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Abstract
In the absence of hardware-supported segmentation,

many state-of-the-art defenses resort to “hiding” sensi-
tive information at a random location in a very large ad-
dress space. This paper argues that information hiding
is a weak isolation model and shows that attackers can
find hidden information, such as CPI’s SafeStacks, in
seconds—by means of thread spraying. Thread spraying
is a novel attack technique which forces the victim pro-
gram to allocate many hidden areas. As a result, the at-
tacker has a much better chance to locate these areas and
compromise the defense. We demonstrate the technique
by means of attacks on Firefox, Chrome, and MySQL. In
addition, we found that it is hard to remove all sensitive
information (such as pointers to the hidden region) from
a program and show how residual sensitive information
allows attackers to bypass defenses completely.

We also show how we can harden information hiding
techniques by means of an Authenticating Page Mapper
(APM) which builds on a user-level page-fault handler
to authenticate arbitrary memory reads/writes in the vir-
tual address space. APM bootstraps protected applica-
tions with a minimum-sized safe area. Every time the
program accesses this area, APM authenticates the ac-
cess operation, and, if legitimate, expands the area on
demand. We demonstrate that APM hardens informa-
tion hiding significantly while increasing the overhead,
on average, 0.3% on baseline SPEC CPU 2006, 0.0% on
SPEC with SafeStack and 1.4% on SPEC with CPI.

1 Introduction

Despite years of study, memory corruption vulnera-
bilities still lead to control-flow hijacking attacks to-
day. Modern attacks employ code-reuse techniques [9,
34] to overcome broadly deployed defenses, like data-
execution prevention (DEP) [5] and address-space layout
randomization (ASLR) [30]. Such attacks are still pos-
sible primarily because of address leaks, which are used

to discover the location of useful instruction sequences,
called gadgets, that can be chained together to perform
arbitrary computations [34].

In response, researchers have been exploring various
directions to put an end to such attacks. A promising
solution is code-pointer integrity (CPI) [24] that aims to
prevent the hijacking of code pointers, and therefore tak-
ing control of the program. The separation of code point-
ers from everything else can be done by employing hard-
ware or software-enforced isolation [39,42], or by hiding
the region where pointers are stored, which is a faster al-
ternative, than software-based isolation, when hardware-
based isolation is not available. This information hiding
(IH) is achieved by placing the area where code point-
ers are stored at a random offset in memory and ensuring
that the pointer to that area cannot be leaked (e.g., by
storing it in a register). For example, safe versions of the
stack, referred to as safe stacks, that only include return
addresses are protected this way both by CPI and ASLR-
guard [26]. This type of IH is also adopted by other de-
fenses [7, 15] that aim to prevent attacks by eliminating
data leaks, which would enable the location of gadgets,
while it has also been adopted in shadow stack [13, 41]
and CFI [27, 43] research.

Reliance on information hiding is, however, problem-
atic. Recently published work [18] developed a memory
scanning technique for client applications that can sur-
vive crashes. It exploits the fact that browsers, includ-
ing Internet Explorer 11 and Mozilla Firefox, tolerate
faults that are otherwise critical, hence, enabling mem-
ory scanning to locate “hidden” memory areas. Before
that researchers demonstrated that it was possible to lo-
cate CPI’s safe region, where pointers are stored [17], if
IH is used instead of isolation.

In this paper, we reveal two new ways for defeating in-
formation hiding, which can be used to expose the “hid-
den” critical areas used by various defenses and subvert
them. The first is technique caters to multithreaded appli-
cations, which an attacker can cause a process to spawn



multiple threads. Such applications include browsers that
now support threads in Javascript and server applications
that use them to handle client connections. By causing
an application to spawn multiple threads, the attacker
“sprays” memory with an equal number of stacks and
safe stacks. As the address space fills with these stacks,
the probability of “striking gold” when scanning memory
increases dramatically. We incorporate this technique,
which we coin thread spraying, in the memory scanning
attack described above [18] and show that we can locate
safe regions, such as the safe stacks used by CPI and
ASLR-guard and parallel shadow stacks [14], in seconds
instead of tens of minutes. The second approach utilizes
bookkeeping data of various standard libraries in Linux
such as the POSIX threads library and glibc. Our inves-
tigation reveals several pointers that can lead to safe re-
gions in information kept to manage thread local storage
(TLS) and thread-control blocks (TCB). Isolating these
leftover pointers with a better implementation might be
possible. However, at the time of writing, there is no al-
gorithm for assessing if all sensitive pointers are properly
removed. We therefore argue that a sound implementa-
tion which excludes all pointers that can lead to a safe
region from the rest of the process is challenging.

These two new attack vectors demonstrate that it is
surprisingly hard to use information hiding to replace
strong isolation. Nevertheless, it is possible to further
harden IH and mitigate these attacks. We propose and
develop a technique that aims to shift the odds back in
favor of the defender. Our solution is based on two obser-
vations: first, only a small part of the memory allocated
to safe areas is actually used, and, second, safe areas
are usually accessed using well-defined instrumentation-
induced instruction patterns that are distinguishable from
application code. For example, under CPI only a small
part of the safe region and stacks allocated by CPU is
actually used, and, on x86-64 architectures, the gs seg-
ment register and the RSP register are used to access the
safe region and safe stacks, respectively.

Building on these observations, we introduce APM
(Authenticating Page Mapper), an IH hardening strategy
that verifies that all the first accesses to inactive pages
in safe areas follow legitimate and unforgeable execu-
tion patterns, increasing in this fashion the entropy of
IH. APM is implemented as a user-level page-fault han-
dler, exploiting the same page “trapping” technique used
by mechanisms like checkpoint/restart [31], hot patch-
ing [4], and ATL+DEP [1]. To further improve security,
APM artificially inflates the virtual memory region re-
served for safe areas. In particular, it decreases the num-
ber of accessible pages on a shadow stack to the min-
imum, but reserves many (initially inaccessible) addi-
tional pages that serve as tripwire. All illegitimate ac-
cesses to non-accessible pages trigger an alarm. Like-

wise, we offset the stack pointer by a random number of
bytes.

In summary, we make the following contributions:

1. We introduce a new attack vector, called thread spray-
ing, that reduces the entropy of information hiding
techniques by creating many threads and filling up
the memory space with safe areas such as safe stacks.
We demonstrate the practicality of thread spraying
for browsers (Firefox and Chrome) and the MySQL
server, all protected with CPI’s SafeStack, and show
that we can find the hidden stacks in seconds.

2. We analyze in detail the strength of information hid-
ing techniques used in state-of-the-art defenses and
show that existing solutions are not free of pointers to
safe areas. Our results enable an adversary to utilize
these pointers to compromise the safe area.

3. We propose a new IH hardening strategy to improve
information hiding by means of a user-level page fault
handler that increases the entropy significantly, makes
pages accessible on demand, and vets all first-time ac-
cesses to pages—greatly increasing the probability of
detecting an attack. We evaluate the solution using
a variety of applications as well as the SPEC bench-
marks and show that the performance impact is very
low (on average 0.3% on baseline SPEC, 0.0% on
SPEC with SafeStack, 1.4% on SPEC with full CPI
and barely measurable in browser benchmarks).

2 Threat Model

In this paper, we assume a determined attacker that aims
at exploiting a software vulnerability in a program that
is protected with state-of-the-art defenses (e.g., CPI [24]
or ASLR-Guard [26]), and that has the capabilities for
launching state-of-the-art code-reuse attacks [11,16,20].
We also assume that the attacker has a strong primitive,
such as an arbitrary read and write, but the arbitrary read
should not be able to reveal the location of a code pointer
that could be overwritten and give control to the attacker,
unless the safe area is somehow discovered. Under this
threat model, we discuss in Sections 3 and 4 a number
of possible strategies that can leak the safe area to the
attacker. Later in this paper, we propose to harden IH
using a technique that can effectively protect the safe area
with a small and practical overhead.

3 Background and Related Work

In the following, we review relevant work on information
hiding. We discuss both attacks and defenses to provide
an overview of related work and hint at potential weak-
nesses. We show that prior work has already bypassed

2



several IH approaches, but these attacks all targeted de-
fenses that hide very large areas (such as the 242 byte safe
area in CPI [17], or all kernel memory [22]). It is a com-
mon belief that smaller regions such as shadow stacks are
not vulnerable to such attacks [26]. Later, we show that
this belief is not always true.

3.1 Information Hiding
Many new defenses thwart advanced attacks by separat-
ing code pointers from everything else in memory. Al-
though the specifics of the defenses vary, they all share
a common principle: they must prevent malicious in-
puts from influencing the code pointers (e.g., return ad-
dresses, function pointers, and VTable pointers). For this
reason, they isolate these pointers from the protected pro-
gram in a safe area that only legitimate code can access
in a strictly controlled fashion. In principle, software-
based fault isolation (SFI [39]) is ideal for applying this
separation. However, without hardware support, SFI still
incurs nontrivial performance overhead and many de-
fenses therefore opted for (IH) as an alternative to SFI.
The assumption is that the virtual address space is large
enough to hide the safe area by placing it in a random
memory location. Since there is no pointer from the pro-
tected program referencing explicitly the safe area, even
powerful information disclosure bugs [35] are useless. In
other words, an attacker could potentially leak the entire
layout of the protected process but not the safe area.

In recent years, this topic received a lot of attention
and many systems emerged that rely (at least optionally)
on IH. For example, Opaque CFI [27] uses IH for pro-
tecting the so called Bounds Lookup Table (BLT) and
Oxymoron [7] uses IH for protecting the Randomization-
agnostic Translation Table (RaTTle). Isomeron [15]
needs to keep the execution diversifier data secret while
StackArmor [41] isolates particular (potentially vulnera-
ble) stack frames. Finally, CFCI [44] needs to hide, when
segmentation is not available, a few MBs of protected
memory. Although all these systems rely on IH for a dif-
ferent purpose, they are vulnerable to memory scanning
attacks which try to locate these regions in a brute-force
manner (as shown in Section 4). Since the Authenticat-
ing Page Mapper that we propose in this paper hardens
IH in general, it directly improves the security of all these
systems—irrespective of their actual goal.

3.2 ASLR and Information Leaks
Arguably the best known IH technique is regular Address
Space Layout Randomization (ASLR). Coarse-grained
ASLR is on by default on all major operating systems.
It randomizes memory on a per-module basis. Fine-
grained ASLR techniques that additionally randomize

memory on the function and/or instruction level were
proposed in the literature [19, 29, 40], but have not re-
ceived widespread adoption yet.

In practice, bypassing standard (i.e., coarse-grained,
user-level) ASLR implementations is now common.
From an attacker’s point of view, disclosing a single
pointer that points into a program’s shared library is
enough to de-randomize the address space [36]. Even
fine-grained ASLR implementations cannot withstand
sophisticated attacks where the attacker can read code
with memory disclosures and assemble a payload on the
fly in a JIT-ROP fashion [35].

For kernel-level ASLR, we view kernel memory as an-
other instance of information to hide. From user space,
the memory layout of the kernel is not readable and
kernel-level ASLR prevents an attacker from knowing
the kernel’s memory locations. However, previous work
showed that it is possible to leak this information via a
timing side channel [22].

In general, leaking information by abusing side chan-
nels is a viable attack strategy. Typically, an attacker uses
a memory corruption to put a program in such a state that
she can infer memory contents via timings [10,17,33] or
other side channels [8]. This way, she can even locate
safe areas to which no references exist in unsafe mem-
ory.

In the absence of memory disclosures, attackers may
still bypass ASLR using Blind ROP (BROP) [8], which
can be applied remotely to servers that fork processes
several times. In BROP, an attacker sends data that
causes a control transfer to another address and then ob-
serves how the service reacts. Depending on the data sent
the server may crash, hang, or continue to run as normal.
By distinguishing all different outcomes, the attacker can
infer what code executed and identify ROP gadgets.

In this paper, we specifically focus on safe stacks
(which are now integrated in production compilers) and
review recent related solutions below.

3.3 Code-Pointer Integrity (CPI)

CPI is a safety property that protects all direct and indi-
rect pointers to code [24]. CPI splits the address space
in two. The normal part and a significantly large safe
area that stores all code pointers of the program. Ac-
cess to the safe area from the normal one is only possi-
ble through CPI instructions. Additionally, CPI provides
every thread with a shadow stack, namely SafeStack, be-
yond the regular stack. The SafeStack is used for stor-
ing return addresses and proven-safe objects, while the
regular stack contains all other data. SafeStacks are rel-
atively small but they are all contained in a large safe
area, which is hidden at a random location in the virtual
address space.
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Evans et al. showed how to circumvent CPI and find
the safe area by probing using a side channel [17]. De-
pending on how the safe area is constructed, this attack
may require the respawn-after-a-crash property to pull
off the attack. This property is only available in (some)
servers. Moreover, it is fragile, as it is very easy for an
administrator to raise an alarm if the server crashes often.
In Section 4, we will introduce an attack that demon-
strates how we can efficiently locate CPI’s SafeStack in
the context of web browsers.

3.4 ASLR-Guard
ASLR-Guard [26] is a recent defense that aims at pre-
venting code-reuse attacks by protecting code addresses
from disclosure attacks. It does so by introducing a se-
cure storage scheme for code pointers and by decoupling
the code and data regions of executable modules. A core
feature is its shadow stack that it uses to separate com-
pletely the code pointers from the rest of the data. To effi-
ciently implement this idea, again two separate stacks are
used. First, the so called AG-stack which holds only code
addresses is used by function calls and returns, exception
handlers, etc. The second stack is used for any data op-
eration and ensures that all code pointers and pointers to
the AG-stack are encrypted. As a result, an adversary
has no way of leaking the location of code images. We
discuss the security of this design in Section 4.4.

3.5 Discussion
Information hiding has grown into an important building
block for a myriad of defenses. While several attacks
on the randomization at the heart of IH are described in
the literature, it is still believed to be a formidable ob-
stacle, witness the growing list of defenses that rely on
it. Also, since the attacks to date only managed to find
secret information occupying a large number of pages, it
seems reasonable to conclude, as the authors of ASLR-
Guard [26] do, that smaller safe areas are not so vulnera-
ble to probing attacks. In this paper, we show that this is
not always true.

4 Breaking Modern Information Hiding

In this section, we introduce two approaches towards un-
covering the hidden information. First, we show how-
ever careful developers of IH approaches are, pointers
to the safe area may still be unexpectedly present in the
unsafe area. While this may not represent fundamental
problems, there are other issues. Specifically, we show
that an attacker may significantly reduce the large ran-
domization entropy for secret data like shadow stacks by
making the program spawn many threads in a controlled
way, or corrupting the size of the stacks that the program
spawns.

4.1 Neglected Pointers to Safe Areas

Safe stack implementations are an interesting target for
an attacker and the ability to locate them in a large vir-
tual address space would yield a powerful attack prim-
itive. As an example, consider CPI’s SafeStack imple-
mentation that is now available in the LLVM compiler
toolchain. Recall that the safe stack implementation of
CPI moves any potential unsafe variables away from the
native stack to make it difficult to corrupt or to gather
the exact address of that stack. Any references to the
safe stack in global memory that the attacker could leak
would therefore break the isolation of SafeStack. Ide-
ally for an attacker, such pointers would be available
in program-specific data structures, but we exclude this
possibility here and assume that no obvious information
disclosure attacks are viable. However, even though the
authors diligently try to remove all such pointers, the
question is whether there are any references left (e.g., in
unexpected places).

For this reason, we analyzed the implementation and
searched for data structures that seemed plausible can-
didates for holding information about the location of
stacks. In addition, we constructed a way for an attacker
to locate said stacks without relying on guessing. In par-
ticular, we examined in detail the Thread Control Block
(TCB) and Thread Local Storage (TLS).

Whenever the system spawns a new thread for a pro-
gram, it also initializes a corresponding Thread Control
Block (TCB), which holds information about the thread
(e.g., the address of its stack). However, once an attacker
knows the location of the TCB, she also (already) has
the stack location as the TCB is placed on the newly
allocated stack of the thread. An exception is the cre-
ation of the main thread where the TCB is allocated in
a memory region that has been mapped, with mmap(),
during program initialization. Since the initialization of
the program startup is deterministic, the TCB of the main
stack is located at a fixed offset from the base address of
mmap() (which can be easily inferred by leaked point-
ers into libraries).

Moreover, obtaining the address of the TCB is often
easy, as a reference to it is stored in memory and passed
to functions of the pthread library. While not visi-
ble to the programmer, the metadata required to manage
threads in multi-threaded applications can also leak the
address of the thread stacks. If an attacker is able to ob-
tain this management data, she is also able to infer the lo-
cation of stacks. Note that the management data is stored
in the TCB because threads allocate their own stacks, so
they need to free them as well. Furthermore, we found
that the TCB also contains a pointer to a linked list with
all TCBs for a process, so all stacks can be leaked this
way.
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Additionally, TLS consists of a static portion and a
dynamic portion and the system happens to allocate the
static portion of the TLS directly next to the TCB. The
TLS portions are managed through the Dynamic Thread
Vector (DTV) structure which is allocated on the heap at
thread initialization and pointed to by the TCB. Leaking
the location of DTV will also reveal the stack location.

Another way to obtain the location of the stacks is us-
ing global variables in libpthread.so. The loca-
tions of active stacks are saved in a double linked list
called stacks_used which can be accessed if the location
of the data section of libpthread is known to an at-
tacker.

In summary, our analysis of the implementation re-
veals that references to sensitive information (in our case
safe stacks) do occur in unexpected places in practice.
While these issues may not be fundamental, given the
complexity of the environment and the operating system,
delivering a sound implementation of IH-based defenses
is challenging. All references should be accounted for in
a production defense that regards stack locations as sen-
sitive information. We even argue that any IH-hardening
solution (like the one presented in this paper) should take
implementation flaws of defense solutions such as CPI
into account, since they are common and often not under
direct control of the solution (e.g., because of external
code and libraries).

4.2 Attacks with Thread Spraying

While prior research has already demonstrated that in-
formation hiding mechanisms which utilize a large safe
area are vulnerable to brute-force attacks [17], our re-
search question is: are small safe areas without refer-
ences to them really more secure than large safe areas?
More generally speaking, we explore the limitations of
hiding information in an address space and discuss po-
tential attacks and challenges.

In the following, we investigate in detail CPI’s SafeS-
tack as an illustrative example. While the safe area itself
is very large (dependent on the implementation it may
have sizes of 242 or 230.4 [17, 25]), a safe stack is only a
few MB in size and hence it is challenging to locate it in
the huge address space. We analyze the SafeStack imple-
mentation available in the LLVM compiler toolchain. As
discussed above, the safe stack keeps only safe variables
and return addresses, while unsafe variables are moved
to an unsafe stack. Hence, an attacker—who has the pos-
sibility to read and write arbitrary memory—still cannot
leak contents of the safe stack and cannot overwrite re-
turn addresses: she needs to locate the safe stack first.

We study if such an attack is feasible against web
browsers, given the fact that they represent one of the
most prominent attack targets. We thus compiled and

linked Mozilla Firefox (version 38.0.5) for Linux us-
ing the -fsanitize=safe-stack flag of the clang
compiler and verified that SafeStack is enabled during
runtime. We observed that safe stacks are normally rela-
tively small: each thread gets its own safe stack, which is
between 2MB (221 bytes; 29 pages) and 8MB (223 bytes;
211 pages) in size. With 28 bits of entropy in the 64-
bit Linux ASLR implementation, there are 228 possible
page-aligned start addresses for a stack. Hence, an ad-
versary needs at least 219 probes to locate a 2MB stack
when sweeping through memory in a brute-force man-
ner. In practice, such an attack seems to be infeasible.
For server applications, a brute-force attack would be de-
tectable by external means as it leads to many observable
crashes [25].

However, an attacker might succeed with the follow-
ing strategy to reduce the randomization entropy: while
it is hard to find a single instance of a safe stack inside
a large address space, the task is much easier if she can
force the program to generate a lot of safe stacks with a
certain structure and then locate just one of them. Thus,
from a high-level perspective our attack forces the pro-
gram to generate a large number of safe stacks, a tech-
nique we call thread spraying. Once the address space
is populated with many stacks, we make sure that each
stack has a certain structure that helps us to locate an
individual stack within the address space. For this, we
make use of a technique that we term stack spraying, to
spray each stack in such a way that we can later easily
recognize it. Finally, via a brute-force search, we can
then scan the address space and locate a safe stack in a
few seconds. In the following, we describe each step in
more detail.

4.2.1 Thread Spraying

Our basic insight is that an adversary can abuse legit-
imate functions to create new stacks, and thereby de-
crease the entropy. Below, we explain how we performed
the thread spraying step in our attack on Firefox. Fur-
thermore, we show that the thread spraying technique is
also possible in other applications, namely Chrome and
MySQL.
Thread Spraying in Firefox: Our thread spraying in
Firefox is based on the observation that an attacker
within JavaScript can start web workers and each web
worker is represented as a stand-alone thread. Thus, the
more web workers we start, the more safe stacks are
created and the more the randomization entropy drops.
Thread spraying may spawn a huge number of threads.
In empirical tests on Firefox we were able to spawn up to
30,000 web workers, which leads to 30,000 stacks with
a size of 2MB each that populate the address space. In
our attack, we implemented this with a malicious web-
site that consists of 1,500 iframes. Each iframe, loading
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a webpage from distinct domain name, allows the cre-
ation of 20 web workers. As we will show later, forcing
the creation of 2,000 or even only 200 stacks is enough in
practical settings to locate one of the safe stacks reliably.
Fortunately, launching this lower number of concurrent
threads is much less resource intensive and the perfor-
mance impact is small.
Thread Spraying in Chrome: We also tested if Google
Chrome (version 45.0.2454.93) is prone to thread spray-
ing and found that Chrome only allows around 60 worker
threads in the standard configuration. An investiga-
tion revealed that this number is constrained by the to-
tal amount of memory that can be allocated for worker
threads. When we request more worker threads, the
Chrome process aborts as it is unable to allocate mem-
ory for the newly requested thread. However, if the
attacker has a write primitive, she can perform a data
corruption attack [12] and modify a variable that has
an effect on the size of the memory space being allo-
cated for worker threads. In Chrome, we found that
when we decrease the value of the global data vari-
able g_lazy_virtual_memory, Chrome will allo-
cate less memory space for a worker thread. The less
space allocated, the more worker threads it can spawn.
As a result, we were able to spawn up to 250 worker
threads, with a default stack size of 8MB, after locating
and modifying this data variable, during runtime, in the
bss section of the Chrome binary.
Thread Spraying in MySQL: We also evaluated the
thread spraying attack on the popular MySQL database
server (version 5.1.65). Interestingly, MySQL creates
a new thread for each new client connection. By de-
fault, the maximum number of simultaneous connections
is 151 and each thread is created with a stacksize of
256KB. With 151 threads, this amounts to 37.8MB of
safe stack area in the memory space which corresponds
to spawning just ~19 Firefox or ~5 Chrome worker
threads. This would make it hard to perform a success-
ful thread spraying attack. However, as in the Chrome
use case above, an attacker with a write primitive can
corrupt exactly those variables that constrain the num-
ber of threads—using a data-oriented attack [12]. We
found that the number of threads in MySQL is con-
strained by the global variables max_connections
and alarm_queue. Increasing them, allows an at-
tacker to create more connections and thus more threads.
Since MySQL has a default timeout of 10 seconds for
connections, it may be hard to keep a high number of
threads alive simultaneously, but it is just as easy to
overwrite the global variables connect_timeout and
connection_attrib, which contains the stack size
used when creating a thread for a new client connection.
In a simple test we were able to create more than 1000
threads with a stacksize of 8MB.

Protecting the Thread Limits: In some applications,
such as Chrome and MySQL, there are global vari-
ables that are associated explicitly or implicitly with
thread creation. For example, in Chrome there is
g_lazy_virtual_memory which, if reduced, al-
lows for the creation of more worker threads. Placing
these variables in read-only memory can potentially mit-
igate the thread-spraying attacks, however, it is unclear if
the application’s behavior is also affected. In Section 5
we present a defense system that protects applications
from all attacks discussed in this section without relying
on protecting limits associated with thread creation.

4.2.2 Stack Spraying

At this point, we forced the creation of many stacks
and thus the address space contains many copies of safe
stacks. Next, we prepare each stack such that it contains
a signature that helps us to recognize a stack later. This
is necessary since we scan in the next step the memory
space and look for these signatures in order to confirm
that we have indeed found a safe stack (with high prob-
ability). In analogy with our first phase, we term this
technique stack spraying.

From a technical point of view, we realize stack spray-
ing in our attack as follows. Recall that a safe stack as-
sumes that certain variables are safe and this is the case
for basic data types such as integers or double-precision
floating point values. Moreover, Firefox stores double-
precision values in their hexadecimal form in memory.
For instance, the number 2.261634509803921 ∗ 106 is
stored as 0x4141414141414140 in memory. Ad-
ditionally, calling a JavaScript function with a double-
precision float value as parameter leads to the placement
of this value on the safe stack since the system consid-
ers it safe. We exploit this feature to (i) fill the stack
with values we can recognize and (ii) occupy as much
stack space as possible. We therefore use a recursive
JavaScript function in every worker which takes a large
number of parameters. We call this function recursively
until the JavaScript interpreter throws a JavaScript Error
(too much recursion). As we can catch the error within
JavaScript, we create as many stack frames as possible
and keep the occupied stack space alive. Of course, other
implementations of stack spraying are also possible.

A thread’s initial stack space contains various safe
variables and return addresses before we call the recur-
sive function the first time. Thus, this space is not con-
trollable, but its size does not vary significantly across
different program runs. For example, in our tests the ini-
tially occupied stack space had a size of approximately
three memory pages (0x3000 bytes) in each worker. A
sprayed stack frame consists of the values that the recur-
sive function retrieves as parameters and is additionally
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Figure 1: Memory layout of Firefox with CPI’s SafeStack filled with
sprayed stack frames

interspersed with data intended to reside in a stack frame.
As the size of this data is predictable, we can control the
size of the stack frame with the number of parameters
passed to the recursive function. While the number of
sprayed stack frames is controllable via the number of
recursive calls, we perform as many recursive calls as
the JavaScript interpreter allows.

Figure 1 illustrates the memory layout of a sprayed
safe stack after the first two phases of our attack. Since
the system keeps safe variables such as double-precision
floating point values on the safe stack, the memory can
be filled with controlled stack frames which contain user-
controlled signatures in a controllable number. Thus, we
generate a repetitive pattern on the safe stacks of web
workers, which leads to the following observations:

• The probability of hitting a stack during memory
probing attempts increases, as the allocated space of
a safe stack is filled with a recognizable signature.

• Where safe stacks are not consecutive to each other,
they are separated only by small memory regions.
Thus, probing with stack-sized steps is possible
which reduces the number of probes even further.

• On a signature hit, we can safely read in sprayed
frame sized steps towards higher addresses until we
do not hit a signature anymore. This tells us that
we have reached the beginning of the thread’s stack,
which we can disclose further to manipulate a return
address.

4.3 Scanning methodologies
During our experiments we developed multiple scanning
methods fitted to different defense scenarios. In the fol-
lowing we shortly describe the observations leading to
the development of each and evaluate them against the
targeted defense measures. The first two techniques are
targeted at the standard ASLR while the last technique

is also successful against an improved version. For our
evaluation we assumed that an attacker can not always
rely on the stacks being located close to each other. As
such we implemented a simple module that can be loaded
via LD_PRELOAD and forces each call to mmap, associ-
ated with a stack creation (i.e. MAP_STACK provided in
the flags argument), to allocate memory at a random ad-
dress. This means every page is a potential stack base
and our first two methods are no longer effective.

4.3.1 Naïve attack on adjacent stacks

The simplest attack is based on the observation that all
stacks are allocated close to each other, starting from a
randomly chosen base address. To investigate this obser-
vation, we spawned 200 worker threads and performed
stack spray in each one. We chose a number of param-
eters for the recursive function such that each sprayed
stack frame had a size of one page (4096 bytes). As
each thread gets a stack of 2MB in size and individ-
ual stacks are grouped closely in memory, we can treat
the compound of stacks as a coherent region of approx-
imately 228B in size. To locate a safe stack we scan
towards lower addresses with 228B sized steps starting
at 0x7ffffffff000, the highest possible stack base.
As soon as we hit mapped memory we start searching in
page sized steps for our sprayed signature. We performed
this scan on three Firefox runs and needed only 16755.0
probing attempts on average (consisting of 1241.3 228B
sized probes and 15513.7 page sized probes) to locate
a signature and thus a safe stack. While this method is
simple to implement and locates stacks with a high prob-
ability it has a chance to miss a stack region, if our single
probe of a potential stack region hits the gap between two
stacks by chance. While retrying with a different start-
ing offset is possible, the next method is more fit for this
purpose.

4.3.2 Optimized attack on adjacent stacks

As a variation of our previous method we modified the
scanning strategy based on our observations. During
three runs with Firefox, we first launched 2,000 worker
threads and again performed stack spraying in each of
them. Afterwards we conducted our memory scanning.
The results are shown in Table 1. As our memory range,
we chose 0x7FxxxxYYYYY0, whereby the least three
significant bytes are fixed (YYYYY0) while the fourth
and fifth byte remain variable (xxxx). This yields a
memory range of 216 = 65,536 addresses: due to 28-
bit entropy for top down stack allocations, each of the
chosen ranges constitutes a potential range for stack al-
locations. The probability that one of the chosen ranges
is not a potential stack range is negligibly small.
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Table 1: Memory scans in Firefox on eight different ranges after thread and stack spraying was applied- In each range, byte four and five
are variable (denoted by ****). Thus, each range consists of 216 = 65536 addresses. Mapped denotes the number of readable addresses, S-hits
the number of addresses belonging to the safe stack that contain our signature, and Non S-Hits represent safe stack addresses not containing our
signature. False S-hits means that our signature was found at an address not being part of a safe stack.

Run 1 Run 2 Run 3
Memory Range Mapped S-Hits Non S-Hits False S-Hits Mapped S-Hits Non S-Hits False S-Hits Mapped S-Hits Non S-Hits False S-Hits

0x7f****000000 878 184 95 0 886 122 138 0 480 73 134 0
0x7f****202020 886 198 74 0 889 154 125 0 482 104 127 0
0x7f****404040 884 182 98 0 890 122 139 1 482 71 129 0
0x7f****606060 890 197 66 0 887 152 123 0 485 107 136 0
0x7f****808080 889 182 92 0 891 123 136 0 482 70 135 0
0x7f****a0a0a0 889 193 60 0 891 152 126 2 482 105 140 0
0x7f****c0c0c0 888 190 86 2 893 122 139 0 485 73 138 0
0x7f****e0e0e0 892 195 64 2 889 151 123 1 485 101 142 1

On average, 753.1 addresses out of 65,536 were
mapped for each scan range. The ranges we tested were
all potential ranges for safe stacks. 138.5 times a signa-
ture was hit, meaning we hit an address being part of a
safe stack (S-hits). 0.4 times a signature was hit which
did not belong to a safe stack. That means we hit a false
positive (false S-hits). These false hits occur due to the
signature being written by the program to non-stack re-
gions which reside in potential stack ranges.

Choosing the three least significant bytes as a fixed
value has the advantage of greatly reducing the search
space: instead of probing in 2MB steps—which would
be necessary to sweep the potential stack locations with-
out a chance of missing a stack—we exploit the obser-
vation that the distance between allocated pages varies.
Taking this into account leads to the conclusion that
stacks are distributed in a way that gives any value of
these ranges a roughly equal chance of being part of
one stack. While it is not guaranteed to get a hit with
this scanning approach, we cover a bigger area in less
time. Additionally, in case the first run did not turn up
any stack, we are free to retry the scan using a different
range. With an increasing number of retries we get close
to a full coverage of the scan region, but at the same time
we spend less time probing a region without any stacks.

4.3.3 Locating non-adjacent stacks

With our modifications to stack ASLR the methods pre-
sented so far have a high chance of missing a stack, be-
cause they probe a memory region several times larger
than a single stack. Therefore we need to assume no re-
lation between stack locations and are forced to scan for
memory of the size of a single stack. With the random-
ization applied we split the memory into C = 247/221 =
226 chunks, each representing a possible 2MB stack lo-
cation. We ignore the fact that some locations are already
occupied by modules and heaps, as we are able to distin-
guish this data from stack data. Also building a complete
memory map and then skipping these regions, if possi-
ble at all, would take more time than checking for a false
stack hit. Without thread spraying we would be forced to

locate a single stack, which would mean we would on av-
erage need 225 probes. Even with a high scanning speed
this would not be feasible. However by spawning more
threads we can reduce the number of probes in practice
significantly.

We tested two strategies for locating these stacks. In
theory every location in the address space has an equal
chance of containing a stack, so scanning with a linear
sweep with a step size of one stack seems like a valid
approach that allows for locating all stacks eventually.
However we noticed that the amount of probes required
to locate any stack significantly differed from the ex-
pected amount. This can be explained by big modules
being loaded at addresses our sweep reaches before any
stacks. Due to this mechanic we risk sampling the same
module multiple times instead of moving on to a possible
stack location. As such we employed a different strategy
based on a purely random selection of addresses to probe.
In total we performed nine measurements and were able
to locate a stack with 33,462 probes on average.

4.3.4 Crash-Resistant Memory Scanning

To verify that an attacker can indeed locate CPI’s SafeS-
tack when conducting a memory corruption exploit
against Firefox, we combined thread and stack spraying
with a crash-resistant primitive introduced by recent re-
search [18]. Crash-resistant primitives rely on probing
memory while surviving or not causing at all application
crashes. Using a crash-resistant primitive, it is possible
to probe entire memory regions for mapped pages from
within JavaScript and either receive the bytes located at
the specified address or a value indicating that the ac-
cess failed. In case an access violation happens, then
the event is handled by an exception handler provided
by the application, which eventually survives the crash.
An equivalent approach is probing memory using system
calls that return an error without crashing when touching
unmapped memory. Equipped with crash-resistant prim-
itives, we are free to use any strategy to locate the safe
stack without the risk of causing an application crash.
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We choose to scan potential ranges which may include
safe stacks and hence we choose one of the ranges shown
in Table 1. To counteract false positives, we employ a
heuristic based on the observation that thread and stack
spraying yield stacks of a predetermined size, each of
which contains a large number of addresses with our sig-
nature. Determining the stack size is easily done after
any address inside a stack candidate is found, because
we are free to probe higher and lower addresses to locate
the border between the stack’s memory and neighboring
unmapped memory. Once these boundaries are known,
it is possible to use memory disclosures to apply the sec-
ond part of our heuristic. This heuristic is implemented
in asm.js as an optimization. As our code is nearly di-
rectly compiled to native code it is very fast to execute.
Additionally, we mainly need to index an array, with its
start address set to the lower boundary, which is a heavily
optimized operation in asm.js. If the number of entries in
this array matching our sprayed values is above a certain
threshold, we conclude that the memory region is indeed
a stack. A further optimization we chose was to scan
from higher addresses to lower addresses: we observed
that stacks are usually the memory regions with the high-
est address in a process, which means we most likely hit
a stack first when scanning from the top.

With the overhead caused by the thread and stack
spraying, we are not able to use the full speed offered
by the probing primitive [18]. This results in an aver-
age probing time of 46s to locate a safe stack (includ-
ing the time for thread and stack spraying). The speed
decrease is mainly due to the fact that we need to keep
the threads and stack frames alive. Our attack achieved
this by simply entering an endless loop at the end, which
leads to degraded performance. However as web work-
ers are designed to handle computational intensive tasks
in the background, the browser stays responsive, but the
scanning speed is affected.

Tagging safe stacks with user controlled data is not
the only option for locating a safe stack. As most free
stack space is zeroed out, a simple heuristic can be used
to scan for zeros instead of scanning for placed markers.
The advantage is that shadow stacks which separate re-
turn addresses and data are still locatable. Another pos-
sibility is to scan for known return addresses near the
base of the stack: as coarse-grained ASLR randomizes
shared libraries on a per-module basis and libraries are
page aligned, the last twelve bits of return addresses stay
the same across program runs and remain recognizable.

Without the overhead caused by the thread and stack
spraying, our scanning speed is increased to 16,500
probes per second. As our approximated scanning
method requires 65,536 scans per run, we are able to
finish one sweep in less than 4 seconds. However, this
is only the worst case estimation when not hitting any

stack. As mentioned before, we are then free to retry us-
ing a different value. On average, we are able to locate a
safe stack in 2.3 seconds during our empirical evaluation.

4.4 Discussion: Implications for ASLR-
Guard

In the following, we discuss the potential of a similar at-
tack against ASLR-Guard [26]. While this defense pro-
vides strong security guarantees, it might be vulnerable
to a similar attack as the one demonstrated above: as the
native stack is used for the AG-stack, we can locate it
using our scanning method. If the randomization of AG-
stack locations is left to the default ASLR implementa-
tion (i.e., the stacks receive the same amount of entropy
and potential base addresses), we can use our existing ap-
proach and only need to adjust for the size of the stacks
(if different) in addition to a different scanning heuris-
tic. This results in a longer scanning time, but if recur-
sion can again be forced by attacker-supplied code, the
resulting AG-stack will also increase in size. Combined
with the thread spraying attack, we are able to generate
a large number of sizable stacks. The major difference
is that we are not able to spray a chosen value on the
AG-stack. Further research into dynamic code genera-
tion might allow for spraying specific byte sequences as
return addresses, if code of the appropriate size can be
generated. While we can not evaluate the security of
ASLR-Guard since we do not have access to an imple-
mentation, it seems possible to locate the AG-stack and
thus disclose unencrypted code addresses.

Besides the AG-stack, there are two additional mem-
ory regions that must be hidden from an attacker. First,
the code regions of executable modules are moved to a
random location, but they are still potentially readable.
As the mmap-wrapper is used, they receive an entropy
of 28 bits. Since the stacks also receive the same amount
of entropy, a similar attack is possible. Scanning can
be done in bigger steps if a large executable module is
targeted. Second, a safe area called safe vault is used
for the translation of encoded pointers and it needs to be
protected. If either of those structures is located, an ad-
versary is able to launch a code-reuse attack. However,
she would be limited to attack types that do not require
access to the stack (e.g., COOP [32]). As stated in the
paper, an attacker has a chance of 1 in 214 to hit any
of these regions with a random memory probe. This re-
sults in the possibility of exhausting the search space in
roughly one second with the memory probing primitive
discussed earlier. Additional steps need to be taken in
order to determine the specific region hit, though. This
can include signatures for code sections or heuristics to
identify the safe vault.
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5 Reducing the Odds for Attackers

We developed a mechanism called Authenticating Page
Mapper (APM), which hinders attacks probing for the
safe areas. Our mechanism is based on a user-level page
fault handler authenticating accesses to inactive pages in
the safe area and, when possible, also artificially inflating
the virtual memory region backing the safe area.

The first strategy seeks to limit the attack surface to
active safe area pages in the working set of the appli-
cation. Since the working set is normally much smaller
than the virtual memory size (especially for modern de-
fenses relying on safe areas with sparse virtual memory
layouts [13,24]), this approach significantly increases the
entropy for the attacker. Also, since a working set is nor-
mally stable for real applications [38], the steady-state
performance of APM is negligible.

The second strategy ensures an increase in the number
of inactive pages not in use by the application, serving
as a large trip hazard surface to detect safe area prob-
ing attacks with very high probability. In addition, since
we randomize the concrete placement of the safe area
within the larger inflated virtual memory space, this miti-
gates the impact of implementation bugs that allow an at-
tacker to disclose the virtual (but not the physical) mem-
ory space assigned to the inflated area. Finally, this en-
sures that, even an attacker attempting to stress-test an
application and saturate the working set of a safe area is
still exposed to a very large detection surface.

Notice that deterministic isolation, and not hiding, can
secure any safe area if properly applied. However, isola-
tion in 64-bit systems has not, yet, been broadly adopted,
while CPI’s SafeStack is already available in the official
LLVM tool-chain [2] and there are discussions for port-
ing it to GCC [3], as well. We therefore seek for a system
that rather hardens IH, than fully protects it. To that end,
APM stands as a solution until a proper replacement of
IH is adopted by current defenses.

5.1 Authenticating Accesses
To authenticate accesses, APM needs to interpose on all
the page faults in the safe area. Page faults are nor-
mally handled by the OS, but due to the proliferation
of virtualization and the need for live migration of vir-
tual machines, new features that enable reliable page
fault handling in user space have been incorporated in
the Linux kernel [6]. We rely on such features to gain
control when an instruction accesses one of the safe ar-
eas to authenticate it. To authenticate the access, we
rely on unforgeable execution capabilities, such as the
faulting instruction pointer and stack pointer, exported
by the kernel to our page fault handler and thus trusted
in our threat model (arbitrary memory read/write primi-
tives in userland). Our design draws inspiration from re-

cent hardware solutions based on instruction pointer ca-
pabilities [37], but generalizes such solutions to generic
execution capabilities and enforces them in software (in
a probabilistic but efficient fashion) to harden IH-based
solutions. An alternative option is to use SIGSEGV han-
dlers, but this introduces compatibility problems, since
applications may have their own SIGSEGV handler,
faults can happen inside the kernel, etc. On the other
hand, userfaultfd [6] is a fully integrated technique
for reliable page fault handling in user space for Linux.

APM is implemented as a shared library on Linux
and can be incorporated in programs protected by CPI,
ASLR-Guard, or any other IH-based solution by preload-
ing it at startup (e.g., through the LD_PRELOAD environ-
ment variable). Upon load, we notify the kernel that we
wish to register a user-level page-fault handler for each of
the process’s safe areas (i.e., using the userfaultfd
and ioctl system calls).

When any of the safe area pages are first accessed
through a read or write operation, the kernel invokes
the corresponding handler we previously registered. The
handler obtains the current instruction pointer (RIP on
x86-64), the stack pointer, the stack base, and the fault-
ing memory address from the kernel, and uses this in-
formation to authenticate the access. Authentication is
performed according to defense-specific authentication
rules. If the memory access fails authentication, the pro-
cess is terminated. In the other cases, the handler signals
the kernel to successfully map a new zero page into the
virtual memory address which caused the page fault.

To support CPI and SafeStack in our current im-
plementation, we interpose on calls to mmap() and
pthread_create(). In particular, we intercept calls
to mmap() to learn CPI’s safe area. This is easily ac-
complished because the safe area is 4TB and it is the
only such mapping that will be made. Furthermore, we
intercept pthread_create(), which is used to ini-
tialize thread-related structures and start a thread, to ob-
tain the address and size of the safe stack allocated for the
new thread. In the following subsections, we detail how
we implement authentication rules for CPI and SafeStack
using our execution capabilities.

5.2 CPI’s Authentication Rules
To access a safe area without storing its addresses in
data memory, CPI (and other IH-based solutions) store
its base address in a CPU register not in use by the appli-
cation. However, as the number of CPU registers is lim-
ited, CPI relies on the segmentation register gs available
on x86-64 architectures to store the base address. The
CPI instrumentation simply accesses the safe area via an
offset from that register. Listing 1 shows an example of
a safe area-accessing instruction generated by CPI.
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mov %gs:0x10(%rax),%rcx

Listing 1: x86-64 code generated by CPI to read a value
from the safe area.

Since gs is not used for any other purpose (it was se-
lected for this reason) and the instrumentation is assumed
to be trusted, APM authenticates accesses to the CPI safe
area by verifying that the instruction pointer points to an
instruction using the gs register. Therefore, since the at-
tacker needs to access the safe area before actually gain-
ing control of the vulnerable program, only legitimate in-
structions part of the instrumentation can be successfully
authenticated by APM.

5.3 SafeStack’s Authentication Rules
Similar to CPI’s safe area, SafeStack’s primary stack
(safe stack) is also accessed through a dedicated register
(RSP on x86-64 architectures) which originally points
to the top of the stack. When new values need to be
pushed to it, e.g., due to a function call, the program al-
locates space by subtracting the number of bytes needed
from RSP. This occurs explicitly or implicitly through
the call instruction. Hence, to authenticate safe stack
accesses, APM relies on the stack pointer (RSP) to verify
the faulting instruction accesses only the allocated part
of the stack. The latter extends from the current value of
RSP to the base of the safe stack of each thread. We also
need to allow accesses the red zone on x86-64.

5.4 Inflating the Safe Area
We inflate safe areas by allocating more virtual address
space than it is needed for the area. For example, when
a new safe stack is allocated, we can request 10 times
the size the application needs. The effect of this infla-
tion is that a larger part of the address space becomes
“eligible” for memory-access authentication, amplifying
our detection surface. Inflation is lightweight, since the
kernel only allocates pages and page-table entries after a
page is first accessed.

We implement our inflation strategy for SafeS-
tack (CPI’s safe region is naturally “inflated” given
the full memory shadowing approach used). To in-
flate thread stacks, our pthread_create() wrap-
per sets the stack size to a higher value (using
pthread_attr_setstacksize()). For the main
stack, initialized by the kernel, we implement inflation
by increasing the stack size (using setrlimit()) be-
fore the application begins executing. Similar to CPI, we
rely on the mmap()’s MAP_NORESERVE flag to avoid
overcommitting a large amount of virtual memory in typ-
ical production settings.

To randomize the placement of each safe stack within
the inflated virtual memory area, we randomize the initial
value of RSP (moving it upward into the inflated area)
while preserving the base address of the stack and the
TCB in place. Since the base address of each stack is
saved in memory (as we describe in Section 4), a memory
leak can exfiltrate its base address. Our randomization
strategy can mitigate such leaks by moving the safe stack
working set to a random offset from the base address and
exposing guided probing attacks to a large trip hazard
surface in between.

6 Evaluation

In this section, we report on experimental results of our
APM prototype. We evaluate the our solution in terms of
performance, entropy gains (reducing the likelihood at-
tackers will hit the target region), and detection guaran-
tees provided by APM coped with our inflation strategy
(authenticating memory accesses to the target region and
raising alerts).

We performed our experiments on an HP Z230 ma-
chine with an intel i7-4770 CPU 3.40GHz and running
Ubuntu 14.04.3 LTS and Linux kernel v4.3. Unless oth-
erwise noted, we configured APM with the default in-
flation factor of 10x. We repeated all our experiments 5
times and report the median (with little variations across
runs).

Performance To evaluate the APM’s performance we
run the SPEC2006 suite, which includes benchmarks
with very different memory access patterns. For each
benchmark, we prepared three versions: (1) the origi-
nal benchmark, denoted as BL (Baseline), (2) the bench-
mark compiled with CPI’s SafeStack only, denoted as
SS, and (3) the benchmark compiled with full CPI sup-
port, denoted as CPI. Table 2 presents our results. Note
that perlbench and povray fail to run when com-
piled with CPI, as also reported by other researchers [17].
Therefore, results for these particular cases are excluded
from the table.

Not surprisingly, the overhead imposed by APM in all
benchmarks and for all configurations (i.e., either com-
piled using SafeStack or full CPI) is very low. The geo-
metric mean performance overhead increase is only 0.3%
for BL+APM, 0.0% for SS+APM and 1.4% CPI+APM.

To confirm our performance results, we evalu-
ated the APM-induced overhead on Chrome (version
45.0.2454.93) and Firefox (version 38.0.5) by running
popular browser benchmarks—also used in prior work in
the area [21, 23]—i.e., sunspider, octane, kraken, html5,
balls and linelayout. Across all the benchmarks, we ob-
served essentially no overhead (0.01% and 0.56% ge-
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Apps BL BL + APM SS SS + APM CPI CPI + APM

astar 133.8 sec 1.004x 1.003x 1.002x 0.971x 0.985x
bzip2 82.6 sec 1.003x 1.002x 1.008x 1.039x 1.055x
dealII 229.4 sec 1.008x 1.009x 1.013x 0.887x 0.897x
gcc 19.2 sec 0.978x 0.982x 0.988x 1.368x 1.440x
gobmk 53.6 sec 1.001x 1.020x 1.018x 1.046x 1.046x
h264ref 51.6 sec 1.000x 1.009x 1.013x 1.028x 1.031x
hmmer 113.7 sec 0.996x 1.001x 0.996x 1.063x 1.066x
lbm 248.5 sec 1.002x 1.001x 1.002x 1.154x 1.159x
libquantum 274.1 sec 1.004x 1.015x 1.013x 1.231x 1.227x
mcf 237.4 sec 1.031x 0.998x 0.989x 1.046x 1.045x
milc 349.0 sec 1.009x 0.991x 0.997x 1.012x 1.023x
namd 306.8 sec 1.000x 1.001x 0.997x 1.031x 1.030x
omnetpp 358.8 sec 0.994x 1.017x 1.044x 1.377x 1.472x
perlbench 263.9 sec 1.004x 1.084x 1.091x —— ——
povray 121.3 sec 1.005x 1.092x 1.093x —— ——
sjeng 397.8 sec 1.004x 1.047x 1.051x 1.033x 1.031x
soplex 136.0 sec 1.001x 1.000x 0.951x 1.000x 0.997x
sphinx3 410.6 sec 0.987x 0.997x 0.995x 1.149x 1.138x
xalancbmk 189.0 sec 1.020x 1.042x 1.055x 1.679x 1.782x

geo-mean 1.003x 1.016x 1.016x 1.111x 1.125x

Table 2: SPEC CPU 2006 benchmark results. We present the overhead of hardening state-of-the art defenses with APM. BL and SS refer to
baseline and safe stack (respectively), and CPI refers to CPI’s safe area.

ometric mean increas on Chrome and Firefox, respec-
tively). These results confirm that, while APM may in-
troduce a few expensive page faults early in the execu-
tion, once the working set of the running programs is
fully loaded in memory, the steady-state performance
overhead is close to zero. We believe this property makes
APM an excellent candidate to immediately replace tra-
ditional information hiding on today’s production plat-
forms.

Entropy Gains With APM in place, it becomes signif-
icantly harder for an adversary to locate a safe area hid-
den in the virtual address space. To quantify the entropy
gains with APM in place, we ran again the SPEC2006
benchmarks in three different configurations, including
a parallel shadow stack [14] other than SafeStack and
full CPI. We present results for a parallel shadow stack
to generalize our results to arbitrary shadow stack im-
plementations in terms of entropy gains. A parallel
shadow stack is an ideal candidate for generalization,
since its shadow memory-based implementation con-
sumes as much physical memory as a regular stack,
thereby providing a worst-case scenario for our entropy
gain guarantees.

For each configuration, we evaluated the entropy with
and without APM in place and report the resulting gains.
The entropy gain is computed as log2(V MM/PMM),
where VMM is the Virtual Mapped Memory size (in
pages) and PMM is the Physical Mapped Memory size
(in pages). To mimic a worst-case scenario for our en-

tropy gains, we measured PMM at the very end of our
benchmarks, when the program has accessed as much
memory as possible resulting in the largest resident set
(and lowest entropy gains). Table 3 presents our results.
Once again, as also reported by other researchers [17],
perlbench and povray are excluded from the CPI
configuration.

As expected, our results in Table 3 show that lower
stack usage (i.e., lower PMM) results in higher entropy
gains. Even more importantly, the entropy gains for
CPI-enabled applications are substantial. In detail, we
gain 11 bits of entropy even in the worst case (i.e.,
xalancbmk). In other cases, (e.g., bzip2) the entropy
gains go up to 28 bits of entropy.

We find our experimental results extremely encourag-
ing, given that, without essentially adding overhead to
CPI’s fastest (but low-entropy) implementation, our tech-
niques can provide better entropy than the slowest (prob-
abilistic) CPI implementation [25]. SafeStack’s entropy
gains are, as expected, significantly lower than CPI’s, but
generally (only) slightly higher than a parallel shadow
stack. In both cases, the entropy gains greatly vary across
programs, ranging between 2 and 11 bits of entropy. This
is due to the very different memory access patterns ex-
hibited by different programs. Nevertheless, our strategy
is always effective in nontrivially increasing the entropy
for a marginal impact, providing a practical and immedi-
ate improvement for information hiding-protected appli-
cations in production.
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Parallel Shadow Stack SafeStack CPI’s (safe region)
Apps VMM PMM EG DG VMM PMM EG DG VMM PMM EG DG

astar 2048 3 > 9 bits 99.99 % 2048 2 10 bits 99.99 % 1 GP 201668 > 12 bits 99.98 %
bzip2 2048 4 9 bits 99.98 % 2048 1 11 bits 100.00 % 1 GP 4 28 bits 100.00 %
gcc 2048 112 > 4 bits 99.45 % 2048 8 8 bits 99.96 % 1 GP 121314 > 13 bits 99.99 %
gobmk 2048 27 > 6 bits 99.87 % 2048 7 > 8 bits 99.97 % 1 GP 5813 > 17 bits 100.00 %
h264ref 2048 5 > 8 bits 99.98 % 2048 2 10 bits 99.99 % 1 GP 6994 > 17 bits 100.00 %
hmmer 2048 3 > 9 bits 99.99 % 2048 2 10 bits 99.99 % 1 GP 36616 > 14 bits 100.00 %
lbm 2048 2 10 bits 99.99 % 2048 1 11 bits 100.00 % 1 GP 2 > 29 bits 100.00 %
libquantum 2048 1 11 bits 100.00 % 2048 2 10 bits 99.99 % 1 GP 66911 > 13 bits 99.99 %
mcf 2048 2 10 bits 99.99 % 2048 2 10 bits 99.99 % 1 GP 5107 > 17 bits 100.00 %
milc 2048 2 10 bits 99.99 % 2048 1 11 bits 100.00 % 1 GP 20017 > 15 bits 100.00 %
namd 2048 10 > 7 bits 99.95 % 2048 2 10 bits 99.99 % 1 GP 109 > 23 bits 100.00 %
omnetpp 2048 34 > 5 bits 99.83 % 2048 10 > 7 bits 99.95 % 1 GP 171316 > 12 bits 99.98 %
perlbench 2048 491 > 2 bits 97.60 % 2048 446 > 2 bits 97.82 % —– —– —– —–
povray 2048 7 > 8 bits 99.97 % 2048 4 9 bits 99.98 % —– —– —– —–
sjeng 2048 132 > 3 bits 99.36 % 2048 26 > 6 bits 99.87 % 1 GP 2 > 29 bits 100.00 %
soplex 2048 3 > 9 bits 99.99 % 2048 2 10 bits 99.99 % 1 GP 31673 > 15 bits 100.00 %
sphinx3 2048 12 > 7 bits 99.94 % 2048 2 10 bits 99.99 % 1 GP 11334 > 16 bits 100.00 %
xalancbmk 2048 496 > 2 bits 97.58 % 2048 494 > 2 bits 97.59 % 1 GP 316838 > 11 bits 99.97 %

Table 3: Entropy gains with our defense. VMM, PMM, EG, and DG refer to Virtual Mapped Memory, Physical Mapped Memory, Entropy Gains
and Detection Guarantees (respectively). VMM and PMM are measured in number of pages. EG is given by log2(V MM/PMM). DG is given
by (1−PMM/(V MM ∗ in f lation_ f actor))∗100, where the inflation_factor is set to default 10x for stacks and 1x for the already huge CPI’s safe
region. GP stands for giga pages, i.e., 1024∗1024∗1024 regular pages. A regular page has a size of 4096 bytes.

Detection Guarantees Table 3 also illustrates the de-
tection guarantees provided by APM when coped with
the default 10x inflation strategy. The detection guaran-
tees reflect the odds of an attacker being flagged probing
into the inflated trip hazard area rather than in any of
the safe pages mapped in physical memory. As shown
in the table, APM offers very strong detection guaran-
tees across all our configurations. Naturally, the detec-
tion guarantees are stronger as the size of the inflated trip
hazard area (i.e., V MM ∗ in f lation_ f actor−PMM) in-
creases compared to the resident size (i.e., PMM). The
benefits are, again, even more evident for CPI’s sparse
and huge safe area, which registered 100% detection
guarantees in almost all cases. Even in the worst case
(i.e., xalancbmk), CPI retains 316,838 trip hazard pages
at the end of the benchmark, resulting in 99.97% detec-
tion guarantees.

To lower the odds of being detected, an attacker may
attempt to force the program to allocate as many safe area
physical pages as possible, naturally reducing the num-
ber of trip hazard pages. We consider the impact of this
scenario in Firefox, with a JS-enabled attacker spraying
the stack to bypass APM. Figure 2 presents our results
for different inflation factors assuming an attacker able to
spray only the JS-visible part of the stack (1MB) or the
entire stack to its limit (2MB). As shown in the figure, in
both cases, APM provides good detection guarantees for
reasonable values of the inflation factor and up to 95%
with a 20x inflation (full spraying setting). Even in our
default configuration, with a 10x inflation, APM offers
adequate detection guarantees in practice (90% for the
full spraying setting).
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Figure 2: Effect of stack spraying (JS-visible or default stack) on our
detection guarantees (DGs) across different inflation factors.

Limitations APM aims at hardening IH, but does not
guarantee that a defense based on IH is fully protected
against arbitrary attacks. Defenses that rely on IH should
properly isolate the safe area to preserve the integrity
and/or confidentiality of sensitive data. In the absence of
strong (e.g., hardware-based) isolation, however, APM
can transparently raise the bar for attackers, since it
can offer protection without programs being aware of it
(no re-compilation or binary instrumentation is needed).
Nevertheless, certain attacks can still reduce the entropy
and the detection guarantees provided by APM. For ex-
ample, an attacker may be able to locate the base address
of an inflated safe area by exploiting an implementation
flaw or the recent allocation oracle side channel [28].
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While the entropy is reduced, the trip hazard pages still
deter guided probing attacks in the inflated area. How-
ever, if an implementation flaw or other side channels
were to allow an attacker to leak a pointer to an active
safe area page in use by the application (e.g., RSP), APM
would no longer be able to detect the corresponding ma-
licious access, since such page has already been authen-
ticated by prior legitimate application accesses.

7 Conclusion

Information hiding is at the heart of some of the most
sophisticated defenses against control-flow hijacking at-
tacks. The assumption is that an attacker will not be
able to locate a small number of pages tucked away at
a random location in a huge address space if there are
no references to this pages in memory. In this paper,
we challenge this assumption and demonstrate that it is
not always true for complex software systems such as
Mozilla Firefox. More specifically, we examined CPI’s
SafeStack since it is considered to be the state-of-the-art
defense. In a first step, we analyzed the implementa-
tion and found that there were still several pointers to the
hidden memory area in memory. An attacker can poten-
tially abuse a single such pointer to bypass the defense.
More seriously still, the protection offered by high en-
tropy is undermined by thread spraying—a novel tech-
nique whereby the attacker causes the target program to
spawn many threads in order to fill the address space with
as many safe stacks as possible. Doing so reduces the
entropy to the point that brute-force attacks become vi-
able again. We demonstrated the practicality of thread
spraying by way of an attack against Firefox, Chrome
and MySQL, protected with CPI’s SafeStack.

To mitigate such entropy-reducing attacks, we pro-
pose an IH hardening strategy, namely APM. Based on a
user-space page fault handler, APM allows accessing of
pages on demand only and vets each first access to a cur-
rently guarded page. The additional protection provided
by the page fault handler greatly improves the pseudo-
isolation offered by information hiding, making it a con-
crete candidate to replace traditional information hiding
in production until stronger (e.g., hardware-based) iso-
lation techniques find practical applicability. Most no-
tably, our approach can be used to harden existing de-
fenses against control-flow hijacking attacks with barely
measurable overhead.
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