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ABSTRACT

The proliferation of mobile devices, equipped with numerous sen-
sors and Internet connectivity, has laid the foundation for the emer-
gence of a diverse set of crowdsourcing services. By leveraging
the multitude, geographical dispersion, and technical abilities of
smartphones, these services tackle challenging tasks by harnessing
the power of the crowd. One such service, Crowd GPS, has gained
traction in the industry and research community alike, materializ-
ing as a class of systems that track lost objects or individuals (e.g.,
children or elders). While these systems can have significant im-
pact, they suffer from major privacy threats.

In this paper, we highlight the inherent risks to users from the
centralized designs adopted by such services and demonstrate how
adversaries can trivially misuse one of the most popular crowd GPS
services to track their users. As an alternative, we present Techu, a
privacy-preserving crowd GPS service for tracking Bluetooth tags.
Our architecture follows a hybrid decentralized approach, where
an untrusted server acts as a bulletin board that collects reports of
tags observed by the crowd, while observers store the location in-
formation locally and only disclose it upon proof of ownership of
the tag. Techu does not require user authentication, allowing users
to remain anonymous. Our security analysis highlights the privacy
offered by Techu, and details how our design prevents adversaries
from tracking or identifying users. Finally, our experimental evalu-
ation demonstrates that Techu has negligible impact on power con-
sumption, and achieves superior effectiveness to previously pro-
posed systems while offering stronger privacy guarantees.
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1. INTRODUCTION

The widespread adoption of smartphone devices has transformed
many aspects of everyday life, and led to the emergence of a plethora
of novel services that range from the menial to critical. This avail-
ability of a massive number of geographically dispersed mobile de-
vices with internet connectivity has lent significant traction to the
crowdsourcing paradigm and numerous incarnations have surfaced,
from collecting real-time traffic data [56] to providing early warn-
ing for earthquakes [26].

Crowd GPS is one such type of service that utilizes a network of
users, a crowd, to locate lost or misplaced objects, or monitor the
location of pets [8] and “vulnerable” individuals like children [46]
and elders [16]. It has taken off after the release of Bluetooth Low
Energy (BLE), which allows near-range communication with a sig-
nificantly reduced power consumption [31], as it facilitated the cre-
ation of small, battery-powered, BLE-enabled tags that can be eas-
ily attached to objects, or worn by people and pets. The loss or
misplacement of an item is a problem that has tormented many.
In 2013 alone, 26,000 articles were forgotten in New York’s trans-
portation system [13] and a survey [3] found that one in five people
lose or misplace an item every week. This has lead to the rapid
growth of crowd GPS, with services such as TrackR boasting over
5 million users.

Despite the obvious benefits of crowd GPS, the designs of exist-
ing systems suffer from various drawbacks. Most notably, the lo-
cation of personal items, and consequently of the user, is collected
centrally by the crowd GPS service, which is frequently run by the
vendors offering BLE tags for sale. This poses a significant privacy
threat, as a large body of research on location privacy in other appli-
cations has also highlighted [12,36,58,65]. Second, the ecosystem
is fragmented, forming disjoint crowds of users based on the ven-
dor they have purchased tags from. Crowd sourcing performance
improves as the size of the crowd grows, hence, this fragmentation
limits the effectiveness of current systems.

In this work, we first audit TrackR, one of the most popular
crowd GPS services, and expose a vulnerability that enables the
misuse of the service for tracking the location of any tag owned by
a customer. Our findings highlight a critical risk of crowd GPS;
current centralized designs expose a single-point of failure, where
vulnerabilities can result in the exfiltration of the location of users.

Previous works on locating lost or stolen Bluetooth-enabled tags
suffer several shortcomings. First, and foremost, they present pri-
vacy threats to participating users; in [22,70] users can be trivially
tracked by any member of the crowd by supplying the tag’s identi-
fier, while in [70] the service also possesses coarse-grained location
data that can lead to deanonymization [24]. Second, [28,70] fol-
low a “search after the fact” approach, where the crowd searches
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for a tag after the query is issued, i.e., participants do not main-
tain information of recently seen tags; this can severely limit the
effectiveness of the system, especially in areas with few users.

To ameliorate the aforementioned drawbacks, we propose Techu',
an open crowd GPS system designed to overcome the above is-
sues and ensure the privacy of users participating in the crowd. In
Techu we follow a hybrid decentralized architecture, where reports
about tag observation events are kept in an untrusted public server,
while the actual location information is stored in a distributed man-
ner. In a nutshell, Techu works as follows. Users participating in
our system download a client side app and pair their smartphones
with their BLE tags they want to keep track of. The app periodi-
cally creates a randomly generated secret for each paired tag, and
stores it on the tag as the DeviceName, which is advertised by
the tag. Participants log the DeviceName of all the tags in range
that belong to other users, and create observation reports that con-
tains an identifier derived by the DeviceName, a timestamp, and
their unlinkable communication pseudonym (ObserverID). Re-
ports are periodically uploaded in batches to a centralized untrusted
database that serves as a bulletin board. If a tag is lost, the owner
initiates the object-discovery process, and uses the last generated
DeviceName to retrieve the most recent observation reports for
that tag from the server. The owner then uses the ObserverID to
communicate with the observer over an ephemeral communication
channel, through the Google Cloud Messaging (GCM) infrastruc-
ture [33]; after proving ownership of the tag, the observer discloses
the location at which the tag was seen. By maintaining reports of
recently observed tags, Techu allows for the tracking of tags even
in sparsely populated areas; it is sufficient for a single user to have
been in range of the tag at some point in time, for the owner to
obtain information about the tag’s location.

We conduct an extensive experimental evaluation of our system,
and quantify performance in terms of storage requirements, power
consumption, communication costs, and query overhead. As the
prevailing role for participants is that of the observer, the overhead
introduced by our protocol is of key importance. Apart from the
baseline cost of BLE scanning, which is shared by all crowd GPS
systems, under “typical” mobility patterns our system requires less
than 30 seconds of client-side computation per day (for all the re-
quired calculations plus the time required to report to the Techu
service) and client storage requirements are less than S5KB. Stor-
age requirements for the bulletin board are very moderate, reaching
approximately 23 TB for 12 million participating users with typi-
cal mobility patterns. Our system’s impact on the battery lifetime
of tags is negligible, with less than a 2% reduction. Finally, the cost
for owners to locate lost tags is very low, as the relevant observation
records that have to be fetched are ~2MB and the communication
protocol with an observer is completed within a few seconds. Over-
all, our system introduces minimal overhead while offering signif-
icant privacy properties compared to existing services or proposed
solutions.

The key contributions of our work are the following:

e We conduct a security analysis of TrackR, a prominent crowd
GPS service, and discover a vulnerability that enables adver-
saries to misuse the service, effectively turning the partici-
pants into a malnet [44] that can track the location of any
user through time.

e We present Techu, a crowdsourced GPS system designed to
effectively locate BLE tags, while guaranteeing the location
privacy of participants. Our system is built around an un-
trusted server that can be adopted by vendors or used as a

"Named after the Egyptian god of record-keeping.

public bulletin board, and it does not require user enrollment
or authentication, allowing users to anonymously participate
in the crowd.

e We present a series of extensions to our basic design, and
analyze the tradeoff between the security guarantees of our
system and performance overhead.

e We experimentally evaluate Techu, and find that our client-
side and server-side requirements and overhead are minimal,
while our protocol allows users to efficiently obtain the re-
quired information while preserving their privacy. Techu
achieves its goals while reducing the operating costs and with-
out the implications of proprietary “security through obscu-
rity” approaches, enabling the deployment of our system ei-
ther as community effort or by a tag-selling vendor.

The remainder of the paper is structured as follows. Section 2
provides the necessary background information and privacy risks
of existing crowd GPS services, while Section 3 presents our se-
curity analysis of a prominent service. In Section 4 we describe
our system design and privacy extensions, while Sections 5 and 6
outline the security guarantees and implementation details of our
system, respectively. We continue with the experimental evalua-
tion of Techu in Section 7, and discuss limitations and future work
in Section 8. Finally, we present related work in Section 9 and
conclude in Section 10.

2. BACKGROUND

Here we provide background information on crowd GPS and dis-
cuss the privacy risks of its current instantiations.

2.1 Crowd GPS

In crowd GPS the location of objects is established through crowd
sourcing, i.e., by enlisting the services of a number of individuals
that form a network, referred to as a crowd, typically through the
Internet. This model is appropriate for tracking objects and devices
that do not, or cannot, feature a GPS sensor and Internet connec-
tivity to report their location to their owners. Instead, the objects
can be sensed, typically through wireless sensors, by the individu-
als participating in the crowd, who can establish their location and,
hence, help locate the objects.

This is an instantiation of crowd sensing, where user devices be-
come part of a network collecting locally observable information
through their sensors and uploading it to the cloud, to be aggregated
and analyzed at a large scale. This is usually achieved through ded-
icated client-side apps running on devices carried by users, such as
smartphones. Crowd sensing may require different levels of user
participation [51], ranging from active participation (participatory
crowd sensing) [40] to a completely transparent process for end
users (opportunistic crowd sensing) [55]. A detailed taxonomy of
crowd sensing can be found in [38].

Crowd GPS has gained a lot of traction since the introduction
and proliferation of BLE, a low-energy Bluetooth network technol-
ogy. There are multiple vendors (e.g., Tile [41] and TrackR [42])
offering BLE tags, or beacons, that can be attached on objects
(e.g., keys and backpacks) or come in the form of bracelets that
can be worn by vulnerable individuals [16,46]. Users that pur-
chase such tags become part of a vendor-maintained crowd by in-
stalling an app on their smartphone. The app automatically reports
the location of sensed tags and enables users to query the vendor
to locate the tags. Most apps, like TrackR and Tile, only track
and report their own tags and users are only allowed to query the
tags they have already paired, through conventional Bluetooth, with



their smartphone. Other services, such as Locus Pocus [21], are
device-agnostic and enable the user to track any BLE device and
tag. Locus Pocus, instead, monetizes the offered service by charg-
ing a fee for querying the location of tags. Besides general pur-
pose tags that can be attached to different objects, BLE beacons are
also being incorporated in various commercial products, like lug-
gage [2], for tracking purposes. Automotive companies have also
started deploying vehicles with support for such functionality, with
Land Rover integrating support for Tile [52].

The success of services that build on crowd GPS mainly depends
on two factors: battery life and user base. BLE tags are powered by
small batteries, so energy efficiency is critical to keep the mainte-
nance cost of battery replacement low, while the number of people
participating in a crowd GPS crowd determines its coverage. Con-
sequently, the existence of multiple, disjoint GPS crowds, created
by different vendors hampers their effectiveness. As Techu is not
tied to a specific type of tag and is built around a public server, our
approach can reduce the segmentation of the user base.

2.2 Privacy Threats of Crowd GPS

Despite the unprecedented opportunities offered by the paradigm
of crowd sensing, which can have significant societal impact in crit-
ical scenarios, these technologies do not come without risks for par-
ticipants. Alarmingly, in scenarios where users frequently expose
their location to the service, that information can be leveraged for
inferring sensitive information [54] (e.g., medical conditions, reli-
gious beliefs, sexual orientation) or deanonymizing the user [49].
In the context of object-discovery services, the privacy of users is
also threatened by the periodic broadcasting of information from
the tags, which are usually carried by the users, as it can lead to
tracking [45]. Since the utility of many services stem from the
aggregation and processing of location-aware data from users, in
practice, participants can be subjected to tracking. This can be
catalytic in deterring users from participating. For example, both
TrackR and Locus Pocus mention that the collected data, including
location, may be shared with third parties. The latter also explicitly
states that data may be shared with law enforcement agencies.

The current state of fragmentation, with each tag vendor deploy-
ing a platform for their own set of tags, significantly reduces the
effectiveness that could be achieved by a vendor-agnostic platform
that unifies all disparate crowds into a single mass. Furthermore,
the existence of multiple centralized proprietary services also in-
creases the chances of misuse. Given the frequency of security
breaches and theft of user data [5, 6], centrally-stored user location
information poses a significant privacy risk. As we demonstrate in
§ 3, the security flaws of TrackR enable the tracking of their users.

Our goal is to highlight the privacy and security concerns that
stem from device tracking in this emerging ecosystem, which mo-
tivates our design of a decentralized public crowd GPS platform,
that in not bound to any specific type of tag and does not require
any manufacturer modification.

3. A SECURITY ANALYSIS OF TRACKR

Here we present our security analysis of TrackR, one of the most
popular crowd GPS services, which has also partnered with Ama-
zon [7]. While claims of being the “largest Crowd GPS network
in the world” [9] cannot be verified, the reported number of over 5
million users across the USA and Europe renders TrackR a suitable
candidate for highlighting the significant privacy risks of crowd
GPS.

We obtained the official TrackR app for Android from the Google
Play store and decompiled it, following an established procedure.
This involved unzipping the .apk file, using dex2 jar to convert

{"lastTimeUpdated":
"timeUpdatedDiff": 3
"lastKnownLocation": {
"longitude":-7: 3, "latitude"
"trackerId": " JEFBC-8A6745

Listing 1: Example response of tag tracking API call at the time
of disclosure (April 2016).

{"lastTimeUpdated": 9,

"timeUpdatedDiff":3 3
"lastKnownLocation":{"longitude":-74.03,"latitude":40.74}
"friendlyName":"*x", "locationName" : " x*x"
"trackerId":"000OEFBC-8A67452301"}

Listing 2: Example response of tag tracking API call at a later
time (August 2016), leaking additonal information.

the extracted .dex files to class files in a .jar archive, and finally
decompiling the jar file using jd-gui. The retrieved code was
readable almost in its entirety. Review of the app’s code revealed
that the app communicates with TrackR servers through RESTful
calls. As expected, the TrackR app scans for BLE beacons of the
vendor and uploads their IDs (i.e., their Bluetooth MAC addresses)
to TrackR servers along with the GPS coordinates where they were
seen. The apps looks for TrackR’s manufacturer ID in the received
BLE packets, so the crowd only tracks beacons of the vendor. To
search for a lost tag, the app issues a call to the service using the

following URL:
https://phonehalocloud.appspot.com/rest/tracker/[tracker-id]

The tracker-id is not the beacon’s MAC address (BSSID), but a
value derived from it, which is calculated by appending the string
representation of BSSID, least-significant byte first, to ‘0000’.

For instance, a tag that has the address 01:23:45:67:8a:bc:ef
will have the tracker-id 0000efbc-8a67452301. The service re-
sponds with a JSON object, similar to the one shown in Listing 1,
containing information about the most recent observation of the tag,
including a timestamp, coordinates, and its battery level.

Tracking Vulnerability. While most of API calls of the TrackR
service require authentication (e.g., an OAUTH token), the URL
above, used to search for lost tags does not. As such, anyone can
at anytime query about any tracker they have encountered at least
once. As a result, unauthorized parties can locate tags and track
the owner. By periodically obtaining this information adversaries
can reconstruct user trajectories, which can lead to their identifica-
tion [24,32] and the inference of sensitive information.

Ethical Considerations. Upon discovering this vulnerability in
April 2016, we immediately disclosed it to the vendor and offered
a detailed report of our analysis. Some might argue that disclosing
an attack against a popular service raises ethical concerns, as this
attack can be deployed in practice by malicious individuals. How-
ever, we believe that it is crucial to raise the public’s awareness and
expedite patching, as millions of users are already participating in
such services, and numbers are expected to grow even more in the
near future. Nonetheless, we have followed the widely accepted
practice of responsible disclosure, and offered a detailed report of
our analysis to the vendor in an effort to help improve their system.

As a final note, it is important to highlight that despite the straight-
forward nature of the attack and the corresponding fix, it took TrackR
more than 9 months (December 2016) to address this issue. To
make matters worse, in the meantime, they introduced new attributes
in the returned JSON message that leaked more information as can
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Figure 1: Design overview. The crowd regularly sends reports
of observed fags (without location information) to the server (0).
When tagged property is lost, the owner queries the server to
learn who observed the tag (I), and contacts them to obtain the
corresponding locations (2).

be seen in Listing 2; the one denoted as “friendlyName” reveals the
user-supplied nature of the tagged item.

4. TECHU: CROWD GPS

Threat Model. To better capture the privacy threats that crowd-
sourced GPS systems face, we consider the server component to be
untrusted and assume a “malicious but cautious” behavior, which
has been proposed for cloud computing providers [20]. In this
model, the server can actively attempt to learn or deduce infor-
mation from incoming reports and queries, but will try to appear
legitimate by returning the appropriate results to queries, as users
could easily identify records being tampered with. We do not re-
quire users to register or exchange any keys with the server, and
assume that they can obtain a non-tampered version of our app,
e.g., through the official app store.

Our threat model captures two orthogonal adversarial behaviors
that target complimentary aspects of Techu. In the first case, the
adversary’s goal is to compromise the privacy offered by design,
and obtain sensitive information about the user(s). This may in-
clude tracking a user’s location through time, or inferring sensitive
information and uncovering the user’s identity by obtaining loca-
tion data (e.g., home or work address [30]). In the second case, the
adversary is driven by economic incentives, and monitors the infor-
mation available so as to identify lost tags and attempt to recover
them. We assume that adversaries have access to all information
contained in the bulletin board, can deploy a limited number of
physical “agents” within the crowd, and even report fake events to
the system. Furthermore, the adversary can monitor traffic incom-
ing to the server, and has significant computational resources at his
disposal, thus, is able to perform brute force attacks against infor-
mation encrypted with low entropy. As is the case with all crowd-
sourcing services [11], our system is susceptible to users reporting
fake data (e.g., spoofing their location [59]).

4.1 System Design

We designed Techu as a decentralized privacy-preserving crowd
GPS system that addresses the privacy risks of existing vendor-
based solutions and services proposed in the literature. Our design
was motivated by the inherent risks of collecting location data cen-

trally, including data leaks, cryptanalysis attacks against encryption
algorithms, and weak keys. We further discuss the security advan-
tages of our approach over a centralized design in § 5. Our system
consists of four entities: the tags, the owners of the tags, the ob-
servers that form the crowd, and the service that collects reports
from observers and accepts queries from owners.

A high-level overview of our design is depicted in Figure 1.
Owners store an ephemeral ID on each of their tags, which is unique
for each of their tags and is periodically updated when in range. Tag
IDs are broadcast to nearby observers through BLE advertisement
packets and become part of the reports observers send to the service
for nearby tags (step (0)). Reports do not include location data, but
contain sufficient information for owners to identify the reports that
correspond to their tags and contact the observer that issued them.
When a tag is lost, owners first retrieve the corresponding reports
for a desired time range from the service (step (D)) and then proceed
to contact observers and retrieve the location where a tag was seen,
after proving to them that they are the tag owner (step (2)). Below,
we elaborate on the various phases of our system’s functionality.

Generating tag IDs. For each tag, owners periodically generate
a key pair (pki, sk;) using an asymmetric-encryption algorithm,
such as ElGamal, Elliptic Curve techniques, or RSA, with the pub-
lic key, pk;, acting as the tag’s ID, ¢;:

i = pki

t; is stored on the tag using a writable BLE attribute, which is
accessible only to the owner after pairing with it. Unauthorized
users should not be able to overwrite it, as, among other issues, it
would disrupt the operation of the system. To make it observable
to the crowd, ¢; is included in the advertisement packet periodi-
cally transmitted by the tag to announce its presence. In commer-
cially available tags this can be done by storing ¢; into the Device
Name attribute. Tag IDs are ephemeral and unlinkable, that is, we
periodically update them and each ID is independent of the oth-
ers. As such, an ID ¢; is only associated with a tag for a limited
amount of time, preventing long-term tracking of the tags, since
third-parties cannot guess ¢;+1. Techu does not use MAC addresses
to track tags. Instead, we assume that tags are using private MAC
addresses [18] (further discussed in § 8) to avoid tracking from ma-
licious observers [45].

Reporting observed tags. Each observer in the crowd is identi-
fied by observerl Dy, an ephemeral client ID in a messaging ser-
vice, like Google’s Cloud Messaging (GCM), which the owners use
to contact them. For each tag observed, they upload a report 7; to
the service, where:

r; = ts; | Epx, (observerIDy) | £;, £ = H(t;)

Report 7; includes the timestamp (¢s;), the observer’s ID en-
crypted with the public key pk; (i.e., the tag ID ¢;), and the secure
hash digest of ¢; (£;). The encryption function E actually creates
a digital envelope utilizing a secret-key algorithm and message au-
thentication to provide confidentiality and integrity. This ensures
that only the tag owner can obtain the observer’s ID from a report,
and only the owner or an observer of a tag can identify the reports
associated with a particular tag, because they can generate ;.

Storing tag locations. The actual location of the observation is
stored locally by observers, as tuples of:

{ts, t;, location}
We assume that the service has enough storage to store reports for
a few days or even weeks to facilitate the recovery of lost property.
On the other hand, the storage required by observers can be bound
by discarding old observations, keeping only the most recent entry
for each tag, or even probabilistically dropping certain entries.

Querying lost tags. To retrieve information for a lost tag, the
owner issues a query requesting all the reports corresponding to
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a tag’s ¢; for a time range (tSfrom : tSt0), Which are returned
by the service , as shown in step (D) of Figure 2. Since queries
are performed based on £; and a time range, they are lightweight.
By choosing a hash function like SHA-3, collisions are highly im-
probable and the returned reports will most likely correspond to the
owner’s tag.

For each returned report 7;, the owner decrypts the observer ID
information, using the tag’s secret key sk;. The owner then com-
municates with observers over a channel that ensures confidential-
ity, e.g., over TLS, to prove ownership of the tag and obtain the
location information. Various techniques can be used to achieve
this, but we employ the well-established technique of digital sign-
ing, as shown in Figure 2 (step ). The protocol is as follows: the
observer generates a random number nonce, which it transmits as
a challenge to the owner. The owner signs the nonce using function
S and the appropriate private key and sends it to the observer. The
observer can verify the validity of the signature using function V'
and the public key of the tag t;. If verification succeeds, the lo-
cation information can be sent to the owner. pk; is used to search
the locally-stored data and, in the case of a match, respond with the
timestamped location of the tag.

4.2 Privacy Extensions

In this section, we present two extensions to our basic design
that trade performance for improved security and privacy proper-
ties. We evaluate the tradeoffs in § 7.

4.2.1 Decoy Queries

We introduce the use of decoy lost-tag queries, which are sent to
observers so as to obfuscate actual incidents of owners searching
for lost tags. This creates “uncertainty’”” which deters malicious ob-
servers from reasoning about tags being lost, as the received query
could be a decoy. Owners initiate the process at random intervals
emulating the loss of one of their objects and its tag. The whole pro-
cess needs to be indistinguishable from a real tag discovery event,
so it follows the exact same steps, i.e., the owner retrieves the most
recent reports from the service (e.g., the ones sent in the last hour)
and it issues queries to the corresponding observers.

We choose to generate decoys at random intervals, even though,
one might argue that in the real world it is unlikely for inquiries

to occur during the night, when most users are asleep. That would
allow malicious observers to infer that a request received at night
has a higher probability of being a genuine one. In other words,
maximum uncertainty is achieved when all events are equally likely
to happen [64]. To generate decoys, each owner periodically (with
period 1) decides to initiate a decoy event with probability p.

Security improvements. Observers that receive queries from
owners are now uncertain of whether the query corresponds to an
object that was actually lost. In particular, if an owner initiates
on average X decoy lost-tag events per hour, where X = T X p,
and an observer has reported NV tags belonging to different own-
ers, then the observer will receive X x N decoy queries per hour.
The probability of an observer receiving a real tag discovery query
is probabilistically very small; our goal is to hinder malicious ob-
servers from “scavenging” for lost items they receive queries for.
Essentially, we aim to maximize X x N without overburdening
benevolent observers, which could lead them to blocking owner
queries or abandoning the system. For the same reason, which
tags are queried in the decoys is not of importance and could be
selected randomly. This extension allows owners to insert a con-
figurable amount of noise in the system that will render scavenging
unprofitable.

4.2.2  Salted Tag IDs

Tag tracking. We can replace the hashed tag ID £; that is sent to
the service, with a salted version ¢;. For each report, we generate a
random number, salt;, and hash it with ¢;:

Lij = H(S(lltj ‘ ti)

To facilitate querying the server, we generate a “color” value c;
consisting of the b least-significant bits of the unsalted hash value
t;. Since we only keep a few bits of the hash, ¢; is not a unique
value, and reports for different tags will share the same color. So
given a function LS B that keeps the b least-significant bits, the
color is produced as:

C; = LS Bb ('EZ)
The report 7; is extended to include the salt and color:
T"j =ts |Oi | ij |SCth]' ‘ C;

As before, an HMAC code is appended to the report.

Querying lost tags. The owner uses ¢; to produce a ¢; to query
the service. Since different tags will be colored the same way, re-
ports referring to other tags will also be returned. A time range
(tsfrom : tSto), which remains part of the query, can be used to
reduce the number of reports retrieved from the service. For each
report 7°;, the tag owner uses the tag’s ¢; and the salt (salt;) con-
tained within the report to produce ij and compare it to the one in
the report. Matching reports correspond to the owner’s tag, and are
used to query the observer for the tag’s location as before.

S. SECURITY ANALYSIS

Techu is designed to ensure the location privacy of the crowd’s
participants, while offering more effective object tracking as op-
posed to other proposed systems [28, 70] that attempt to locate the
tags after the issues are queried. Here we present threats that affect
crowd GPS systems, and outline the privacy guarantees that are at-
tained by core aspects of Techu’s basic design (§ 4.1) and privacy
extensions (§ 4.2).

Untrusted Server: owner privacy. In our design, the service
cannot obtain any information regarding the location of tags, as that
information is stored locally by the observers. As that information
is only disclosed to the owner after proof of ownership through the
private key pk, the server cannot trick the observers into divulging
the information.



Untrusted server: observer privacy. The service cannot learn
anything about observers because their IDs are encrypted using
ti, which is never disclosed to the service by the owner nor any
observers. The service could potentially try to estimate an ob-
server’s [IP-based geolocation. However, previous work has demon-
strated that geolocating IP addresses that belong to cellular net-
works cannot achieve accurate results; using geolocation databases
results in errors in the order of tens of kilometers [72], while mea-
suring application-level latencies can only be used to distinguish
cities [14]. As such, both of these techniques would fail to offer
any useful location information to an adversary.

Malicious Observers: direct tag tracking. By using ephemeral
IDs for the tags, we ensure that observers cannot continuously track
tags based on their ¢;. In the case of observers colluding and form-
ing a malicious crowd, such as a malnet [44], observers can track
the tag after they observe it for the remaining time window (e.g., a
few minutes), until the generation of the next ¢; 2. This is not long
enough to reconstruct a trajectory of the user’s whereabouts, and is
the same trade-off faced by existing privacy-oriented mechanisms
like private MAC addresses. Thus, Techu offers significant location
privacy guarantees over previous systems that were susceptible to
user tracking [22,70].

Malicious observers: indirect tag tracking. After logging a
device, observers can use the tag’s ID to query the service and ob-
tain the observation events generated by other observers for that
ID while it was active. However, observers cannot obtain location
information from other observers because they do not possess the
secret key sk, thus, lack the ability to prove ownership.

Malicious observers: co-observer privacy. The observation
events uploaded to the service contain the observer’s ID encrypted
using ¢;. This prevents users from discovering the IDs of other ob-
servers that reported the tag in their vicinity. Furthermore, these
IDs for communicating with apps over Google’s GCM are in no
way linked to the user’s actual identity, and do not disclose any
actual information about the user. Moreover, these IDs are peri-
odically changed, to prevent third parties from linking the same
observer across different observation entries.

Malicious observers: scavenging lost tags. Observers in our
system may (try to) infer that a tag was lost, and attempt to re-
trieve/steal the lost property the tag corresponds to.

Tag discovery query. When observers receive a discovery query
from the tag’s owner, they can directly infer that the tag has been
lost. We address this threat with our decoy query privacy extension.
Observers that receive queries from owners are now uncertain of
whether the query corresponds to an object that was actually lost.
The goal is to maximize the number of decoy queries without in-
troducing a significant overhead for observers in terms of battery
consumption, which could result in users abandoning the system.
While introducing noise in the system results in uncertainty and
renders scavenging unprofitable, nonetheless, in practice attackers
could still attempt to physically recover any tags for which they
received queries (including potential decoys).

Tag ID persistence. Owners periodically change their tags’ name
to prevent observers from being able to track their location. As a
side-effect, once a tag is separated from its owner it will retain the
same t; for a longer period of time, allowing observers and the
service to infer that a tag may have been lost (or purposefully left
behind by the owner). While the time window is configurable, thus
allowing each user to tweak the tradeoft between privacy and power
consumption based on their own requirements, our system sets an
upper bound of 10 minutes to ensure the privacy of participants.

2Users can configure the time window to be arbitrarily short.

5.1 Alternate Design Analysis

Here, we present an alternative centralized design and the inher-
ent risks it suffers from. While such a centralized approach simpli-
fies the design and reduces the overhead, it also introduces signif-
icant privacy risks. Insider threats [15], the interest of intelligence
agencies in tracking users [10], the precedence of law enforcement
agencies issuing subpoenas to access user data [67], and the fre-
quency of data breaches [5], all highlight the risks of centralized
crowd GPS systems.

Design. In the centralized design, observers upload reports con-
taining a timestamp (ts), the observed tag’s location encrypted with
t; as the public key, and the secure hash digest of ¢;. Owner’s then
simply fetch the most recent reports with a hash digest that corre-
sponds to their tag’s ID, and decrypt the location using their private
key.

Cryptanalysis. All reports uploaded to the server can be triv-
ially collected and stored by adversaries. Even though the sensi-
tive information (i.e., the location) is encrypted, previous work has
extensively explored the risks of archiving encrypted sensitive in-
formation and the need for long term secrecy (e.g., [15, 68, 69]).
Specifically, Storer et al. [69] argued: an adversary who can com-
promise an archive need only wait for cryptanalysis techniques to
catch up to the encryption algorithm used at the time of the compro-
mise in order to obtain “secure” data. In this case, there is no need
for compromising the archive, as it is publicly available online.

To make matters worse, the hardware restrictions of BLE tags
limit the potential key sizes, further increasing the risks of storing
the sensitive information on the server. While current recommen-
dations call for minimum key sizes of 256 bits in Elliptic Curve
cryptography [1] (which has already been deprecated by the NSA),
BLE advertisement are restricted to 248 bits per the BLE speci-
fication which allows a maximum of 31 bytes used as data pay-
load [17]. This size restriction naturally leads to the use of elliptic
curves instead of other public key techniques like RSA. While more
data can be transferred through a scan response packet, that would
incur a massive overhead as it would require an extra packet sent
for each device in the tag’s vicinity. Furthermore, as the size of
the advertisement payload impacts the tag’s battery life [62], fur-
ther increasing the advertisement packet size could have undesir-
able implications, given the low energy consumption tenet of BLE
technology. Finally, notable cryptographers have expressed con-
cerns regarding the robustness of elliptic curves against potential
advancements by the NSA [35,48]. Assuming that the adversary
decrypts the encrypted locations in the report, we describe two at-
tack scenarios that can recreate users’ location traces.

Attack 1: observer tracking. A malicious but curious (or com-
promised) server can link observer reports uploaded from a specific
IP address. As users typically connect over a cellular network when
on the move, attackers could recreate a user’s daily commute and
identify the user [30], and infer sensitive data from other visited
locations. To gauge how persistent cellular IP addresses are, we
conducted an experiment over the duration of one week with 3 de-
vices, that belong to the authors, connected to a major US cellular
provider. We found that the IP address changes when the cellular
connection is switched off (e.g., switch to WiFi, turn off device) or
if the cellular signal is lost due to bad reception; in our experiments
IP addresses remained unchanged for 3-62 hours when the connec-
tion was not manually switched, demonstrating the practicality of
such an attack.

Attack 2: tag tracking. While the ephemeral tag IDs used in
Techu prevent the straightforward tracking of tags, a malicious server
could potentially link successive ephemeral IDs. Figure 3, presents
an example scenario where four participants are in the same area.
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Figure 3: Example scenario with 4 co-located users, outlining
an attack that links users’ consecutive tag IDs.

Note that the different time windows T; do not have the same du-
ration, but only represent the time window within which all tag IDs
remain the same. For instance, during 7 every observer uploads
reports regarding the remaining 3 tags in the vicinity. Based on
the IP address of the observer uploading each report, the adver-
sary learns which tag belongs to the user behind each IP address.
Now, suppose that the first user’s tag gets a new ID assigned, which
means that we are now in 75; since the first user will report obser-
vations for the same tags as in 77, while all other users will report
2 identical tags from before plus the new tag, the attacker can now
associate the new tag I D 4o with tag I D 4,. This can similarly
be done for all the tags. Its important to note that this is a hy-
pothetical scenario that assumes that the set of users remains con-
stant for some time, and in practice this assumption may not hold
true. The dynamic nature of user mobility and scenarios where
large crowds of users momentarily coincide may introduce signifi-
cant complexity that hinders the practicality of this attack. As such,
while various settings seem suitable for such an attack (e.g., mass
transportation rides between stops), further exploration is required
for evaluating the feasibility and effectiveness of the attack under
realistic conditions.

Motivation. All these issues motivated the decentralized design
of Techu where location information is temporarily stored by ob-
servers and shared only upon proof of ownership, thus, nullifying
the threat of these attacks.

6. IMPLEMENTATION

In this section, we present details regarding our prototype imple-
mentation, and discuss aspects of BLE, the more energy-efficient
version of Bluetooth; BLE was developed for communicating with
devices with limited resources, and presents constraints that guided
the design of Techu.

We implemented a prototype for the client-side software of ob-
servers and owners on the Android platform, and built a service for
collecting the data from observers as a web application over JBoss
AS 6.3. The clients handle BLE devices following the Bluetooth
specification v4.2, which defines that advertising packets can have
a payload of 6 to 37 bytes. The first 6 bytes are reserved for the
device’s advertisement address (i.e., the Bluetooth MAC address).
The remaining 31 bytes can be used by developers to store the data
that will be advertised by the beacon to the other devices. More

Experiment . tags per hour
Location Duration Average (std.dev.) | Max
Large = US city | 4 a0 5733(5273) | 491
metropolitan area
Large US city center 4 hours 274.67 (162.59) 549

Table 1: Results from two experiments where BLE tags were
collected in the wild.

information on how those bytes are broken down into commonly
used data types can be found in the specification [18].

Due to the limitations of the Bluetooth specification, we can ad-
vertise tag IDs of up to 248 bits through the advertisement packets.
We used AES-128 for symmetric crypto, SHA3-224 as a secure
hash-function, and elliptic-curve ElGamal with 224-bit public keys
for PK-encryption. We used the security providers® bundled with
our device when available, and the Bouncy Castle* library v1.54
for ECC.

For owners to communicate with observers that have reported
seeing their tags, we utilize the Google Cloud Message (GCM)
service. Our design deviates from the common GCM architec-
ture as our app registers 2 different IDs and runs both as a server
and a client; one serves as the user’s ObserverID, and the other
is used for sending tag-discovery queries to other users (prevent-
ing observers from learning a tag owner’s ObserverID). Crowd
clients communicate by pushing XMPP messages to the GCM ser-
vice. Clients periodically (e.g., every few days) may obtain new
IDs by creating new instances and re-registering with the GCM ser-
vice; this enables the ephemeral nature of observer IDs. While new
observations will be reported under the newly acquired ID, by keep-
ing the older instances alive, up to a given time, observers can re-
ceive queries for tags reported with the previous ObserverID. As
this is not the intended use of GCM, in the future it could be modi-
fied to invalidate the old IDs, or limit the amount of instances each
client may register. While this would prevent the use of ephemeral
observer IDs, the privacy offered by our system would remain. We
would like to emphasize that there is no app or user registration
server in Techu, which could be potentially breached.

TrackR’s Bravo tags expose a writable NAME attribute that we
use for storing the tag’s ID t;, as its contents are placed in the pay-
load of the advertisement packet. This behavior is typical for BLE
devices. For example, we also tested Jawbone UP3 fitness wear-
ables and found they expose a name attribute which can be written
and is advertised.

7. EVALUATION

We evaluate Techu in terms of the overhead it imposes on owner
and observer smartphones, and estimate the storage requirements
for the server. For our experiments, we used TrackR Bravo tags,
and two stock, low-to-midrange smartphones as observers and own-
ers: an Asus Zenphone and a BLU Studio Energy 2, both running
Android 5.0.

Tag density. The effectiveness of crowd GPS systems depends
on the size of the crowd. While there are projections for an explo-
sion in the number of BLE devices [73], to the best of our knowl-
edge, there have not been any studies about the number of devices
that can be currently found in the wild. To help us establish the
parameters and quantify the overhead of our system if deployed to-
day, we performed two experiments collecting tags. We present the
summary of their results in Table 1.

31.e., the classes extending the java.security.provider class.
“https://www.bouncycastle.org
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Figure 4: Comparison of reports sent by a baseline crowd GPS
and Techu’s tag observations.

Average | Std. dev. | Median
Baseline | 564ms 134ms 524ms
Techu 1025ms 140ms 1011ms

Table 2: Report transmission times including required cryp-
tographic operations, for batches of 50 reports (based on
tags/hour observed in mid-density area).

In the first experiment, we continuously collected BLE tags us-
ing the smartphone of one of the authors for 41 days, in the broader
metropolitan area of a city; the majority of measurements were col-
lected in a mid-sized town where one author works (Hoboken, NJ),
including occasional trips to the city (New York City, NY). The
dataset includes measurements from workdays as well as week-
ends. In the second experiment, we included measurements from
a four hour period (4-8pm) collected during a weekday in the bus-
iest center of a major metropolitan area (Manhattan, NY). In both
cases, we took measurements every 5 minutes and identified unique
BLE devices using their MAC addresses. Unsurprisingly, the re-
sults show that in a high-density area (e.g., the city center during
peak hours), we observed significantly more BLE tags on average,
than in a mid-density area. We use these observation rates to frame
the remaining experiments.

Reporting overhead. Reporting the observed tags imposes an
overhead on observers in terms of both storage and battery con-
sumption. In this section, we evaluate the overhead of Techu com-
pared with a commercial crowd GPS service such as TrackR, re-
ferred to as the baseline. Figure 4 compares the reports sent by
Techu with the baseline. Even though we do not transmit location
information to the service, due to the size of the encrypted observer
ID (180 B), we need to transmit about four times more data for each
reported tag. Transmitting these reports to the service is not four
times slower though, because even when batching reports together
the overhead of establishing a connection over SSL dominates the
cost. Table 2 shows the time needed to transmit 50 reports (the av-
erage tags/hour observed in a mid-density area) over WiFi to the
service.

High-density Area Mid-density Area
Rows Size (KB) | Rows Size (KB)
Hour | 275.00 10.00 57.00 2.20
Day 6,592.00 258.00 1,368.00 | 53.40
Week | 46,1447.00 | 1,803.00 9,576.00 | 374.10

Table 3: Estimated size of client database when retaining data
for different time periods.

Techu stores the location of recently observed tags on the client
side. In Table 3, we show the number of reports and amount of
storage required for retaining location information for an hour, day,
and week, for high and mid-density areas. Our prototype requires
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Figure 5: Storage requirements per data retention period,
based on the reports/hour generated by observers, under an
extreme scenario of 12 million users in a city.

40 bytes per report (tag ID, timestamp, location), resulting in negli-
gible storage requirements, even when retaining reports for a week.

Battery overhead. Preparing and transmitting the reports to the
service also consumes energy. For Techu this includes all crypto-
graphic operations and transmissions. For the baseline crowd GPS,
we simply transmit reports to the service. As both the baseline and
Techu need to activate the BLE adapter to receive advertisement
packets, we focused our experiment on the differentiating aspects
of our approach. We measure the impact on the battery by sending
1000 reports to the service, which results in a 3% drop in the bat-
tery level for Techu, compared to 1% for the baseline. While the
relative overhead seems non-negligible, we should emphasize that
if we periodically send reports to the service every hour, 30, 5, and
1 minutes, 1000 reports will be sent in 41.6, 20.8, 3.5, and 0.7 days
respectively.

Service overhead. Figure 5 shows the server’s storage require-
ments. We plot the estimated size versus the reports/hour gener-
ated by observers, using a broad range that captures both mid and
high-density areas. We assume a city size of 12 million users (sig-
nificantly larger than New York, the most populous city in the US),
who are all part of Techu and continuously report at the same rate.
Assuming typical mobility behavior, our system will require 23 TB
of storage for retaining the reports of the past week. At the most
extreme scenario where the entire population forms high-density
clusters, storage may surpass 200 TB. That, however, is an unre-
alistic scenario and in practice requirements will be significantly
lower than 23 TB even for major cities.

Querying lost tag. While this operation is infrequent and only
occurs when an owner attempts to locate a lost tag, it is critical
since a high latency between querying for a tag and receiving an
answer might render our system ineffective. We tested three dif-
ferent connection setups to evaluate performance over all possible
connection combinations between the owner querying about the tag
and the observer that holds the location data. We issued 1000 re-
quests from a device acting as the owner to a device acting as the
observer, and measured the time required to receive the location in-
formation for the observed tag. As shown in Figure 6 the cost is
less than 2 seconds in the worst case scenario, which occurs when
both the owner and observer connect over 3G.

Overhead on tag. Our design periodically writes a new tag ID
to the BLE tags, and this additional operation may impact the tag’s
battery life. Experimental measurements from other sources [47,
62] and the BLE specification indicate that the cost of a write op-
eration is on par with the transmission cost of an advertisement
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Write Period (min) | Lifetime (days) | Lifetime Reduction (%)

1 35.82 8.83

5 38.54 1.90

10 38.91 0.96

20 39.10 0.48

30 39.16 0.32

60 39.22 0.16
120 39.25 0.08

Table 4: Tag battery lifetime reduction due to frequency of
writing new IDs (normal lifetime is 39.29 days).

package for small payloads. Since our design writes the tag at a fre-
quency that is as least two orders of magnitude lower than the fre-
quency of broadcasting advertisement packets (e.g., once a minute
vs 100-500ms), we did not expect a considerable impact on battery
life.

We experimentally verified our expectations by performing over
100,000 writes to a TrackR tag over the course of a week. Simul-
taneously we activated a second tag as a control tag. We then mea-
sured the battery voltage of both and used the manufacturer’s data
sheet [53] to estimate the remaining mAh. Using our control tag
we calculated the difference due to our write operations, as:

A(Cvcomfrol - Ctest)/cfull

where the nominator is the difference in remaining charge be-
tween control and test tag and the denominator is the capacity of a
brand new battery. The battery model was CR1616 with a charge
of 55mAh when full. The results for different frequency updates
are shown in Table 4. Even for tag generation periods as small as 5
minutes, our system reduces the lifetime of the battery by less than
2%, which is negligible compared to the privacy benefits obtained.

Salted tag IDs extension. When using salted tag IDs (see § 4.2.2),
the owner needs to fetch a larger part of the database, which is de-
termined by the color ¢; of the tag. Once those reports are obtained,
the owner much check each returned report to determine if it corre-
sponds to the desired tag. This requires calculating a hash for each
report using the salt contained in the report and the tag’s ID. The
number of bits used for ¢;, along with the time range used in the
query, determine the number of entries returned to the owner.

In Table 5, we show the number and size of reports returned to
the user, along with the time required to produce a hash for each
report, when using different numbers of bits for ¢; and querying for
data from the last hour, day, and week. We notice that by using 16
bits (out of 28) of the tag ID as color, an owner querying for a tag

c; size | Query Downloaded Reports Generating
(bits) Range Size (MB) | # (in thousands) | Hashes (sec)
Hour 5,630.40 25,781.00 3,532.21

8 Day 135,129.69 618,750.00 84,773.08
Week | 945,907.83 4,331,250.00 593,411.57

Hour 22.09 101.00 13.80

16 Day 530.16 2,417.00 331.14
Week 3,711.09 16,919.00 2,318.01

Hour 0.09 0.39 0.05

24 Day 2.08 9.44 1.29
Week 14.56 66.09 9.05

Table 5: Size and processing effort for discovering location of
lost tag when using salted hashes, for maximum number of gen-
erated reports/hour (taken from Table 1).

Basic Salted IDs (Color bits)
24 16 8
Mid-density | 0.0l MB | 0.02MB | 3.61 MB 938.40 MB
High-density | 0.07 MB | 0.09 MB | 22.09 MB | 5,630.40 MB

Table 6: Data fetched from service for query targeting one hour
time window, under different configurations.

lost in the last hour will need to download approximately 22 MB
of reports and spend less than 15 seconds processing them. When
using a 24 bit color, even for a query window spanning an entire
day, the owner would only need to fetch about 2 MB. Note that the
reports stored in the service now include an additional 8-byte salt
and a color value of variable size.

Decoy queries extension. Decoy queries (see § 4.2.1) defend
from malicious observers that wish to identify and steal lost ob-
jects. However, a high number of decoys introduces overhead. To
quantify this, we consider a scenario where N + 1 users all own
one tag and, within a certain time window, all observe every other
tag®. Each user has two roles:

e Owner: randomly decides to issue decoy query to each of the
N observers of his tag.
e Observer: receives N decoy queries for observed tags.
If every member decides to issue one decoy query within the time
window, each user will need to query the service once and partici-
pate in 2 X N queries, as an owner or observer.

Table 6 shows the amount of data (in MB) that need to be fetched
by owners for various configurations of Techu in the two tag-density
scenarios we have been considering. We notice that, when using
salted IDs, unless we use a large color value, decoy queries become
expensive for tag owners.

In order to calculate the average energy cost of performing a sin-
gle query, we configured our testbed smartphones to exchange mes-
sages over 3G and performed 1000 queries. Our experiments show
that the cost of issuing and responding to query are the same, hence,
the overhead is mostly affected by the frequency decoys are gener-
ated at.

Figure 7 shows the number of queries/hour that would be gen-
erated by a user, for different decoy-generation frequencies in the
mid and high-density areas. It also shows the battery consump-
tion inflicted on the user, who acts both as an owner and observer
(i.e., both sends and responds to decoy queries). If owners issue
one decoy query per hour on average, in the medium-density area
an observer receives and issues 57 decoy queries every hour. Our
results indicate that we should adapt the frequency decoys are gen-

>Obviously this offers an extreme upper bound and, in practice, the
introduced overhead would be orders of magnitude lower.
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Figure 7: Cost of decoy queries extension for the two different
population density datasets.

erated at based on the density of the area, as it could otherwise lead
to a large number of decoy requests and significant overhead.

8. DISCUSSION AND FUTURE WORK

Geolocation. As aforementioned, IP-based geolocation tech-
niques for cellular connections do not offer enough accuracy to
pose a risk for users. If that changed, users could employ Tor [25]
or VPNs for hiding their IP address; that, however, would impact
the usability and adoption of Techu.

Beacon Sampling. Our experimental evaluation revealed the
moderate storage requirements of the server, even when deployed
for major metropolitan areas. As we envision Techu being deployed
as part of community effort and not by a private vendor, maintain-
ing state-wide “instances” of our service may require significantly
more storage, which could potentially hinder such initiatives. Since
in high-density areas many of the reports are overlapping (i.e., con-
cern the same tag), we can reduce the volume of reports by proba-
bilistically sampling the beacons to be reported. We leave the anal-
ysis of such an approach as part of our future work.

Silent Zones. An adversary with significant physical resources,
could distribute a large number of malicious tags, and attempt to
track users through their observer IDs. Alternatively, adversaries
that have collected the reports over a long period of time and man-
age to decrypt them, may try to infer very coarse-grained informa-
tion regarding a tag’s location, based on the number or frequency of
observation reports for specific tags. Through empirical measure-
ments, adversaries could potentially differentiate locations based
on the density of observers at specific locations. This could allow
the adversary to reconstruct a user’s trajectory and infer the user’s
work and home locations; previous work has shown how that infor-
mation can lead to the identification of the user [30]. Our salted tag
ID privacy extension significantly increases the difficulty of such
an attack, as the adversary would have to decrypt a large number of
reports (if not all), to obtain correct number/frequency information
per tag.

While these attacks would require significant physical resources,
nonetheless, users can configure silent zones within which the Techu
app will not search for tags or create observation reports. These
areas need not be large, which could also impact Techu’s effective-
ness, but would merely contain the two city blocks containing their
workplace and home. Silent zones could potentially pose a privacy
threat if the user’s whereabouts are tracked over a very long period
of time and the user visits every neighborhood in the city; then a
heatmap could expose the silent zones. This is prevented by peri-
odically changing observer IDs.

Random MAC. The Bluetooth specification defines private ad-
dresses [17] as resolvable or non-resolvable. Techu is designed to

be coupled with non-resolvable private addresses, where all the ad-
dress bits are random and change based on a timer. Simply relying
on these private addresses would break the functionality of a crowd
GPS system, as the tag would keep changing addresses after being
lost, and the owner would not be able to query for it; we solve this
by using a tag attribute to store our ephemeral identifier ¢;.

Eddystone. Google’s Eddystone framework uses ephemeral IDs
to improve privacy [34]; they are time-based and generated by the
tag based on a shared secret with the owner. These would allow
us to prevent attackers inferring lost devices without using decoy
queries, but may significantly increase battery consumption. As
part of our future work we will explore how too modify Techu
for incorporating these tags without incurring the overhead. Also,
since EIDs are time-based and clocks will not be synchronized, the
owner may need to query the service for multiple IDs.

BLE 5.0. Early reports [66] for the upcoming BLE 5.0 speci-
fication call, among other things, for extending the advertisement
packet length. One could argue that this will allow for stronger
keys, thus, enabling a design where observers encrypt and store
the user’s location in the public server, as the concern for forward
privacy would be mitigated due to the use of keys of higher sizes.
However, this may not be a viable solution, since extensive ex-
perimentation [62] has shown that the energy required for packet
transmission is directly correlated to the payload size; in conjunc-
tion with the de-facto high transmission rate of the advertisement
packets, this would undermine the tags usability by significantly
reducing the battery lifespan.

Business model. As crowd GPS services are becoming increas-
ingly popular, we envision that the low operational costs of Techu
could enable the deployment of our system as a community effort
by volunteers. Given how such a service could potentially be of
use in critical scenarios (e.g., elderly getting lost, children being
abducted) and the emergence of relevant services, local Techu in-
stantiations could also be supported by government organizations.
Nonetheless, our approach can be readily adopted and deployed as
a profitable alternative architecture by tag vendors, as it efficiently
addresses the CrowdGps tracker market, while also offering attrac-
tive economic benefits by removing the operational and liability
costs that stem from safeguarding user-data.

9. RELATED WORK

Crowd GPS. Frank et al. [28] presented a system for locating
objects through mobile phones, where other users attempt to locate
objects within a predefined defined time window which will result
in failure if the object is not within range of users during that time.
On the other hand, our design allows owners to obtain the most re-
cent sightings of the device, even if no observer is within range at
that moment in time. Furthermore, the heuristic-based selection of
potential observers may result in the selection of nodes that have
not been in proximity to the lost device, while Techu reports infor-
mation by any member of the crowd.

Recently, Sun et al. proposed SecureFind [70], a system for lo-
cating lost objects. One of the design goals of their system is to
offer object security, i.e., to prevent the service provider from iden-
tifying which objects have actually been lost or infer which users
have the device in their vicinity. To achieve that, some participat-
ing nodes also return dummy locations as responses to the query.
However, this introduces false positives that can mislead the de-
vice’s owner to wrong locations. Furthermore, as per their threat
model of an honest but curious service, they argue that they en-
sure user privacy as the service only knows the general area of each
user (areas are configured to match the granularity that cellular ser-
vice providers have based on which tower the user is connected



to). However, previous work has demonstrated how users can be
deanonymized using location traces of such coarse granularity [24].
Furthermore, their protocol requires proximity of observers to the
lost object at the time of the query, while our approach allows the
location of objects even in sparsely-populated areas, as we provide
information on observations even after the observes leave the ob-
ject’s range, by returning the most recent sightings. Finally, in their
system users can issue queries for obtaining location information
for tags of other users, effectively being able to track them. While
this threat is not part of their threat model, it is a critical threat
nonetheless, as their system can effectively be transformed into a
malnet, as we demonstrated with the TrackR service.

Cornelius et al. [22] proposed a framework for creating privacy-
preserving opportunistic sensing tasks. One of their example test
cases was the implementation of the Object Finder service. How-
ever, their system has significant privacy drawbacks, as it is vulner-
able to user tracking; since the MAC addresses of the objects never
change, adversaries can issue queries for the user’s device and ob-
tain the user’s location. Furthermore, anyone in the crowd can see
the requests for specific devices (i.e., everyone knows which de-
vices are lost), and can issue a query for locating those devices.

These systems build upon a centralized service, which requires
considerable infrastructure, rendering their deployment as a public
service improbable. Thus, users either have to pay for the service,
or have their data used for revenue [4]. Techu only needs a public
bulletin board as the server, rendering it ideal for a community-
driven deployment.

Ho et al. [71] presented a framework that leverages differential
privacy for protecting the location privacy of workers during the
assignment of tasks in spatial crowdsourcing services. Wang et
al. [74] demonstrated how Sybil attacks could impact Waze, a real-
time crowdsourced map, by reporting fake incidents such as acci-
dents or congestion.

Device tracking. Ristenpart et al. proposed Adeona [61], a sys-
tem for locating lost (or stolen) devices. The core of their system
is based on the ability of the device to periodically upload reports,
i.e., it only works for internet-enabled devices with considerably
higher storage capacities, while our system is designed for BLE
tags that have limited storage and no internet connectivity, and re-
lies on the power of the crowd for locating devices. Furthermore,
their system employs round-trip time measurements of known hosts
(landmarks) for estimating the geo-location of the device, and po-
tentially requiring communication with the ISP; apart from the im-
practicality of requiring such communication, these geo-locating
techniques [37,43] achieve very coarse-grained estimations (e.g.,
within a large metropolitan area) and are, thus, not suitable for this
type of functionality. An interesting aspect of their system is that
it is built over a Distributed Hash Table, enabling the use of public
infrastructure without the need of a trusted central service. As this
matches our motivation behind the use of a public server that serves
as a bulletin board, we could modify our approach to similarly em-
ploy OpenDHT [60] for storing the observation events.

Bluetooth tracking. The issue of location tracking using ubig-
uitous devices has been extensively studied in the past. Jakobsson
and Wetzel [45] discussed, among other attacks, how the location
of users could be tracked by an adversary that had deployed or com-
promised Bluetooth-enabled devices distributed over a (large) area.
In this paper, we demonstrated how adversaries can leverage an ex-
isting popular crowdsourcing service for deploying such an attack.
Following that work a plethora of researchers have explored this is-
sue both for WiFi and Bluetooth devices [39,61,63]. Das et al. [23]
showed how the network traffic of BLE wearables could lead to

the inference of user activities, or identification of the user within a
small group through the user’s gait.

Location privacy. A lot of research has focused on location pri-
vacy for applications where a user’s location needs to be sent to a
third party [29, 50]. Many of these studies focus on services that
provide location-specific information and, as such, propose solu-
tions that add noise or perturb the user’s location [12, 19, 27] or
employ cryptographic primitives [57]. These approaches are not
suitable for many crowd GPS systems, as accuracy is of prime im-
portance and tags have limited computational power. Also, recent
work demonstrated how attackers can accurately pinpoint a user’s
location in popular services, despite the noise they introduce [58].

10. CONCLUSIONS

As the saying goes, “there is strength in numbers”. While the
crowd’s power can be harnessed for tackling significant tasks, with
several examples of crowd sourced platforms demonstrating im-
portant results, it can also be misused with dire implications. To
motivate this discussion, we demonstrated how a very popular ser-
vice could be trivially misused as a distributed surveillance system,
effectively tracking the whereabouts of any user within the sys-
tem. To proactively prevent such incidents, we designed Techu to
offer strong security guarantees, and ensure the location privacy
and anonymity of participants from other users, as well as the ser-
vice itself. In the security analysis of our system we outlined how
users are protected against a wide range of attacks, and discussed
the tradeoff between privacy and performance overhead. Further-
more, our experiments showed that our system has negligible im-
pact on the user’s device in terms of computational overhead and
power consumption. Thus, the low operational costs and privacy-
preserving nature of Techu can incentivize vendors to adopt our
system design. Nonetheless, if crowdsourced GPS services con-
tinue to gain traction for critical tasks (e.g., locating missing el-
derly or children), one could envision the deployment of Techu by
volunteers or as a government-led operation.
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