
SweetBait: Zero-Hour Worm Detection and
Containment Using Low- and High-Interaction

Honeypots
Georgios Portokalidis and Herbert Bos

Department of Mathematics and Computer Science
Vrije Universiteit Amsterdam, The Netherlands

{porto,herbertb}@few.vu.nl

Abstract— As next-generation computer worms may spread
within minutes to millions of hosts, protection via human inter-
vention is no longer an option. We discuss the implementation of
SweetBait, an automated protection system that employs low- and
high-interaction honeypots to recognise and capture suspicious
traffic. After discarding white-listed patterns, it automatically
generates worm signatures. To provide a low response time, the
signatures may be immediately distributed to network intrusion
detection and prevention systems. At the same time the signatures
are continuously refined for increased accuracy and lower false
identification rates. By monitoring signature activity and predict-
ing ascending or descending trends in worm virulence, we are
able to sort signatures in order of urgency. As a result, the set
of signatures to be monitored or filtered is managed in such a
way that new and very active worms are always included in the
set, while the size of the set is bounded. SweetBait is deployed on
medium sized academic networks across the world and is able
to react to zero-day worms within minutes. Furthermore, we
demonstrate how globally sharing signatures can help immunise
parts of the Internet.

I. INTRODUCTION

As new breeds of worms are expected to spread to millions
of hosts in minutes, if not seconds, it is imperative to automate
both outbreak detection and response [1], [2]. Worse, in order
to be effective the automated system should take appropriate
counter measures in a fraction of the time that it takes the
worm to spread. Previous attempts to develop such detection
systems have built on flow-based anomaly detection, honey-
pots, and end-host detection [3], [4], [5]. Several projects have
addressed the problem of automatic signature detection [6],
[7]. Unfortunately, most existing approaches exhibit one or
more of the following problems:

1) False positives. For any automated response system
holds that misclassifying and blocking bona fide traffic
may result in unleashing a denial of service attack by
the defence mechanism.

2) Instances rather than variations. Most existing systems
extract the signature of an individual worm with no
attempt to check whether this is a variation of a worm
that was previously detected.

3) Presence rather than virulence. Anyone brave enough to
connect an unprotected machine to the Internet will soon
discover that there are many different worms out there.
In addition to an exhaustive list of what worms have

been encountered in various places, a security system
would benefit from information about the worm activity
level. Virulent worms may require more drastic and
immediate measures than worms that spread slowly.

4) Known worms rather than zero-day attacks.

In SweetBait we address the problem of fast worms by
means of honeypots. The system also detects worms that
spread slowly and even other forms of malware, but these
are not its focus. We discuss the design and implementation
of an automated response system that aims to protect small
and medium sized networks from random IP scanning worms.
The size of the networks in focus was motivated by a desire to
avoid performance issues that arise with systems on backbone
links. Our goal is to automate the procedures of both worm
signature generation, and signature distribution. Signatures are
distributed both to external network intrusion detection and
network intrusion prevention (NID and NIP) systems, and to
external host-based intrusion prevention (HIP) systems. At the
same time we aim to achieve a low reaction time to new
outbreaks. The challenging task of identifying new worms is
performed by honeypots. In SweetBait the honeypots along
with the NID and NIP systems will be managed by a control
centre (CC), which will be able to respond to outbreaks
even when untended. Some contributions of this paper are
summarised below:

1) reduce false positives by requiring confirmation from
multiple sensors and by ‘whitelisting’ benevolent traffic;

2) continuously refine worm signatures to provide auto-
mated signature revision;

3) employ HID, NID and NIP systems for detection and
containment;

4) predict worm aggressiveness by monitoring a worm’s
activity level;

5) through an open design, allow different types of honey-
pots to be plugged in;

6) distribute signatures through a global control centre
(GCC) to all instances of the system to achieve possible
immunisation of parts of the Internet.

To prove point (5) we implemented two different signature
generators. One is known as SweetSpot and is based on a
low-interaction honeypot similar to honeyd. The other, known



as Argos, is still experimental and only partially integrated
with SweetBait. It consists of an innovative high-interaction
honeypot on top of an x86 emulator. We chose honeypots
rather than network taps for several reasons. First, network
administrators feel more comfortable with handing out chunks
of unused IP address space than with systems that snoop
on user traffic. Second, while it is true that honeypots by
themselves never see hit-list worms, this was easily remedied
by directing suspicious traffic to the honeypot. Indeed, Argos is
used to deploy an advertised honeypot: unlike most honeypots,
we do not try to make Argos invisible. On the contrary, it
is intended that Argos honeypots are linked to actively. For
instance, hidden links can be added to webpages that point to
Argos sensors. While no human would normally follow these
links, one should expect a fair amount of benevolent traffic
in the from of web crawlers etc. For this reason, the issue
of false positives is even more important than for SweetSpot.
To ensure that we do not generate signatures in response to
benevolent traffic, we demand the number of false positives in
the intrusion detection component of Argos to be zero. At the
same time, we demand that the number of false negatives for
the types of attack that are recognised by Argos to be zero.
While we have implemented a functional prototype of Argos,
we have only recently started to embed it in SweetBait. Unlike
SweetSpot, we have therefore not deployed it beyond our own
laboratory testbed.

Even with SweetSpot sensors it is possible to capture certain
hitlist worms by actively directing traffic to the honeypot.
In this case, the NID would function as a two-tier system
that uses anomaly detection in the network as a first, and the
SweetSpot honeypots as a second tier in the detection process.
Whenever unusual behaviour is detected, the corresponding
traffic is forwarded to honeypots for further analysis. In this
way, we preserve the property that all traffic arriving at the
honeypot is suspect. This is in contrast to both our Argos
signature generator and all approaches that protect against
attacks at the user’s machine, e.g., [8] and our own [9]). These
latter approaches must therefore work harder to weed out the
false positives.

Note that a third argument is sometimes made in favour
of honeypots, namely that random IP scanning worms have
been much more popular than hit-list worms and scanning
worms are responsible for the fastest spreading behaviour to
date. While true, we do not consider this a valid assumption
for a future-proof system. For instance, Staniford, Paxson
and Weaver have demonstrated that in theory hit-list worms
have the potential spread faster than scanning worms [1]. We
therefore expect to see more of these attacks in the future.

Currently, we have a fully functional implementation of
SweetBait/SweetSpot, and an experimental prototype of Ar-
gos, which is in the process of being incorporated into Sweet-
Bait. In this paper we describe the SweetBait architecture,
as well as the main components that were implemented. In
Section II we will give a detailed description of the system’s
architecture. In Section III, we outline our implementation.
We evaluate the system in Section IV. Since the embedding

of Argos in SweetBait is work in progress, while Sweet-
Bait/SweetSpot has already been actively deployed at several
sites around the world, evaluation for both honeypots will be
along different lines. Related work is discussed throughout
the text and also in Section V. Finally, we will present our
conclusions and future work in Section VI.

II. SYSTEM OVERVIEW

SweetBait is comprised of multiple components with dis-
tinct roles, which can be roughly classified into two categories:
sensors and control elements. Honeypots, intrusion detection
and prevention systems are all sensors, while control centres
and a global control centre constitute the control components.
The honeypots are set up to receive data destined to nonexis-
tent IP addresses of the corresponding subnet as well as any
traffic that is explicitly directed to them as explained in the
previous section.

These data are first filtered to exclude any known benevolent
traffic patterns. The remainder is treated as of malicious origin
and is processed to generate NID signatures that we claim to
belong to malware. The generated signatures are then posted to
the CC, where they are compared with the ones already known.
Based on the incidence reports from multiple locations, the
CC decides which signatures to transmit to the NID and NIP
components. NID and NIP sensors return feedback to the CC
concerning the number of hits for the signatures they have
been monitoring or filtering. Finally, the CC is responsible
for exchanging signatures and activity statistics with a GCC.
The presence of a GCC enables cooperation of instances
of SweetBait globally, which is necessary to achieve worm
containment [1].

A typical configuration of SweetBait components is shown
in Figure 1. In the remainder of this section we will describe
each component in detail.

A. Honeypot sensors

Honeypots are powerful devices for capturing random IP
scanning worms. These worms discover new victims to attack
by randomly generating IP addresses. We distinguish between
two types of honeypots: hidden and advertised.

The IP address of a hidden honeypot is by its nature
unadvertised on the Internet, and as such it does not exchange
any legitimate data with the rest of the network. We may
therefore assume that all traffic destined to it is suspect. By
populating dark IP space of a network with hidden honeypots,
there is a high probability of finding a scanning worm in its
early stages.

For advertised honeypots the assumption that all traffic is
suspect does not hold. Hence, it must have a way to separate
the good from the bad. As shown in Section III-B, the way we
do this in SweetBait is by only generating signatures for data
that is demonstrably malignant. In essence, we use memory
tainting to trigger an alarm if we catch in the act either a
stack-smashing/heap overflow or format string attack.

Deploying a honeypot presents us with two further pos-
sibilities. The first is to sacrifice a real host running real
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Fig. 1. Architecture overview

services (high-interaction), while the second is to simulate
services and/or hosts (low-interaction). The former offers high-
interactivity with attackers and makes the honeypot almost
indistinguishable from other hosts, but it requires additional
protection mechanisms such as sandboxing [10], [11]. Since
no real services are run, the latter offers a lower level of
interaction, but requires less maintenance and supplies a
greater degree of security [12], [13]. Also, it was shown
in NoSEBrEaK that some high-interaction honeypots can be
easily discovered as such by intruders [14].

SweetBait uses both low-interaction and high-interaction
honeypots. The main advantages of low-interaction honeypots
for SweetBait are the low maintenance requirements and
security considerations, which makes it easier to deploy. Other
projects such as Leurre.com also opted for low-interaction
for this reason. The low-interaction honeypot, known as
SweetSpot, is able to simulate multiple hosts, permitting us
to populate unused IP address space easily and to maximise
the amount of captured traffic.

The high-interaction honeypot in SweetBait, known as Ar-
gos, is much more complex. It captures both known worms
and zero-day attacks. In addition, it can be used to generate
both network signatures and signatures for end systems. We
will discuss Argos in detail in Section III-B.

Even though we consider all traffic received by the
SweetSpot honeypot suspect, in practice a small amount of
non-worm related, or even legitimate traffic is also captured.
A well-known source of spurious traffic, for instance, is back-
scatter from DDoS attacks. Broadcast messages, or attempts to
scan the network are examples of traffic that for our purposes
may be ignored. To tackle this we introduce the notion of
a whitelist: a list consisting of patterns that are considered
benevolent, or inapplicable for generating NID signatures. A

filter placed at the honeypot rejects all traffic matching a
whitelisted pattern. The filter can be largely auto-generated
by training the system on a network when it is unconnected
to the larger Internet. This simple step reduces the number of
false postives and increases significantly the accuracy of the
signatures that are generated.

Consequently, the sensors process the remainder of incom-
ing data. The way the data is processed is specific to the sensor.
The sigantures that are generated, however, must conform to
the SweetBait format.

For instance, low-interaction SweetSpots scan traffic for
repeated byte sequences in an attempt to identify worm propa-
gation and to generate a signature. For the scanning process to
be effective it is necessary to utilise stream reconstruction for
sequenced, connection-based protocols such as TCP, since the
underlying IP layer may deliver packets out of order impeding
our capability to identify patterns spanning multiple packets.
High-interaction Argos honeypots push the data up to the
application and triggers a signature generation phase whenever
a violation is detected. It is able to generate different types of
signature, one of which is a network signature similar to the
one generated by SweetSpot.

All signatures conform to SweetBait’s format. The format
consists of a small header identifying the type of signature, the
system that generated it, etc. As an example, the following two
signatures show different types of signatures generated by the
two honeypots:
SIGNATURE 1 SIGNATURE 2:
generated by: SweetSpot generated by: Argos
source: 10.0.0.1. source: 10.0.0.2
destination: 192.168.2.1 destination: 192.168.2.2
type: network signature type: host signature
subtype: string subtype: string
description: longest common description: pattern for encry-

substring pted IIS data



Finally, we transmit the generated signatures from the sensor
to the control centre, where subsequent actions are taken. The
transmission is done in a secure manner that guarantees the
authentication of both parts, as well as the integrity of the
transmitted data.

B. Network Intrusion Detection and Prevention Sensors

We use network intrusion detection sensors to passively
monitor ingress and egress traffic for worms, based on the sig-
natures of type network signature generated by the honeypots.
Whenever a signature is matched, the NID sensor reports it
by issuing an alert that also includes the IP addresses involved
in the transaction. Besides allowing us to quantify a worm’s
activity, this information also enables us to:

• populate an Internet map with infected IP addresses;
• block infected remote hosts from accessing our network;
• identify infected hosts in our network, and initiate immu-

nisation procedures.
NIP sensors, besides monitoring and reporting worms by

issuing alerts, assume the active role of filtering ingress and
egress traffic based on signatures of type ‘network’. If
initiated before any host in the network has been compro-
mised, blocking worms from entering the network will lead
to immunisation. On the other hand, obstructing worms from
leaving the network is tantamount to ‘team play’ on our part
that helps contain the worm, and earns time for other networks
to raise their defences.

Most NID and NIP systems today are manually updated
each time a new worm appears, while alert reports are being
used purely for historical purposes. The SweetBait sensors are
in constant communication with the control centre, which is
responsible for automatically updating the sensors with the
signatures that need to be monitored or filtered, respectively.
Additionally, we immediately post the alerts generated by the
sensors to the CC for storage, as well as for estimating worm
aggressiveness. Again, the communication channel is secure
to ensure only authorised access to the CC.

C. Host-based Intrusion Detection and Prevention Sensors

Although SweetBait as it is deployed only uses NID and
NIP sensors, the version under development employs other
sensors as well. For instance, as the Argos honeypot generates
network signatures as well as host signatures, we are able to
send signatures to hosts automatically. While one could, in
principle, employ signatures similar to self-certifying alerts as
employed in Vigilante, we have focused primarily on host-
based filtering and left the distribution and verification of
signatures for future work.

As Argos automatically generates signatures when buffer
overflows or format string attacks occur, we have no problem
in catching zero-day worms. Generating the signature is more
difficult as we shall see in Section III-B.

The sensor that we implemented thus far is really inter-
mediate between a host-based and a network-based, as it is
implemented in software on a programmable NIC. It scans all

incoming traffic for the occurrence of signature of worms and
viruses. It is described in detail in [9].

D. Control Centre

If honeypots and intrusion detection/prevention systems are
the arms and legs of SweetBait the control centre is the brain.
The CC collects information from the sensors, processes it and
instructs the sensors on future actions. Information exchange
between the CC and connected sensors is performed based on
a well-defined protocol, decoupling the exchanged data from
specific sensor types. The CC gathers two types of incidence
reports: network intrusion signatures and alerts.

Signatures are compared with every known signature to
detect overlaps. When significantly sized overlaps exist, the
received signature is considered to be a specialisation of the
stored one, and it is stored as a new version. Besides the
actual network intrusion signature, the stored data consist
of accompanying meta-information. Such data include the
timestamp to indicate the time of generation, the source of
the signature (e.g., the IP of the honeypot), and various flags
to indicate whether it has been verified by an expert to be a
valid or a false signature. The latter is essential information
that permits humans to affect the decision making process that
is described later to increase the effectiveness of the system.

The CC also collects alerts generated by NID and NIP
components when network traffic is found to match one of
the known signatures. Each alert contains information that
identifies the signature, as well as the source and destination
IP addresses involved in the data exchange. The information
is stored in a database both for auditing and the reasons men-
tioned in Section II-B. Furthermore, the number of occurrences
of a worm in the network is an indication of its aggressiveness,
and will be used to classify the signatures based on the threat
they pose. We discuss later how administrators may require
signatures to be confirmed by multiple sites to reduce the
number of false positives.

Besides gathering these incidence reports, the CC also
pushes information to HID, NID and NIP sensors automat-
ically. A sensor that identifies itself as able to perform either
intrusion detection or prevention receives periodic reports
about what packets it should monitor or block. This automates
the deployment of NID signatures, and represents a significant
step to zero-hour detection and containment.

In most implementations, the number and size of signatures
that each NID or NIP is looking for determines its maximum
throughput, therefore we enforce a limit on the size in bytes
of the signatures that are pushed to the sensors. We adopt the
notion of a signature budget, signatures are sorted based on
their virulence and we push as many as the budget permits.
Additionally, a policy dictates which of these signature are to
be filtered. When a signature’s activity exceeds a configurable
threshold, the sensors will be instructed to filter the offending
traffic. Whether a signature is verified to be valid or false,
can also be used to exclude false or even unverified signatures
from being filtered, preventing in this way the system from
accidentally stopping legitimate traffic.



Finally, the CC periodically exchanges information with the
global control centre (GCC). This includes newly generated
signatures, as well as activity statistics of known signatures.
The statistics received by the GCC are accumulated with the
ones generated locally to determine a worm’s aggressiveness.
This accumulation ensures that the CC is able to react on a
planetary outbreak, even if it has not yet been attacked itself,
achieving immunisation of the protected network.

E. Global Control Centre

The detailed specification of a planetary scale centre for
worm control is beyond the scope of our work, nevertheless
we briefly mention the aspects of such a centre that are
necessary for SweetBait and that we have implemented. The
GCC collects signatures and statistics in a similar way to a
CC, with the main difference being the lack of a signature
budget when pushing signatures to CCs. Additionally, because
of performance, as well as privacy concerns only the number
of alerts is exchanged discarding the source and destination
IPs information. As a single GCC obviously is susceptible to
attacks and could become itself a liability, a distributed solu-
tion is preferable both for performance and security reasons.

F. Reducing System Vulnerability

SweetBait has been designed to protect sensors, control
elements and the communication channels between them.
However, like in most automated response systems, it may be
possible to manipulate the signatures that are generated, e.g.,
by bombarding SweetSpot with identical harmless packets.
The packets cause the system to incur a high incidence rate
for the corresponding signatures, and hence may lead to an
automated response that blocks the traffic in the network. In
this way attackers might even be able to cause SweetBait
to block user traffic. To do so, attackers need to discover
the honeypot first. Alternatively they could flood the entire
network with the traffic, but this would be soon detected.
While whitelisting helps a little to counter such manipulations,
it is by no means sufficient.

The presence of a GCC may be more effective in miti-
gating these effects by ensuring that attackers cannot easily
manipulate activity rates. A worm’s activity is determined by
accumulating the rates reported by all SweetBait instances
through the GCC, therefore the effects of such an attack would
be dulled.

For stronger protection, SweetBait has a configurable pa-
rameter that indicates how strongly the incidence reports
should be confirmed by other honeypots. As it is much harder
to discover n > 1 honeypots rather than just a single one, the
SweetBait CCs may require incidences to be confirmed by at
least n sensors, trading response time for robustness.

III. SYSTEM IMPLEMENTATION

This section discusses the implementation of sensors and
CC. We have employed off-the-shelf solutions wherever pos-
sible in an attempt to allow already deployed systems to be
integrated in SweetBait. As we only started to incorporate

Argos in SweetBait recently, and its integration is only par-
tially complete, it was not part of the deployed architecture. In
addition, Argos employs novel ways of detecting worms and
generating signatures and for this reason it will be evaluated
along different dimensions than SweetSpot.

A. Low-Interaction Honeypot Sensor: SweetSpot

For SweetSpot we use honeyd, a virtual honeypot frame-
work that provides multiple low-interaction virtual honeypots
on a single host [4]. It captures traffic destined to unused IP
addresses on the deployed network and supports third party
plug-ins that can access and process the captured traffic. Every
SweetSpot is attached to an operating system (OS) profile
that results in the simulation of its TCP stack on established
connections. This approach protects the host from tools like
xprobe and nmap [15], [16] that fingerprint TCP packets to
identify its implementation and expose the host’s OS. Besides
simulating operating systems, honeyd supports scripts that
emulate services such as a web server or a telnet daemon.

For automatically generating NID signatures from the cap-
tured traffic, we employ honeycomb, a honeyd plug-in that
scans incoming traffic and detects repeating patterns using the
longest common substring (LCS) algorithm [7]. In addition,
honeycomb performs flow reconstruction, and is able to detect
patterns even when they are segmented in multiple IP packets.
Signatures are periodically written out to a log file in pseudo-
snort rule format along with a timestamp that can be later read
and distributed to the CC.

To utilise a filter for whitelisted patterns, we developed a
new honeyd plug-in named honeybounce. This plug-in sup-
ports a list of rules that specify in snort rule format the
patterns to be excluded from the NID signature generation.
This is achieved by loading honeybounce prior to honeycomb
and rejecting the matching packets. Since honeyd plug-ins
do not support packet rejection, we have developed a patch
that installs this functionality. Currently, honeybounce does
not perform flow reconstruction, because of constraints of the
honeyd plug-in architecture and also to conserve CPU time
for pattern detection by honeycomb. We do not expect this to
become an inconvenience, because of the nature of whitelisted
traffic, which is benevolent by definition and consists mainly of
broadcast and multicast messages originating from the subnet.
These messages are mostly small enough to be contained in a
single packet, and in all other cases we observed in practice
that fragmentation is predictable, being the result of regular
fragmentation of a stream into IP packets.

Honeybounce supports filtering of TCP and UDP packets
based on exact byte sequences and perl regular expressions.
To accelerate the filtering procedure the filters are classified
in three categories based on protocol: TCP, UDP or ANY.
For each of these classes the filters are hashed based on their
destination port number(s), which can also be ANY. Filters
are applied sequentially, when a match occurs the procedure
is terminated by signalling honeyd to reject the packet averting
its processing by honeycomb and subsequent plug-ins.



The signatures generated by honeycomb are read by a signa-
ture distribution process that transmits them immediately to the
CC. The signatures are first examined to ensure that the content
is valid and that they are not older than the last signature
received from the CC. This is accomplished by requesting
the timestamp of the last signature received from the CC,
when first establishing the connection. Such an approach is
necessary, because honeycomb generates signatures even for
obscure protocol flags combinations, and additionally dumps
all generated signatures periodically. Finally, SSL is used
between the honeypot and the CC to perform authentication
between the two using public and private keys, and to ensure
that the exchanged data are secure from eavesdropping.

B. High-Interaction Honeypot Sensor: Argos

Argos is much more complex than SweetSpot and while
a functional prototype exists, we have just started exploring
the domain of signature generation. As a result, our current
signatures are rather crude, and we expect more results in
this area in future work. A detailed discussion of Argos’
implementation is beyond the scope of this article and is
described in a conference paper submitted elsewhere. Note
that unlike the signature generator, the intrusion detection part
of Argos is not a proof of concept solution, but a deployable
system with reasonable overhead that runs on commodity
hardware and on top of various OSs.

Argos is a high-interaction honeypot based on a modified
x86 processor emulator known as Qemu [17]. On top of the
emulator we run the OS of our choice. No changes to the OS
are required and we can therefore support any OS running on
the IA32 architecture. In practice, we have succesfully tested
Argos with Linux, Windows 2000 and Windows XP. On top
of the OS, we run the applications we want to track (e.g.,
Apache, IIS, etc.). Unlike many other approaches, Argos has
no knowledge of the applications and protects all code running
on top of it, including the kernel.

Misbehaving code is detected at the level of the emulator.
We use dynamic taint analysis [18] to detect when a vulner-
ability is exploited to alter the target’s control flow. Dynamic
taint analysis aims to identify the illegal uses of unsafe data
such as data received from the network. For instance, using
values originating in the network as jump targets, function call,
or return addresses is considered to be illegal. Additionally,
executing data originating from the network is also not allowed
to capture attacks that while control flow is not altered, inject
arbitrary instructions into locations known to be jump targets.

The signature that is generated by Argos is crude but
effective. Whenever a violation is detected, we dump to file
all tainted pages that correspond to the currently active code
(the page tables help us determine wich pages belong to this
code). In addition, when we detect illegal use of tainted data,
we also dump the jump target (4 bytes on our architecture),
and the page containing the jump target.

Furthermore, by inserting our own shellcode in the code
that is currently under attack, we unearth relevant information
about the process. In the current implementation, we read the

process identifier and the executable name, but in the future
we plan to extend this to open files, open sockets, etc. In other
words, we inject our own ‘attack’ to gather useful information
about the real attack. All this data is written to file for analysis
(e.g., by a human expert) and automatic signature generation.

Our signature generator scans the network traces towards
this application for the occurrence of the jump target. In case
of TCP traffic, the network stream is first reconstructed. Next,
when the jump target is found, we scan for information around
the jump target. Thus we create a maximum-sized network
signature for the attack that is subsequently sent to the CC.

If we did not find the jump target, it probably means that the
traffic is encrypted. Current implementation work aims to cope
with this type of attack by interposing between the application
and well-known encryption/decryption libraries. For Argos,
we are implementing a handler that replays the trace to the
application after restoring the application in a clean state.
By placing a wrapper function between the application and
the encryption library to scan all data flowing towards the
application, we can apply the same steps as for unencrypted
traffic, except that we generate a signature of a different type.
At this point we have implemented the interposers and checked
that it is possible to find a signature in this way.

We stress that Argos is only a first stab at an automated
defense against some really complex attacks and by no means
a mature IDS. For instance, in the current implementation we
do not yet provide secure communication to the CC, we do not
automatically roll back services on the Argos hosts after an
attack was detected, etc. All these are fairly prosaic problems
which prevent the system as is from being widely deployed.
However, we believe that Argos represents an important step
as it explores an extreme in the design space of intrusion
detection systems: detecting zero-day attacks and may in the
future even handle encrypted attacks. Furthermore, we will
show that it is able to detect reliably all buffer overflow attacks.
It flags no false positives and so far we have not found any
false negatives either.

C. Host Intrusion Detection Sensor

The HID sensor we developed so far includes a pattern
matching engine implemented in software on a programmable
network card. This solution, known as cardguard, is described
in detail in [9] and consist of a parallel implementation of the
well-known Aho-Corasick pattern matching algorithm on Intel
IXP1200 network cards. All traffic that arrives at the host is
subjected to a payload scan for signatures derived from the
snort rule set [19]. For TCP flows, Cardguard first employs
stream reconstruction.

Note that all checks are performed before the traffic even
reaches the host CPU. Besides off-loading the host CPU this
has an additional advantage. Administrators may be reluctant
to trust the software running on a host CPU. By placing the
HIP sensor in the NIC, shielded from the end-user may be
considered more acceptable from a political viewpoint.

The rules in cardguard are encoded as a deterministic finite
automaton (DFA) that is generated off-line. A packet or TCP



stream is matched one byte at a time and for each byte the DFA
incurs a single state transition. Because all rules are encoded
in a single DFA, one state transition matches all rules at once.
The overhead incurred is therefore proportional to the size of
the packets rather than the number or size of the rules. As there
are many thousands of rules already, this is a very desirable
property.

Cardguard uses the measured locality of reference in
DFA accesses to steer the memory layout of the DFA. In
other words, states that are needed frequently are placed
in highspeed memory (on-chip instruction store), while less
frequently states are placed in off-chip SRAM or DRAM.
While IXP1200s are now considered obsolete, the performance
of cardguard (600 Mbps for UDP, 100 Mbps for TCP) is quite
acceptable for most end-host systems.

D. Network Intrusion Detection and Prevention Sensor

Snort [19] is one of the most popular open source NID
systems, and is deployed in many networks. This along with
the fact that honeycomb generates signatures in snort rule
format motivated the adoption of snort as the base of NID
sensors. Snort scans received traffic for a set of rules and
generates an alert each time a match occurs. These alerts are
logged in a file and subsequently transmitted to the CC. The
information contained in an alert includes a custom annotation,
which we use to identify the rule that caused it, and the
involved IP addresses. Such an alert is shown in Figure 2.
Snort can also react (in a passive way) when a TCP flow
has been found to match a rule by using control packets to
terminate it. This is accomplished by transmitting a TCP FIN
packet to both ends of a TCP flow, when a corresponding
rule is matched. Unfortunately, in the case of worms such
a mechanism is not sufficient, since the original packets
containing the worm have already reached their destination,
and have probably infected it.

Since snort is not deployed in-line and does not offer
an efficient protection mechanism, along with the lack of
open NIP alternatives, we implemented a simple NIP system
based on Linux netfilter (http://www.netfilter.org).
Netfilter on a Linux router permits us to intercept packets
before being routed, and thus filter them at the point of entry
in the network.

We developed a Linux kernel module, named CBFilter,
based on Netfilter to perform content-based filtering. The
module scans for byte sequences in packets’ payload using
the well-known Aho-Corasick algorithm [20]. If (a) a packet
arrives with a protocol and portnumber combination that is
specified ‘to be checked’, and (b) the payload matches a
target pattern corresponding to one of the rules, and (c) the
protocol and destination port number also match, then the
packet is dropped. We have chosen to scan first the payload of
a packet and then check the protocol and port number to avoid
instantiating multiple search trees for each protocol and port
number pair. Such an approach would diminish the benefits
of using the Aho-Corasick algorithm, reducing performance
to that of a serial search algorithm. Note that even though the

algorithm is the most effective we could use, this procedure
remains computationally expensive.
CBFilter is controlled from user-space over a device

file. A process can instruct the module to load new filters,
start and stop filtering, as well as recover statistics. Statistics
include the number of packets filtered using a specific rule,
but not the source and destination addresses involved due to
performance restrictions. Each time statistics are retrieved, the
corresponding counter is reset. prototype

The alerts generated by snort and CBFilter are collected
by a signature distribution process that transmits them to the
CC. The same process also listens for signature updates from
the CC, and applies them to snort and CBFilter. To min-
imise data transmission, the process supports alerts caching:
aggregation of the alerts generated by each rule, and periodic
transmission of the number of hits incurred during each period.
This is useful when the number of alerts is sufficiently large
to approach saturation either of the connection with the CC,
or of the CC itself. The aggregation occurs at the expense of
detailed information that may be used for auditing, as the IP
addresses are not included with the aggregate alerts. As in all
cases, we use SSL on this connection for authentication and
security purposes.

E. Control Centre

We implemented CC as a multi-threaded server that han-
dles multiple concurrently connected sensors, and uses a
PostgreSQL database for storing its data (http://www.
postgresql.org). The CC collects two types of informa-
tion: signatures and alerts. When a new signature N is received
it is first compared with every stored signature S, sharing the
same protocol and destination port number. The comparison is
done in a signature-type-specific manner. Currently, we have
only used the LCS algorithm for all signatures of type string.
If an overlap O exists, then the following applies:

1) Specialisation: the length of O is at least X% of the
length of N .
O will be treated as a new version of the stored signature
S. In practice we found an initial value of X = 85 to
perform well, as it leaves space for the generation of
more specialised signatures, while protecting the system
from misclassifying a new worm signature N as a new
version of a stored signature S.

2) Generalisation: the length of O is at least Y % of the
length of S.
This rule was introduced to keep the system consistent
when a new honeypot sensor is introduced or an al-
ready running one is restarted. The honeypot sensors
do not hold persistent information regarding previously
generated signatures; when restarted in an attempt to
generate signatures as soon as possible they will generate
signatures more generic than the ones already stored
at the CC. These signatures will be large enough to
evade the first rule, but will be captured by this one.
The value of Y should be just below 100, or even 100
to completely eliminate the possibility of missing valid



[**] [1:2003:4] MS-SQL Worm propagation attempt [**]
[Classification: Misc Attack] [Priority: 2]
08/24-16:03:13.805589 XXX.XXX.X.XX:1178 -> XXX.XXX.XX.XX:1434
UDP TTL:108 TOS:0x0 ID:30134 IpLen:20 DgmLen:404
Len: 376
[Xref => http://vil.nai.com/vil/content/v_99992.htm]
[Xref => http://www.securityfocus.com/bid/5311]
[Xref => http://www.securityfocus.com/bid/5310]

Fig. 2. Example of a Snort alert

new signatures. In practice, we found a value of 95 to
be sensible and effective.

In both cases, if O is identical with S, it is discarded.
Furthermore, to avoid over-specialisation of signatures and
unreasonable signature lengths, we also introduce a minimum
and maximum. If the length of N or O do not fall within these
limits it is also discarded. Process the alerts is straightforward:
whenever an alert is received the activity counter of the
corresponding signature is increased, and the involved IPs are
stored in the database.

The CC periodically updates the NID, NIP and HID sensors
with the set of signatures that should be monitored and filtered
respectively. Because we enforce a budget on the maximum
size of the signature set deployed on these sensors, we need to
sort them based on their expected aggressiveness. To quantify
this, we selected the exponentially weighted moving average
of the number of alerts generated by each signature on each
period. It is defined as

m′ = w × a + (1 − w) × m (1)

where: m′ is the new value, m is the previous value, a

is the number of alerts this period, and w is the weight (a
configurable parameter). Selecting a value for the weight 0 <

w ≤ 1 configures m to follow more or less aggressively the
recent changes in activity levels. In practice, we found that
values less then 0.5 are not very useful. The value m is used
to predict future values of a worm’s aggressiveness. The value
of a signature’s activity A that is eventually used by SweetBait
is biased towards specific destination ports and protocols:

A = m × portbias × protocolbias (2)

This approach allows us, for instance, to react more aggres-
sively to UDP than TCP worms, and with caution to signatures
involving web or mail services. This is also useful as some
ports (e.g., ports 139 and 80) and protocols are much more
frequently attacked (or scanned) than others [21].

The signatures are subsequently transmitted to the NID, NIP
and HID sensors, starting with new signatures, and proceeding
with signatures that have the largest activity value, going as
far as the signature budget allows. Signatures with a value
of A larger than the filtering threshold are transmitted to the
sensors with the indication that they should be filtered, unless

the administrator of the system has requested that only verified
ones should be filtered.

Finally, the CC periodically contacts the GCC to exchange
signatures and global activity statistics. The received statistics
are aggregated with the local ones to provide new values of a

and consequently A. Again, SSL is used for communication
between CC and GCC.

F. Global Control Centre

The global control centre is a stripped-down version of the
CC described above. It is a multi-threaded server that handles
multiple connections from CCs, and exchanges signatures
and statistics. Signature specialisation is done as described
in Section III-E. Activity statistics received by the CCs are
aggregated, and are periodically cleared to avoid stale values
from inhibiting the ability of detecting new outbreaks.

IV. EXPERIMENTAL EVALUATION

To evaluate SweetBait we deployed it at four different sites:
Vrije Universiteit in Amsterdam, ICS FORTH in Heraklion,
UNINET in Oslo, and University of Pennsylvania in the US.
In all cases we deployed a SweetSpot sensor and a NID. At
the time of deployment the Argos sensor was still incomplete,
so we decided to deploy it only at the Vrije Universiteit
Amsterdam. In addition, the evaluation criteria of the Argos
sensor are different from those of SweetSpot. For instance,
what is crucial for Argos is whether it catches all attacks that
use buffer overflows and whether or not we incur any false
positives. For this reason, we evaluate SweetSpot and Argos
separately. The prime goal of our evaluation is to prove the
ability of SweetBait to generate valid worm signatures, and
achieve a low reaction time.

The size of unused IP address space varied from 32 IPs in
ICS FORTH to two class C subnets in Vrije Universiteit. As
expected, the larger the address space, the more traffic was
captured by the honeypot and consequently more signatures
were generated. Additionally, we noted increased activity
in our University of Pennsylvania honeypot, which may be
caused by the higher density of IP addresses in this area. As
we did not have access to a router to redirect suspicious traffic
to our honeypots, the SweetSpot sensors currently only pick
up random IP scanning worms.



A. SweetSpot experiments

Initially, we ran SweetBait with SweetSpot sensors for 24
hour lapses, to get a first glimpse of the generated signatures,
and tune the system. We set up SweetSpot to emulate hosts
running the following operating systems: Linux kernel 2.4.20-
2.5.20, Windows XP Professional RC+1, and MS Windows
Professional Advance Server Beta3. Additionally, the hosts
emulated services such as FTP, POP3, and IIS application
server, while accepting connections on all ports. Obviously,
such a choice is not suggested for a production system, since
it would expose the honeypot, but it is ideal for maximising
the captured traffic during evaluation.

1) Signature Generation: Exceeding our expectations we
collected a significant number of signatures in just a couple
of hours. Using the values given in Section III-E, signature
specialisation reduced the tens of thousands of signatures
generated by honeycomb to tens. Table I depicts this for five
of our experiments, while the cumulative number of new
signatures found at the honeypot and the CC respectively is
shown in logscale in Figure 3. The plot shows that the number
of signatures in the CC is a small fraction of the total number
of signatures generated in SweetSpot. Most are refinements
or signatures of previous ones. SweetBait also generated
signatures that could not be applied to a NIP sensor, because
it would not be able to discriminate between legitimate and
malicious traffic, resulting in the whitelisted signatures shown
in Table II.

After applying the whitelist at SweetSpot the results were
further improved. The generated signatures consisted of well-
known older worms such as CodeRedII, Slammer, MSBlaster
and Nimda [22], [23], [24], [25], as well as many exploit
attempts including the more recent Veritas backup exec and
Microsoft WINS [26], [27] vulnerabilities. A detailed list of all
generated signatures can be found on-line at http://www.
few.vu.nl/signatures.html. Some of the generated
signatures seem peculiar, because of long repeated sequences
in their payloads such as NOPs. Nevertheless, they are still
usable and will not cause false positives, since no legitimate
traffic would match the protocol, port number and content
triplet.

A significant number of signatures is indirectly related
to malicious network traffic, e.g., the signatures generated
from traffic targeting backdoors created by worms on infected
hosts (like MyDoom and Sasser [28], [29]). Additionally,
many apparently benevolent messages, under closer inspection
proved to be probes looking for active hosts and services.
An example of such a message is a NetBIOS name service
wildcard query, which precedes attacks on NetBIOS sessions
service [30]. Even though these signatures are somewhat
connected with malicious activity, they are not applicable,
because they might also hinder access to legitimate users, and
have thus been added to the whitelist. More such signatures
were for instance generated when attackers attempted multiple
connection attempts to MSSQL servers. Even though such
attempts are obviously of a malicious nature, the resulting

signatures cannot always be of practical use, since they might
block access to public servers in the network. As discussed
earlier, SweetBait offers various means to help ensure that the
activity of such signatures does not rise high enough to cause
their filtering.

Most of the signatures are less than 200 bytes long. Small
signatures focus on the exploit used by a worm, and permit
us to deploy more of them on the NID and NIP sensors. The
distribution of the size of the generated signatures is shown
in Figure 4. The fact that the length of most signatures is
smaller than an IP packet does not imply that the worms used
a single packet to propagate. The majority of the signatures
involved the TCP protocol, and only Slammer’s propagation
and an SNMP attack were performed over UDP. To handle
TCP fragmentation honeycomb employs flow reconstruction,
and can identify patterns across multiple TCP packets.

In Section III-E we described how we quantify the virulence
of each signature. While we only monitored the portion of
the network traffic towards the honeypot, rather than the total
network traffic, we were quite able to track the virulence of
attacks. For example, in Figure 5 we plot the virulence for
three of the most aggressive attacks.

2) Performance: To complete the evaluation of our system,
we conducted measurements regarding the performance of the
CC. It has to be able to process all the received information
in a reasonable amount of time to achieve a low reaction time
to worm outbreaks. Because of the nature of the honeypot
sensor, the amount of traffic sent to the CC is negligible, while
the number of alerts generated during an outbreak could be
overwhelming.

We conducted experiments with a NID sensor generating
false alerts to stress test the throughput of the CC, and
locate possible bottlenecks. We set up the NID sensor to
continuously transmit alerts, and measured the number of
alerts that were processed every second at the CC. To achieve
more realistic results, a honeypot sensor was also connected
and was sending signatures. Initially, the NID sensor did not
use alert caching, which resulted in a maximum throughput of
just 15 alerts per second on average. Investigating the cause
of such poor performance, we discovered that the database
needed approximately 70 msec to store a single alert. Using
faster hardware to host the control centre would definitely
improve throughput, since we used a slow PC with 256MB of
memory running at 1.2GHz. At any rates, switching to alert
caching helped us overcome this limitation by achieving a
throughput of approximately 140,000 alerts per second.

Another aspect of performance is the time it takes for the
control centre to initiate monitoring, and consequently filter
a new worm signature. As we have mentioned before, the
generation of signatures depends on repeated byte patterns
being identified by honeycomb. This implies that the speed
at which a signature is generated,depends on the speed of the
worm itself. As soon as the signature is generated, it is send to
the CC. The time needed to initiate monitoring, depends solely
on the period T that the CC updates NID and NIP sensors.
Exchange with the GCC is also performed periodically, so



TABLE I
SPECIALISATION RESULTS

Usable signatures Unique signatures CC entries
(honeycomb log) (honeycomb log) (database)

23400 12039 14
2861 439 9
6030 2107 11

35500 7462 20
43470 21957 21

323237 3538 27
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Fig. 3. Signature specialisation

TABLE II
WHITELIST

alert udp any any -> any 137 (msg: "NetBIOS Name Service Wildcard Query";
pcre: "\x00*\x0F*\x00*\x01\x00*\s*CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\x00*!
\x00*\x01*\$"; )

alert tcp any any -> any any ( msg: "NULL packets"; pcre: "ˆ\x00+$"; )

alert tcp any any -> any 80 ( msg: "HTTP Request(Used for DoS)"; pcre:
"ˆGET / HTTP/1\.1\r\nAccept\x3A image/gif, image/x-xbitmap, image/jpeg,
image/pjpeg, \*/\*\r\nUser-Agent: Mozilla/4\.0 (compatible; MSIE 5\.5;
Windows 98)\r\nHost\x3A .+\r\nConnection\x3A Keep-Alive\r\n\r\n$"; )

alert tcp any any -> any 139 ( msg: " \Session Request to SMBSERVER";
pcre: "\x81\x00\x00D [A-Z]{32}\x00 [A-Z]{32}\x00$"; )

alert tcp any any -> any 139 ( msg: "Session Request to SMBSERVER";
pcre: "A\x00 [A-Z]{32}"; )

alert tcp any any -> any 80 ( msg: "IIS WebDAV request"; pcre: "ˆOPTIONS
/ HTTP/1\.1\r\ntranslate\x3A f\r\nUser-Agent\x3A Microsoft-WebDAV-
MiniRedir/5\.1\.2600\r\nHost\x3A .+\r\nContent-Length\x3A 0\r\n
Connection\x3A Keep-Alive\r\n\r\n$" );
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the maximum time needed for a signature to be distributed
globally is 2 × T , assuming all deployed systems have the
same period. The same 2 × T has to elapse as well, before
filtering a signature, assuming that its activity has exceeded
the defined threshold. To conclude, a short update period leads
to fast reaction times against new worms, while the signature
will be more refined in later updates. A distributed GCC would

overcome potential scalability and availability issues for GCC,
but is beyond the scope of this paper. During our evaluation,
T was set to 2 minutes and we were pleased to observe that
no unexpected performance degradation occurred.



B. Argos Evaluation

We ran Argos with Windows XP against a set of
attacks present in the Metasploit framework that we
could run without having to buy additional software [31].
The tests included different types of buffer overflow
(off-by-one, heap, stack). For instance, some famous
exploits included: LSASS MSO4-011 Overflow, PnP
MS05-039 Overflow, ASN.1 Library Bitstring
Heap Overflow, and RPC DCOM MSO3-026. No test in-
curred false negatives. In addition, we did not incur false
positives while operating the system. As our experience with
Linux is far more extensive than with Windows, we conducted
additional homegrown tests with this OS, including various
types of buffer overflow and format string attacks. Again, all
were detected succesfully and we did not incur false positives.

The injection of our own shellcode in the process was also
tested successfully in Linux. Currently, the shellcode extracts
the identifier of the process and sends it via UDP to our
signature generator. On Linux we completed a partial imple-
mentation of the signature generation of encrypted worms. An
interposing function intercepts data going in and out of the
libssl and libcrypto functions. For instance, by writing
interposers for calls like SSL_read() and BIO_read() we
were able to get at the data before it is sent to the application
and test it for the presence of a pattern. To our knowledge we
are the first to use this method for protection against encrypted
worms.

Finally, we tested the performance of Argos in terms of
overhead generated by the underlying emulation and instru-
mentation framework. All tests were conducted on a 2GHz
AMD Athlon XP 2800 processor with 512K L2 cache and
1GB of RAM running Gentoo Linux with kernel 2.6.12.5.
The emulated PC was a Pentium IITM with a 128K L2 cache
and 512MB of memory. For optimal performance we did not
use a file as a virtual hard disk, but instead dedicated a single
IDE UDMA133 hard drive to the emulator. The guest OS used
for the benchmark test was Slackware Linux 10.1 with kernel
2.4.29.

The performance overhead of Argos in terms of slow-
down compared to native execution is shown in Table III.
Two versions of Qemu were used, the original unmodified
Qemu indicated as ‘Vanilla Qemu’, and secure Qemu which
uses our memory tracking system. It should be mentioned
that we have measured performance without the proprietary
QEMU accelerator which speeds up QEMU to roughly half
the performance of running directly on the hardware. The
applications/benchmarks tested where bunzip 2 1.0.3, the
httperf 0.8 web server benchmark, and BYTE magazine’s Unix
benchmark nbench 2.2.2.

We calibrated httperf for each platform separately to request
the web server’s main page ‘index.html’, so as to maximise
the number of processed requests per second. Individual
calibration was necessary, because Qemu’s virtual network
interface architecture introduces lag time that caused many
HTTP requests to timeout when the same load as the native

TABLE III
Argos PERFORMANCE BENCHMARKS FIGURES

program Vanilla Qemu Secure Qemu
bunzip2 7.77 16.58
httperf 21.6 26.05
nbench inte-
ger

10.05 18.89

nbench float 21.06 25.48
nbench mem-
ory

12.39 21.48

system was used. The metric adopted for comparison of
web server performance was the number of milliseconds per
request. The web server employed for the httperf benchmark
was apache 2.0.4. The nbench produces a performance index
for each platform’s integer, float, and memory operations. This
index specifies how the system compares with an AMD K6 at
233MHz with a 512K L2 cache, and it was used to compare
the platforms.

The performance overhead of secure Qemu varies between
a 16 times slowdown for bunzip2, and a 26 times slowdown
for apache as reported by nbench. Even though the overhead
is certainly not negligible, an OS running under secure Qemu
is still able to function in sensible margins and could host
multiple services. We emphasize that Argos is used as a
honeypot rather than a production machine.

1) Signature Aliasing: One aspect of our system that we
have not yet explored in detail is may be termed ‘signa-
ture aliasing’: the phenomenon that sensors of different type
generate very different signatures for the same attack. For
example, both SweetSpot and Argos generate a signature for
the Slammer worm. Because the algorithms used for signature
generation differ consiserably, these signatures will not be the
same.

It may that aliasing is a good thing, as it increases the
probability of catching a worm. However, multiple signatures
of a virulent attack may also take up a disproportionate amount
of a NID/HID/NIP sensor’s signature budget. One possible
solution is to extend SweetBait in such a way that signatures
that always coincide are marked as equivalent, in which case
only one will be activated. However, this is left for future
work.

V. RELATED WORK

Much of the related work we already discussed in-line. In
this section we highlight projects or aspects of projects that did
not fit well in the main body of text. Most well-known systems
(e.g., HayStack [32]) fall in a category of detection only and
no active response. Some, however, do attempt automated
response.

Various types of honeypots have been used for worm
detection. A network of high-interaction honeypots is used
to capture worms in the honeynet project [10]. By analysing
network traffic and the honeypot’s state it is possible to
produce detailed descriptions of worm behaviour. Successful



application of low-interaction virtual honeypots was demon-
strated by Laurent Oudot in capturing and counter-attacking
the MSBlaster worm [33]. LaBrea [34], is a honeypot used
as a tarpit: it slows down scanning worms, by keeping TCP
connections open indefinitely. While effective for some worms,
it would be powerless in the face of a UDP worm like
Slammer. Sombria [35] is yet another honeypot system that has
been setup for research purposes in Japan. All of these projects
differ form SweetBait in that the focus is on capturing worms,
rather than on automated response based on automatically
extracted and refined signatures.

Honeycomb automatically creates signatures based on a
longest common substring and has been successful in gen-
erating accurate signatures for the Slammer and Code Red II
worms [7]. Nevertheless it can be fooled by long sequences
of bytes repeated by certain protocols such as NetBIOS,
creating signatures for otherwise legitimate traffic. Another
system that automatically generates signatures for TCP worms
is AutoGraph [36]. It operates by analysing prevalence of
portions of flow payloads and exhibits a fairly low false
positives rate. Like SweetBait it operates better in a distributed
environment. However, it is not aimed at finding refinements
or generalisation of signatures, nor is it currently coupled to
an automated response system.

Joukov and Chiueh propose a worm containment envi-
ronment that combines anomaly detection, egress filters and
honeypots to generate worm signatures and filter them at the
enterprise firewall [37]. Its major weakness is that even un-
sophisticated polymorphic worms may be able to circumvent
detection.

A similar system also addressing the issue of an Internet
wide centre to correlate warnings and share information is
described by Changchun Zou et al. [38]. Ingress and egress
scan monitors are distributed in different parts of the network
and submit their warnings to a malware warning centre. The
monitors are using a Kalman filter to identify the propagation
of a worm based on observed illegitimated scan traffic. The
approach aims to detect zero-day worms at their early stage,
but is vulnerable to background noise that could cause a high
rate of false alarms.

EarlyBird is another system that aims to fingerprint worms
at an early stage [39]. It scans payloads and correlates the
information with a set of unique addresses of sources that
are spreading the worm and destinations under attack. In-
band content inspection is also the goal of [40]. In this case,
however, the authors have pushed the firewall all the way to
the end-node and implemented the IDS in hardware on the
NIC. Neither of the latter two approaches copes well with
polymorphic worms. In SweetBait, we are currently adding
our own in-band content inspection based on FFPF and Intel
network processors [41].

A fast containment system is presented in [42]. It differs
from most projects described here, including ours, in that it
takes a network-centric view and aims at implementation in
hardware.

A cooperative immunisation system against worms is de-

scribed by Anagnostakis et al. [43]. The system consists
of distributed nodes exchanging information about threats
and appropriate counter-measures. It is based on scanning
incoming traffic for malware at the hosts and like SweetBait,
it determines which signatures to scan for based on observed
virulence. The system is a network-centric approach that bears
some resemblance to SweetBait’s honeypot approach. As trust
is based on validating information by asking multiple nodes,
the system becomes vulnerable if a large number of nodes is
compromised.

A more aggressive approach is adopted by Sidiroglou and
Keromytis [44]. Like SweetBait they deploy diverse sensors
including network monitors and honeypots. The honeypots
used are highly-interactive, running real versions of popular
applications to be protected. The applications run in a sandbox
environment. They are monitored for illegal behaviour, and
when such behaviour is detected the error that caused it is
located and a patch is automatically generated and distributed
through a software update service. The risk of such active
measures is that an automatically generated patch could do
more harm than good and it leaves the possibility of gaming by
hackers; carefully crafted input to the honeypots could cause
the generation of patches that create weaknesses.

Honeystat protects against scanning worms by employing
high-interaction honeypots. Once a host is compromised it
monitors CPU, memory, network and disk events to capture the
behaviour of the worm [6]. It produces accurate signatures, but
has no method of refining the signatures in the way provided
by SweetBait.

Besides Honeypots there are various other approaches to
intrusion detection and prevention. Anomaly detection systems
(ADS) are able to detect zero-day worms and may even work
at high speeds [45], [46], [47], [48]. Unfortunately, they tend
to be fairly inaccurate and are commonly tuned conservatively
to keep the number of false positives low.

Some systems are made intrusion-tolerant and use appli-
cation diversity to compare outcomes of different implemen-
tations when it is suspected that a server has been compro-
mised [49].

A well-known IDS is Vern Paxson’s Bro [50]. Compared
to SweetBait, Bro gives more attention to event handling and
policy implementation. On the other hand it counts over 27.000
lines of C++ code, is implemented for instance on top of
libpcap and may not assume that all traffic is suspect.
Altogether this makes it a very different approach.

Argos is related to Minos which uses a similar form of
memory tainting to detect buffer overflows [51]. Unlike Argos,
Minos does not generate signatures. Moreover, it aims to be
used in hardware in new processor designs. For this reason
it uses BOCHS rather than an emulator. As there no such
hardware is currently available, the performance of Minos is
almost an order of magnitude worse than that of Argos.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we discussed the design and implementation of
SweetBait, a system that is a combination of network intrusion



detection and prevention techniques. It employs different types
of honeypot sensors, both high-interaction and low-interaction.
It was shown that SweetBait is able to automatically gener-
ate signatures for random IP address space scanning worms
without any prior knowledge. For non-scanning worms, we
have shown a solution in which we advertise a high-interaction
honeypot that uses memory tainting to detect buffer overflows
and automatically generates a signature by correlating the
memory footprint with network traces. We also demonstrated
how this information can be distributed and deployed without
any human intervention minimising reaction time to zero-
day worms. Furthermore, the signature specialisation, activity
prediction and automatic deployment techniques introduced
provide a valuable administration tool, which condenses the
information that needs auditing by administrators, while self-
adapting to ensure a high throughput of the monitoring nodes.

Our future plans to improve the high-interaction honeypots
signature generation. We believe that given the wealth of infor-
mation about the attack, we should be able to generate better
and more detailed signatures both for HID/NID systems and
human experts. We also plan to further investigate ‘signature
aliasing’ where different signatures correspond to the same
attack.
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