready binary.

7. EVALUATION
We evaluated our SMC framework implementation on a

workstation running Linux v3.12.36 (x64) and equipped with
a dual-core Intel Pentium G6950 2.80 GHz processor and
16 GB RAM. To evaluate the real-world impact of SMC,
we selected five popular server programs—a common tar-
get for memory checkpointing applications in prior work
in the area [20, 53, 54, 58, 70]—and allowed our deployed
SMC framework to checkpoint the memory image of their
worker processes at every client request, following the com-
mon request-oriented checkpointing model [22,39]. For our
analysis, we considered the three most popular open-source
web servers—Apache httpd (v.2.2.23), nginx (v0.8.54), and
lighttpd (v1.4.28)—a popular RDBMS server—PostgreSQL
(v9.0.10)—and a widely used DNS server—BIND (v9.9.3).
To evaluate the impact of SMC on our server programs, we
performed tests using the Apache benchmark (AB) [1] (web
server programs), the Sysbench benchmark [6] (PostgreSQL),
and the queryperf tool [2] (BIND). To investigate the SMC-
induced performance impact in memory-intensive application
scenarios and its sensitivity to the checkpointing frequency,
we further evaluated our solution on hmmer, a popular scien-
tific benchmark. Finally, in order to directly compare SMC
with recent instrumentation-based memory checkpointing
techniques [65] that naturally do not cover uninstrumented

Strategy Throughput degradation

COW 59.8 %
GSpec 42.8 %
Active-RND 46.4 %
Active-CKS 48.6 %
Oracle 18.9 %

Table 2: Throughput degradation (geomean) in-
duced by different SMC speculation strategies (pro-
gram and shared libraries).

Server Requests per second

Apache httpd 20,887
lighttpd 28,002
nginx 22,602
PostgreSQL 20,089
BIND 30,848

Table 3: Number of requests per second handled by
our server programs (baseline, no checkpointing).

shared libraries, we focus our evaluation on a program-only
analysis and briefly report on the performance impact of
shared libraries when extending the checkpointing surface to
the entire address space.

To prepare our test programs for request-oriented memory
checkpointing, we allowed our dynamic profiler to automati-
cally identify all the long-running request loops in preliminary
test runs and instrument the top of each loop with a check-
point call into the libsmc library. We configured all of our
test programs with their default settings and instructed the
Apache httpd web server to serve requests with the prefork
module with 10 parallel worker processes. We repeated all
our experiments 11 times (with negligible variations) for each
of the speculation strategies presented in Section 5 and report
the median.

Our evaluation focuses on five key questions: (i) Perfor-
mance: Does SMC yield low run-time overhead in high-
frequency memory checkpointing scenarios? (ii) Checkpoint-
ing frequency impact : How sensitive is SMC performance to
the memory checkpointing frequency? (iii) Accuracy : What
is the accuracy of our WSE-based speculation strategies?
(iv) Memory usage: How much memory does SMC use? (iv)
Restore time: Does SMC yield low restore time increase?

7.1 Performance
To evaluate the run-time performance overhead of SMC

on real-world applications, we tested our server programs
running in “SMC mode” and compared the resulting through-
put against the baseline. To benchmark our web server
programs, we configured the Apache benchmark to issue
25,000 requests through the loopback device, using 10 paral-
lel connections, 10 requests per connection, and a 1KB file.
To benchmark BIND, we configured the queryperf tool to
issue 500,000 requests for a local resource using 20 parallel
threads. To benchmark PostgreSQL, we configured the Sys-
bench benchmark to issue 10,000 OLTP requests using 10
parallel threads and a read/write workload. In all our exper-
iments, we verified that our programs were fully saturated
by the benchmarks.

Figure 2 shows the SMC-induced throughput degradation
for our server programs, as observed during the execution



of our macrobenchmarks. The absolute number of requests
handled by the individuals servers without checkpointing can
be found in Table 3. As expected, our speculation strategies
generally yield a lower run-time performance overhead than
traditional COW-style incremental checkpointing (COW in
Figure 2) implemented by our checkpointing component in
absence of any speculation strategy—note that our COW-
based implementation is already much faster than traditional
fork -based implementations used in much prior work. Com-
pared to COW, our speculation strategies reported an average
(geometric mean) overhead reduction of 4.44-14.24 percent-
age points (p.p.). GSpec, in particular, was consistently the
top performer across all our server programs (14.24 p.p. aver-
age overhead reduction compared to COW, geometric mean).
In some scenarios, the GSpec-reported improvements over
traditional memory checkpointing are more significant—for
example, 18 p.p. overhead reduction for nginx—due to higher
checkpointing frequency and a more stable working set.

Active-RND is the second best-performing strategy—with
an average performance overhead of 34.2% compared to
GSpec’s 30.8% and COW ’s 44.9% (geometric mean)—but we
experienced its performance rapidly dropping as we deviated
from the best-performing RND-N value. We found that
altering GSpec’s core parameters from the values commonly
adopted in the genetic algorithms literature, in contrast, had
only marginal (if any) performance impact. Furthermore,
Active-CKS reported the worst speculation performance,
with an average overhead of 35.02% across all our server
programs. Finally, the Oracle strategy reported, as expected,
a consistently lower overhead compared to all our speculation
strategies (15.63% geometric mean), providing a promising
theoretical lower bound for the performance overhead of any
future SMC strategy. Encouragingly, GSpec consistently
follows the Oracle strategy across all our server programs
and its overhead even comes relatively close to the Oracle
for programs with a fairly stable writable working set—for
example, 32.1% compared to 17.83% on BIND.

We now compare our results with recent compiler-based
memory checkpointing techniques (LMC) [65]. For servers
with good speculation performance, SMC performance is
comparable or better than that of compiler-based techniques
(e.g., GSpec’s 12.9% vs. LMC’s 15.3% on Apache httpd).
When speculation is less effective, compiler-based techniques
tend to outperform SMC (e.g., GSpec’s 56.9% vs. LMC’s
32.2% on PostgreSQL). On average, SMC induces an extra
performance impact of 10-15 p.p. across programs. Neverthe-
less, we found our results very encouraging, given that unlike
compiler-based techniques, SMC’s checkpointing strategy is
source code-agnostic and can thus operate on legacy binaries.

Finally, Table 2 shows that, when extending the check-
pointing surface to the entire address space, we observed an
additional performance impact (due to shared library check-
pointing) in the range of 12-15 p.p. We also note that the
general trend is consistent and speculation equally effective,
e.g., 17 p.p. average performance improvement with GSpec.

7.2 Checkpointing Frequency Impact
In the previous subsection, we investigated the SMC-

induced performance impact on server request-oriented mem-
ory checkpointing, a scenario which, in our experiments,
yielded a checkpointing frequency of 9K-26K checkpoints/sec
across all our server programs.
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Figure 3: Run-time overhead induced by the differ-
ent SMC speculation strategies on hmmer.

To investigate the frequency impact, we evaluated our best-
performing (GSpec and Active-RND) speculation strategies
on hmmer, a memory-intensive scientific benchmark. For our
purposes, we instrumented hmmer to invoke the checkpoint
call into the libsmc library at each task loop iteration, and
forced our library to forward the calls to ksmc only every
F predetermined invocations. This allowed us to emulate
different checkpointing frequencies, ranging from roughly 700
checkpoints/sec—when checkpointing at every iteration—to
40 checkpoints/sec—when checkpointing every 16 iterations.

Figure 3 depicts the SMC-induced run-time overhead on hm-

mer across all the checkpoint frequencies considered. Results
shown in the figure provide a number of interesting insights.
First, checkpointing at every loop iteration yields comparable
results to our performance experiments on servers program,
with GSpec (2.6%) and Active-RND (2.4%) improving over
COW (5.8%). Finally, as expected, for lower memory check-
pointing frequencies, the memory tracing costs incurred by
traditional COW become more amortized throughout the
execution and the performance benefits of SMC become less
evident—e.g., less than 1 p.p. overhead reduction when
checkpointing every 16 iterations.

7.3 Accuracy
To evaluate the accuracy of our speculation strategies, we

implemented support for a “meta speculation” strategy in
SMC. The meta speculation strategy relies only on standard
COW-style incremental checkpointing, but also transparently
exposes each observed page-fault event only to the other
speculation strategies that have assumed the faulting page
not to be in the current writable working set. This allows all
strategies to operate normally, while the meta speculation
strategy gathers accuracy statistics based on the number of
memory pages dirtied by the running program.

Table 4 reports the accuracy statistics produced by the
meta speculation strategy when analyzing our server pro-
grams. Statistics are gathered on a per-checkpoint interval
basis during the execution of our macrobenchmarks and av-
eraged using the mean. The number of mispredicted pages
(MP), that is, the sum of overcopied pages (OP) and un-
dercopied pages (UP), represents the total number of dirty
memory pages that a given speculation strategy failed to
predict according to its internal writable working set esti-
mates. The weighted mispredicted pages (WMP), in turn,
weigh undercopied pages—inducing COW events—more than



GSpec Active-RND Active-CKS

OP UP MP WMP OP UP MP WMP OP UP MP WMP

Apache httpd 7.9 1.5 9.4 19.7 6.1 2.9 9.0 29.5 9.4 0.4 9.9 26.9
nginx 10.1 0.6 10.8 6.8 2.5 0.8 3.3 8.7 2.1 0.3 2.4 7.8
lighttpd 22.7 3.2 25.9 48.3 10.5 6.1 16.6 59.6 19.1 2.1 21.2 64.5
PostgreSQL 30.0 4.7 34.8 68.0 19.2 6.3 25.6 70.4 29.7 0.9 30.6 81.6
BIND 2.4 0.9 3.3 9.8 3.3 0.6 3.9 7.8 2.9 0.4 3.3 10.2

geomean 10.5 1.6 12.5 21.2 6.3 2.2 8.7 24.3 8.0 0.6 8.7 25.7

Table 4: Accuracy of the different SMC speculation strategies, with the average numbers of overcopied pages
(OP), undercopied pages (UP), mispredicted pages (MP), and weighted mispredicted pages (WMP).

overcopied pages, also taking into account the additional
costs for computing the checksums in Active-CKS. WMP
is computed as WMP = COC ∗ NOC + CUC ∗ NUC , with
NOC/NUC and COC/CUC being the number and cost factor
of overcopied/undercopied pages (respectively). Based on
the numbers in Table 1, we assume COC = 1 for GSpec and
Active-RND, and COC = 2.5 for Active-CKS. We also assume
CUC = 8 for all our strategies.

The number of unweighted mispredictions (MP) alone
seems to suggest that Active-CKS, with 8.7 mispredicted
pages on average, is together with Active-RND the best spec-
ulation strategy. However, its high accuracy is overshadowed
by the checksumming costs (WMP = 25.7), especially as
Active-CKS tends to overcopy (OP = 8.0) nearly as much
as GSpec (10.5).

GSpec, in turn, reported 21.2 weighted mispredicted pages
on average, outperforming the runner-up Active-RND—that
is, 24.3 WMP on average—with a similarly efficient working
set estimation implementation. This result acknowledges
the effectiveness of GSpec’s cost-driven speculation strategy
empowered by genetic algorithms compared to the random
strategy provided by Active-RND. This is also reflected in the
lower WMP values reported by GSpec across all our server
programs.

Overall, we can observe that the WMP predicts the per-
formance results of the respective speculation mechanisms
well and further shows the importance of carefully balanc-
ing accuracy and efficiency of the underlying working set
estimation algorithm when designing a speculation strategy.

7.4 Memory Usage
As checkpoints also include overcopied pages, the accu-

racy of a speculation strategy has a direct impact on check-
point size and overall memory usage. In our experiments,
we observed our speculation strategies introducing an aver-
age checkpoint size increase compared to COW of 44%-66%
across all our server programs (geometric mean). Programs
with a larger writable working set—for example, PostgreSQL—
or more diverse memory access patterns across checkpointing
intervals—for example, lighttpd—yield the highest check-
point size compared to traditional incremental checkpointing
across all our speculation strategies, with a maximum in-
crease of 133% and 107% (respectively). Programs with
more rigorous memory usage, in turn—that is, Apache httpd
and BIND—yield a more limited amount of overcopying,
with a maximum increase of only 19% and 12% across all
our speculation strategies. GSpec’s checkpoint size increases
are comparable to the other speculation strategies, only
occasionally yielding higher increases that reflect a more
aggressive overcopying strategy—for example, for Apache

httpd. Even nontrivial increases in checkpoint sizes (e.g.,
133% for PostgreSQL), however, do not typically result in
significant increases in physical memory usage overhead com-
pared to COW. To quantify the latter, we computed the
average overhead induced by memory checkpointing on the
Resident Set Size (RSS).

Using COW, we reported a worst-case RSS overhead in-
duced by memory checkpointing of only 3.6% (lighttpd). The
same scenario resulted in a maximum RSS overhead of 7.6%
across all our speculation strategies. This, thereby, translates
to a maximum RSS increase of only 4 p.p. induced by SMC.

7.5 Restore Time
Overcopying errors introduce an excessive number of pages

in a checkpoint, thus also increasing the restore time. For
the program (PostgreSQL) with the largest checkpoint size
increase (30 pages for GSpec) and the second largest average
checkpoint size (28 pages), this results in roughly doubling
the number of pages to be restored (58 pages). The worst-case
relative increase across our server programs is, thus, small,
with only 558 extra CPU cycles required to restore 58 pages
(2840 cycles) instead of 28 pages (2282 cycles)—measured
using a synthetic microbenchmark. As the total time is still
small and restore operations are generally much less frequent
than checkpoint operations (e.g., at error recovery time), we
believe this additional cost to be negligible in practice.

8. RELATED WORK

Incremental checkpointing techniques.
Several incremental checkpointing variations and applica-

tions are described in literature, with implementations at
the user level [3,16,20,51,54–56,60], kernel level [5,21,24,36,
37, 49, 58, 63], or virtual machine monitor level [11, 34, 50, 67].
User-level techniques can be easier to deploy, but incur sig-
nificant run-time overhead because memory management at
the application-level is more costly than from within the ker-
nel [9]. Other user-level approaches, rely on compiler-based
program instrumentation [10,14,39,40,64,65,76], which re-
quire source-code and recompilation of the target programs
and all used libraries. Using dynamic instrumentation at the
binary level [53, 70] can provide checkpointing for unmodi-
fied binaries but incurs even higher performance overheads.
Finally, approaches that require hardware support are not
practical on commodity systems [17]. For this reason, SMC
adopts a kernel-only checkpointing strategy implemented
in a small kernel module, allowing for easier deployment
compared to prior kernel-level work relying on dedicated
kernel patches [5,21,36] or complex modules implementing
fully-blown memory containers [49, 58]. Furthermore, in



stark contrast to SMC, these techniques make no attempt
to eliminate direct and indirect memory tracing costs in
high-frequency memory checkpointing scenarios.

Checkpointing optimizations.
A common trend in prior work is to explore strategies to

reduce the amount of checkpointed data. Some approaches
propose checkpoint compression [28,40], others rely on block-
level checksumming [19, 46] to improve the granularity of
incremental checkpointing techniques [3, 19, 46,51, 56, 63], or,
seek to discard redundant memory pages from the check-
pointed data [25, 47, 50]. These approaches are well-suited
to space-efficient process checkpointing on persistent stor-
age, but are generally less useful to improve the memory
checkpointing performance. SMC demonstrates that, in high-
frequency memory checkpointing scenarios, memory over-
copying can actually be beneficial to minimize the impact of
indirect costs on the run-time performance.

Researchers also have explored program analysis techniques
to select optimal checkpointing locations [40] or checkpointed
data [14, 22, 32]. While complementary to our work, these
techniques may help select checkpointing intervals with min-
imal working set size or provide useful heuristics to improve
the accuracy of our working set estimation algorithms. We
plan to explore the impact and the synergies between pro-
gram analysis techniques and SMC in our future work.

Finally, other researchers have considered prediction-based
strategies to improve memory checkpointing techniques. Nico-
lae et. al [48] propose predicting the order of memory pages
modified within the next checkpointing interval to priori-
tize data to save on persistent storage in an asynchronous
fashion. Also their prediction strategy is tailored to re-
ducing the number of copy-on-write events—each memory
page is write-protected until asynchronously flushed to per-
sistent storage. Unlike SMC, however, their focus is on
reducing copy-on-write events to minimize memory usage
and their prediction strategy is only effective in asynchronous
checkpointing scenarios. Other researchers have proposed
combining copy-on-write semantics with dirty page tracking—
using dirty bits [67] or memory diffing [42]—to predict (and
precopy) the pages modified at the next checkpointing in-
terval. Their prediction strategy, however, is limited to con-
secutive checkpointing intervals—which reduces the overall
prediction accuracy—and relies on expensive tracking mech-
anisms in high-frequency checkpointing scenarios—which
reduces the overall performance. SMC, in contrast, general-
izes these simple prediction strategies to the writable working
set model, with a larger window of observation and stronger
performance-accuracy guarantees.

Working set estimation.
Researchers have investigated working set estimation al-

gorithms for a broad range of application domains, ranging
from garbage collection [26,69,72], dynamic memory balanc-
ing [13,30,42,43,66,78], and efficient memory management in
general [79], to fast program startup [31], VM migration [71],
and page coloring problems [75]. To our knowledge, how-
ever, SMC represents the first application of working set
estimation algorithms to the memory checkpointing domain.
Prior work on working set-driven restore of checkpointed vir-
tual machines [73, 74] comes conceptually close, but, in such
context, the working set estimation is performed relatively
infrequently and offline—at checkpointing time—and the in-

formation gathered only later used to efficiently prefetch data
from persistent storage—at restore time. SMC, in contrast,
relies on online WSE algorithms that assist and exploit syn-
ergies with high-frequency memory checkpointing techniques
in real time.

Working set size estimation techniques rely either on dirty
page sampling [66,75], monitoring memory statistics exported
by the operating system [13,26, 43, 72], or incrementally con-
structing LRU-based miss ratio curves (MRC) [30, 42, 69,
71, 77–79]. The latter generally provide the most accurate
working set estimation method, but their most natural imple-
mentation requires expensive memory tracing mechanisms.
More efficient implementations adopt an intermittent MRC
tracking strategy that closely follows the phase behavior
of common real-world programs [77] or rely on working set
tracking to avoid tracing frequently accessed pages [69,78,79],
typically at the cost of reduced accuracy [7].

However, traditional working set tracking techniques im-
pose important performance and deployability limitations
when applied to high-frequency memory checkpointing. Our
genetically-inspired blackbox optimization algorithm, in turn,
seeks to minimize the ad-hoc tuning effort generally required
by prior techniques, automatically adapting the estimates
to different workloads and matching the high accuracy and
responsiveness required in high-frequency memory check-
pointing scenarios.

9. CONCLUSION
Traditional incremental memory checkpointing is generally

perceived as sufficiently fast for several typical real-world pro-
grams. In this paper, we challenged this common perception
in the context of high-frequency memory checkpointing, by
demonstrating that “hidden” costs generally deemed marginal
in periodic checkpointing solutions significantly increase the
run-time overhead when checkpoints are frequent. To sub-
stantiate our claims, we presented an in-depth analysis of
the direct and indirect memory tracing costs associated with
incremental checkpointing and uncovered limitations of prior
frameworks in high-frequency checkpointing scenarios.

To address such limitations, we presented SMC, a new
low-overhead technique suitable for high-frequency memory
checkpointing. To minimize the direct costs associated with
the checkpointing activity, our SMC framework relies on
non-intrusive kernel-level specialization implemented in a
loadable kernel module. To minimize the indirect costs
associated with the checkpointing activity, our framework
relies on algorithms for estimating the writable working set to
copy speculatively those memory pages that are most likely
to change in the next checkpointing interval, and in so doing
reduce the memory tracing surface required by traditional
incremental checkpointing.

We also demonstrated that our genetically-inspired black-
box optimization algorithm (GSpec) provides an effective
working set estimation strategy for SMC, continuously adapt-
ing the working set to the workload driven by only program-
agnostic cost factors. This strategy provides better accuracy,
performance, and self-tuning guarantees than traditional
working set estimation techniques. Overall, our experimen-
tal results show that SMC is both time- and space-efficient
in the practical cases of interest, demonstrating that low-
overhead high-frequency memory checkpointing is a realistic
option and opening up opportunities for new programming
abstractions empowered by fast checkpointing techniques.
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