
On the Dual Nature of Necessity in Use of Rust Unsafe Code
Yuchen Zhang

yzhan219@stevens.edu

Stevens Institute of

Technology

USA

Ashish Kundu

ashkundu@cisco.com

Cisco Research

USA

Georgios Portokalidis

gportoka@stevens.edu

Stevens Institute of

Technology

USA

Jun Xu

junxzm@cs.utah.edu

University of Utah

USA

ABSTRACT
Rust offers both safety guarantees and high performance. Thus,

it has gained significant popularity in the industry. To extend

its capability as a system programming language, Rust allows

unsafe blocks where the execution has low-level controls but loses

the safety guarantees. In principle, unsafe blocks should only be

used when necessary. However, preliminary evidence shows a dif-

ferent situation. This paper aims to establish a deeper view of this

matter and bring endeavors toward improvement.

We first present a study on the use of unsafe Rust in practice.We

manually inspected 5,946 unsafe blocks from 140 popular libraries

and applications, focusing on whether the use of unsafe code is

necessary (precisely, whether they have safe alternatives). The

study unveils hundreds of instances of unnecessary unsafe Rust

code and provides a taxonomy together with detailed analyses.

These results complement our understanding and offer insights for

the community to make a change.

Following the study, we further summarize nine popular patterns

of unnecessary unsafe blocks and design an IDE plugin to auto-

suggest their safe alternatives. Applied to 140 buggy unsafe blocks

from the RustSec Advisory Database, the plugin identifies and offers

safe versions to remove the bug for 28.6% of all cases.
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1 INTRODUCTION
Rust is a young system programming language. It offers efficiency

and safety concurrently [21], motivating many software vendors, in-

cluding Microsoft [20], Meta [11], Google [17], and Amazon [12], to
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adopt it for developing their products. Rust achieves safety through

a series of restrictive language designs (e.g., no raw pointers and

strict lifetime checks), which has been shown to limit its capability

for system software development in certain ways. For instance,

its no-pointer policy prevents the use of GLibc functions. To this

end, Rust allows unsafe code (i.e., code blocks enclosed by the

unsafe keyword) where the safety restrictions are dropped and

low-level controls are granted.

As language restrictions no longer work for unsafe Rust blocks,

it becomes the developers’ full responsibility to ensure their safety.

Not surprisingly, this is not sustainable. The use of unsafe Rust

in practice has led to various safety and security issues [9, 18]. For

instance, the RustSec Advisory Database [14] includes hundreds

of bugs due to misuse of unsafe Rust. To address the problem,

the community has extended many efforts to understand the use

of unsafe Rust. Astrauskas et. al. [1] and Evans et. al. [6] demys-

tify how and why developers use unsafe Rust. Further, Boqin et.

al. [13] unveil what bugs unsafe Rust can lead to. These results

offer nice insights for bug-detection methods like dynamic test-

ing [2, 15] and static analysis [3, 8], but they seem to present less

direct benefits to the developers.

In this paper, we present endeavors to address unsafe Rust code

in the development cycle. We focus on a question less covered by

previous research: is the use of unsafe blocks necessary? To

answer this question, we first manually collected and examined

5,946 unsafe blocks from 140 popular libraries and applications,

aiming to understand whether they can be re-implemented with

only safe code. We find that unsafe blocks are indeed inevitable in

many scenarios, such as ➀ interacting with foreign languages, such

as calling GLibc functions, and ➁ bypassing language restrictions to

implement specialized functionality, such as manipulating a linked

list during iteration.

However, the remaining cases, which can be categorized intomul-

tiple groups (see section 4), represent unnecessary use of unsafeRust.

As we will show later in this section, these cases can often lead to

bugs or even vulnerabilities. Based on our analysis, there are two

presumable reasonswhy developers use unnecessary unsafe blocks.

First, they intentionally bypass Rust restrictions for the goal of opti-

mizations. For instance, Rust offers a safe function, copy_within,
to copy data from one vector to another with built-in boundary

checks. To avoid the boundary checks, developers may instead

use ptr::copy, which can only be invoked in unsafe blocks. Sec-

ond, the developers are not aware of the safe options. For example,

they presume that mutable static variables—or global variables

in general—must be accessed in unsafe blocks, without realiz-

ing that mutable static variables can be encapsulated within the

lazy_static! macro and accessed in safe code.
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While our study brings helpful results, they still need to be com-

prehended and consumed before the developers can apply them

to reduce unnecessary unsafe blocks. To further benefit devel-

opers, we generalize the safe alternatives for 9 popular groups

of unsafe Rust summarized in Table 2 and integrate them as

auto-suggestion rules into a VS Code plugin. For alternatives that

may bring an execution slowdown, we also attach information

about the performance overhead we empirically obtained. To un-

derstand the utility of our plugin, we perform an experiment on 140

unsafe blocks with bugs from the RustSec Advisory Database [14].

The result shows that our plugin can recognize and make correct

suggestions for 28.6% of the buggy cases.

In summary, we make the following contributions:

▶ We perform an empirical study to understand the necessity of

unsafe Rust code in practice, bringing insights toward reducing

unnecessary use and related bugs.

▶ We design and develop a VS Code plugin to offer automated

suggestions of safe alternatives for unnecessary unsafe blocks.

▶ Our study data and plugin are released at https://github.com/

yzhang71/Rust-UnsafeToSafe.

2 BACKGROUND
2.1 Safe Rust
Rust, created in 2013, is a young system programming language.

Compared to C/C++, Rust offers both memory safety and thread

safety, incentivizing increasing adoptions by software vendors [4,

11, 12, 17]. The safety of rust is achieved through a combination of

language and runtime features.

Raw Pointer Dereference: Rust still supports pointers but consid-
ers dereferences of raw pointers undefined behaviors. Its compiler

will raise an error when encountering raw pointer dereferences.

This prevents all safety issues caused by invalid pointers.

Boundary Checks: Out-of-bound (OOB) accesses are also unde-

fined behaviors in Rust, which are prevented by compile-time and

runtime checks. On stack accesses with known OOB indexes, Rust

compiler will abort with an error. If the indexes are unknown, run-

time checks will be inserted instead. Dynamically allocated data

objects (e.g., vectors) in Rust are represented as fat pointers that con-
sist of a pointer to the data, the length (used space), and the capacity
(allocated space). Run-time checks will be inserted on accesses to

such objects to inspect if the index falls within the length.

Lifetime: Liftime, a new feature enforced in Rust, mandates that no

references to data are valid if the data has not been created or has

expired. The Rust compiler performs lifetime analysis and aborts

when detecting any violations. Lifetime prevents temporal issues

such as use-after-free and use-after-return.

Ownership and Borrowing: Rust further introduces the concept
of ownership, requiring that each value has one and only one owner

at any time. Once the owner goes out of scope, the value will be

dropped. To enable necessary functionality such as passing objects

by reference to another function, Rust supports borrowing of own-

ership that allows multiple references to the same value during

the owner’s lifetime. The borrowing carries a rule that mutable
references cannot co-exist with other mutable or immutable references.

Ownership and borrowing, together with lifetime, help prevent

temporal issues and concurrency issues.

2.2 Unsafe Rust
Rust brings safety. However, its restrictions make certain low-level

programming difficult. For instance, direct memory access is infea-

sible as raw pointer dereferences are not allowed. To this end, Rust

introduces an extension called unsafe Rust. Unsafe Rust, one or

more blocks annotated by the unsafe keyword, bypasses the re-

strictions we discussed above and interrupts the safety guarantees.

Raw Pointer Dereference: Unsafe code is allowed to dereference

raw pointers as C does. All the aforementioned restrictions, includ-

ing boundary checks, lifetime, ownership, and borrowing, do not

apply to pointers dereferences. This becomes a primary reason for

safety issues in Rust applications.

Others Flexibilities: Besides dereferencing raw pointers, unsafe
Rust can perform many other operations prohibited in safe Rust.

▶ Call unsafe functions: In Rust, we can mark an entire function

unsafe . Only unsafe code can call unsafe functions.

▶ Access mutable static variables: Global variables in Rust are

declared as mutable and static objects outside of functions. Ac-

cesses to global variables are not permitted as that can lead to

concurrent modifications by different threads and thus, data races.

This restriction does not apply in the unsafe Rust code.

▶ Implement unsafe traits: A trait defines a collection of meth-

ods that a given type must implement. Unsafe traits indicate

at least one of the methods is unsafe . Unsafe traits must be

placed inside unsafe blocks.

▶ Access union fields: Unions are introduced in Rust RFC 1444 [7]

to maintain compatibility with external C code. Direct access to

union fields is only allowed in unsafe code.

3 STUDY SETUP
3.1 Dataset
To understand the necessity of unsafe Rust code in practice, we

collect various real-world and publicly available Rust projects —

usually termed as crates — from the wild. Previous studies [1, 6]

focus on generic program analysis (e.g., counting the number of

raw pointer dereferences), which can be automated with compiler-

based tools. This enables them to include a large corpus of crates. In

contrast, we aim to gain an in-depth functionality-level understand-

ing of the unsafe code. In the example of raw pointer dereference,

we need to unveil that the pointer is used for goals like mutating

an element in a double-linked list. As such, our study mandates

human intelligence and manual reasoning, which is only feasible

to run on a selected set of crates.

Specifically, we collect the set of crates with 10k+ downloads on

crates.io (the Rust package registry) [16] and the set of crates

with 1k+ stars from awesome-rust (a repository of well-accepted

Rust projects) [19]. We keep the crates that are included in both

sets. This way, we ensure the representativeness of the dataset.

For instance, our dataset includes many renowned applications

developed by professional Rust development teams (e.g., Servo[10],
a web browser engine developed by Mozilla Research). In total, we

collect 140 Rust crates across 56 categories, consisting of 82 libraries

(58.6%) and 58 applications (41.4%). In total, the crates include 5,946
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Table 1: Distribution of unsafe Rust code.
Crates Categories

Raw Pointer Unsafe Func Mut Static Var Unsafe Trait Unions
Applications 320 2470 57 10 12

Libraries 213 2834 15 1 14

Total 533 5304 72 11 26

Ratio 8.96% 89.20% 1.21% 0.19% 0.44%

instances of unsafe code. Our dataset is larger than those used by

other manual studies of Rust (e.g., [13] only involves 10 crates).

3.2 Analysis
We run a three-step manual analysis of all instances of unsafe code

in our dataset. ❶ First, we run a basic analysis to identify and cate-

gorize unsafe code based on their high-level goals described in sub-

section 2.2. ❷ The second step further refines the categories based

on the functionality of each unsafe block. Consider dereferencing

a raw pointer as an example. We first identify the declaration of

the pointer and subsequently trace the control flow graph until the

last use of the pointer. Combining the execution context, we then

determine the functionality of using the raw pointer (e.g., bypassing

borrow rules to implement a double-linked list) and group it into

more fine-grained subcategories accordingly. ❸ In the last step, we

evaluate whether the unsafe code in each subcategory is necessary

to achieve the intended functionality. If the unsafe code can be

replaced by a safe equivalent that preserves the same functionality,

we conclude that the unsafe code is unnecessary and vice versa.

For each unnecessary case we identify, we replace the unsafe code

with the safe alternative and verify that the new code is compilable,

remains runnable, and produces identical outcomes.

4 RESULTS AND DISCUSSION
We classify unsafe code into five categories shown in Table 1.

About 9% of the unsafe instances involve dereferences of raw

pointers, with the vast majority (approximately 90%) consisting of

calling unsafe functions or methods. The remaining is distributed

among manipulating mutable static variables (1.21%), implementing

unsafe traits (0.19%), and accessing fields of unions (0.44%).

4.1 Dereferencing A Raw Pointer
We observe 533 instances of raw pointer dereference, which can be

classified into three groups as per their functionality.

Interacting with Foreign Code [356 Instances]: Interoperabil-
ity between programming languages is essential in cross-language

programs. Rust’s Foreign Function Interface (FFI) mechanism facil-

itates this by using raw pointers to cross the language boundary.

Our study unveils three different ways in practice. ➀ Rust allows

specifying C-style data layout by using the #[repr(C)] attribute.

Data objects following #[repr(C)] can be passed to foreign C

code and can only be accessed with raw pointers in Rust. ➁ Some

Rust programs include functions that can be called by foreign C

code. Arguments of such functions, if having complex types, must

be represented as raw pointers and accessed via deference. ➂ Rust

programs often invoke functions developed in foreign languages,

in particular GLibc. These functions can return raw pointers, which

can only be accessed via pointer dereference.

▶ Unsafe Code is Necessary: To avoid incompatible data layouts

between Rust and foreign languages, using rawmemory is a desired

1 pub fn make_mut_slice<T: Clone>(
2 arc: &mut Arc<[T]>) -> &mut [T] {
3 let mut_ref = unsafe {&mut *(arc as *mut Arc<[T]>)};
4 match Arc::get_mut(mut_ref) {
5 Some(x) => x,
6 None => { *arc = arc.iter().cloned().collect();
7 Arc::get_mut(arc).unwrap();} }
8 }

(a) Using unsafe block

1 pub fn make_mut_slice<T: Clone>(
2 arc: &mut Arc<[T]>) -> &mut [T] {
3

4 if Arc::get_mut(arc).is_none() {
5 *arc = arc.iter().cloned().collect();
6 } // iter() immutablely borrows "arc"
7 Arc::get_mut(arc).unwrap()
8 }

(b) No unsafe block

Figure 1: Example of using unnecessary raw pointers.

way to support their interactions. Thus, raw pointers must be used

and unsafe code to dereference the pointers is necessary.

Bypassing BorrowRules [13 Instances]: Raw pointers have been

used to bypass the ownership restrictions of Rust. The necessity of

unsafe code in this group depends on the intended functionality.

▶ Unsafe Code is Necessary: In 11 out of the 13 instances, raw

pointers are used to implement data structures that require multiple

mutable references. ➀ 6 cases implement mutable in-order traver-

sal on trees where two mutable references to the same node are

needed. ➁ The other 5 cases implement double-linked lists. They

also require two mutable references, one for the previous node and

one for the next. In these cases, the use of raw pointers is mandated

by the data structures’ functionality, which we deem necessary.

▶ Unsafe Code is Unnecessary: In two other instances, the use of
raw pointers is unnecessary. Our “hypothesis” is that the developers

might be unaware of how to satisfy Rust’s ownership rules without

using raw pointers. Figure 1 shows such an example. The developers

create a raw pointer to derive a mutable reference to argument arc,
which is later used for a condition check (see Figure 1a). The use of

raw pointer is unneeded, as demonstrated in Figure 1b.

Interior Mutability [164 Instances]: Rust offers another way
to opt out of the immutability guarantees via UnsafeCell. It en-
ables interior mutability, which allows creating multiple mutable

references inside unsafe blocks. Internally, UnsafeCell is an ab-

straction of a raw pointer to the data object. Thus, it inherits the

safety issues of raw pointers.

▶ Unsafe Code is Unnecessary: In our study, we observe 164

use cases of UnsafeCell, which are not necessary. In those cases,

UnsafeCell can be replaced by awell-encapsulatedwrapper known

as RefCell. RefCell provides a safe abstraction that stores the lo-

cation of active borrows and dynamically checks the borrow rules,

ensuring the immutability guarantees. Using RefCell, mutable

references can also be created using the borrow_mut() interface,

where unsafe blocks are not needed. Of course, RefCell carries

extra runtime checks and thus, may lead to reduced performance.

4.2 Calling Foreign Functions
Calling unsafe function dominating the use of unsafe blocks cov-

ered by our study. In total, we observe 5,304 cases in this category,

distributed across three major families.

Calling Foreign Functions [3,135 Instances]: The Rust ecosys-
tem remains young. To reduce time-to-market, developers often

reuse functions from projects developed in foreign languages (e.g.,

C). Those functions are termed foreign functions, which do not

offer safety guarantees and can only be called inside unsafe blocks.
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1unsafe fn from_utf8_unchecked(v: &[u8]) {
2 unsafe { mem::transmute(v) }
3}
4fn as_string<'a>(&'a self) -> &'a str {
5 unsafe {
6 let byte_array = transmute(slice);
7 str::from_utf8_unchecked(byte_array)
8 }
9}

(a) Using unsafe function

1pub const fn from_utf8(v: &[u8]) -> Result<&str> {
2 match run_utf8_validation(v) {
3 Ok(_) => {Ok(unsafe {from_utf8_unchecked(v)})}
4 Err(err) => Err(err),
5}
6fn as_string<'a>(&'a self) -> &'a str {
7 ...
8 str::from_utf8(byte_array).unwrap()
9}

(b) Not using unsafe function

Figure 2: Example for unnecessary use of unsafe function.

In our study, 446 cases are from GLibc, and most of the remain-

ing are imported from other C/C++ projects. Interestingly, we also

observe a few cases involving assembly instructions.

▶ Unsafe Code is Necessary:Using unsafe blocks to call foreign

functions is mandated by Rust. Thus, we consider this necessary. If

Rust verion for those functions (e.g., Rust-based Libc) appears in

the future, those cases will become unnecessary.

Initializing Foreign Data Type [109 Instances]: The second

family is also related to foreign code. Rust’s safety system requires

all data objects to be initiated before use. However, certain data

objects can get initialized by foreign code, which is invisible to

Rust. This creates a dilemma: if we skip initialization in Rust, the

compiler will complain; if we redo initialization in Rust, we may

invalidate the execution of the foreign code. To address this is-

sue, Rust offers special unsafe functions, such as mem::zeroed()
and assume_init(), to mute the compiler on initialization issues

related to target data objects. We see 109 such cases in our study.

▶ Unsafe Code is Necessary:We believe the use of unsafe func-

tions in those cases is necessary. Otherwise, the initialization dilemma

will persist. One may argue that developers should always initialize

data objects before sending them to foreign code. This does not

solve all the problems because many data objects are created in

foreign code and returned to Rust.

Calling Internal Unsafe Function [2,060 Instances]: The last
category involves internal functions that are explicitly marked as

unsafe due to their lack of safety assurance. Unsafe functions

can only be called inside unsafe blocks, spanning two major types

according to our observation. First, 401 unsafe functions take raw

pointers as some of their arguments. Their code needs to derefer-

ence the pointers, thus becoming unsafe. Second, the remaining

1,659 unsafe functions take non-pointer arguments, but they in-

clude operations without safety guarantees, such as copying mem-

ory without boundary checks.

▶ Unsafe Code is Necessary: In most of the cases (1,853 cases),

the use of unsafe functions appears to be necessary. At least, we do

not identify safe alternatives. For instance, functions with pointer

arguments will certainly incur unsafe operations unless they do

not use the arguments at all.

▶ Unsafe Code is Unnecessary: In the other 207 cases, the use

of unsafe functions is unnecessary. Those functions all have al-

ternatives where safety is ensured with extra checks. Figure 2a

demonstrates such an example. With further analysis, we group

the cases into 9 patterns, summarized in Table 2. Based on com-

ments in those cases, one major reason why the developers use the

unsafe version is performance consideration. Specifically, they use

the unsafe version to avoid the extra checks in the safe alternative.

Table 2: Safe suggestions for common unsafe Rust code

Code Example Description

C
r
e
a
t
i
n
g
a
V
e
c
t
o
r

1 buffer = Vec::with_capacity(len);
2 unsafe {
3 buffer.set_len(len);
4 }
5 ---> replace with --->
6 let mut buffer = vec![0; len];

A popular way to create a new vector in

Rust is using with_capacity() in con-

junction with the unsafe set_len(). Vec-
tors created this way are not initialized,

often leading to the use of uninitialized

memory. The same operation can be done

with safe code “vec![0; len]”, which al-

locates and initializes the vector with zeros.

R
e
s
i
z
i
n
g
a
V
e
c
t
o
r 1 buffer.reserve(length);

2 unsafe {
3 buffer.set_len(length);
4 }
5 ---> replace with --->
6 buffer.resize(length, 0);

To resize an existing vector, we can

use reserve() together with the

unsafe set_len(). Doing so will leave

the newly added space, if the resizing

enlarges the vector, uninitialized. The safe

alternative is resize(len, 0), which

both resizes and initializes with zeros.

C
o
p
y
w
i
t
h
i
n
V
e
c
t
o
r

1 unsafe {
2 ptr::copy(v[src], v[dst], cnt);
3 }
4 ---> replace with --->
5 v.copy_within(v[src]..cnt, v[dst]);

Copying a part of a vector to another lo-

cation in the same vector can be done

with unsafe function ptr::copy() with-

out boundary checks. The same function-

ality can be completed with safe func-

tion copy_within with built-in boundary

checks.

C
o
p
y
N
o
n
-
o
v
e
r
l
a
p
p
i
n
g

1 let src = vec![1,2,3];
2 let mut dst = vec![0; 3];
3 let cnt = 2;
4 let beg = src[..].as_ptr();
5 let end = dst[..].as_mut_ptr();
6 unsafe {
7 ptr::copy_nonoverlapping(b, e, c);
8 }
9 ---> replace with --->
10 dst[..c].copy_from_slice(&src[..c]);

A variant of the above case is copying a part

of a vector to another non-overlapping loca-

tion. This is often done with unsafe func-

tion ptr::copy_nonoverlapping()
where out-of-bound access can happen.

The unsafe function have a safe alternative

copy_from_slice().
C
r
e
a
t
e
C
S
t
r
i
n
g 1 unsafe {

2 let s =
3 CString::from_vec_unchecked(vec);
4 }
5 ---> replace with --->
6 let s = CString::new(vec).unwrap();

To create a C-compatible string from a byte

vector, developers often use unsafe func-

tion from_vec_unchecked() without

checks for interior 0 bytes. The function

has a safe alternative CString::new()
that asserts on interior 0 bytes.

C
S
t
r
i
n
g
S
i
z
e 1 unsafe {

2 let l = libc::strlen(cstr.as_ptr());
3 }
4 ---> replace with --->
5 let l = cstr.as_bytes().len();

To get the length of a C-compatible string,

Rust developers tend to use function

strlen() from the “libc” crate, which is

unsafe . This function has a safe version

cstring.as_bytes().len().

G
e
t
t
i
n
g
I
n
d
e
x
e
d
R
e
f
e
r
e
n
c
e

1 let mut vec = vec![0; len];
2 unsafe {
3 let elem = vec.get_unchecked(indx);
4 }
5 ---> replace with --->
6 let elem = vec.get(index).unwrap();
7 # method to get mutable reference
8 unsafe {
9 let elem = vec.get_unchecked_mut(indx);
10 }
11 ---> replace with --->
12 let elem = vec.get_mut(index).unwrap();

To get a reference to an element in-

side a vector, developers often use the

unsafe function get_unchecked() or

get_unchecked_mut() to bypass the

boundary checks. Such functions have

safe alternatives get().unwrap() and

get_mut().unwrap() to prevent poten-

tial out-of-bounds indexing.

C
o
n
v
e
r
t
B
y
t
e
s
t
o
S
t
r
i
n
g

1 let mut bts:&[u8] = &[159,159,146,146];
2 unsafe {
3 let str = from_utf8_unchecked(bts);
4 }
5 ---> replace with --->
6 let str = from_utf8(invalid).unwrap();;
7 # method to get mutable string slice
8 unsafe {
9 let s = from_utf8_unchecked_mut(bts);
10 }
11 ---> replace with --->
12 let s = from_utf8_mut(bts).unwrap();;

Converting a slice of bytes to a string

slice can be done with unsafe func-

tion from_utf8_unchecked() or

from_utf8_unchecked_mut() without

checking whether the bytes are valid

UTF-8. This can be replaced with safe

versions from_utf8().unwrap() and

from_utf8_mut().unwrap() to perform

a validation check before returning results.

C
v
t
.
u3

2
t
o

ch
ar 1 let u_32 = 0x2764;

2 unsafe {
3 let c = char::from_u32_unchecked(u_32);
4 }
5 ---> replace with --->
6 let c = char::from_u32(u_32).unwrap();

To obtain a char typed value from u32,
many developer uses the unsafe function

from_u32_unchecked() which ignores

validity of the argument. The same func-

tionality can be accomplished using a safe

version from_u32().unwrap() that miti-

gates the potential undefined behavior.

4.3 Interacting With Mutable Static Variables
We identify 72 use cases ofmutable static variables placed in unsafe
blocks. In those cases, the variables share the same lifetime as the

program and they can be accessed by any thread without synchro-

nizations. Thus, concurrency issues like data races can arise.
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Table 3: Results of unsafe pattern detection and suggestion for RustSec Advisory Database.

Datasets Detected Unsafe Code Patterns
Create Vector Resize Vector Copy Within Vector Copy Non-Overlapping Create CString Get CString Len Get Reference Bytes to String u32 to char Total

advisory-db 25 5 1 1 1 1 2 3 1 40

Ratio 62.5% 12.5% 2.5% 2.5% 2.5% 2.5% 5.0% 7.5% 2.5% -

▶ Unsafe Code is Unnecessary: Using unsafe blocks for muta-

ble static variables is not always necessary. For instance, by putting

static mutable variables inside the ‘lazy_static!’ macro, we can

access them without unsafe blocks. Doing so offers more than

merely removing the unsafe keyword: variables in‘lazy_static!’
are protected by thread-safe wrappers to avoid concurrency issues.

4.4 Defining Unsafe Traits
In Rust, a trait defines methods of a particular type and can share

with other types, resembling interface in Java. Developers can

use the unsafe keyword to implement an unsafe trait where one or

more of its methods have variants with unverifiable safety. In our

study, we find 11 unsafe instances belonging to this category. In

those cases, the unsafe keyword is essentially a maker annotating

that the implementation might be unsafe. Including or excluding

it has no impact on the compiler and the actual safety. Thus, it

becomes pointless to discuss its necessity.

4.5 Accessing Unions
To enable better compatibility with C, Rust introduces the union
type in 2016. Unions are stored as a single contiguous block of

memory, which are shared by overlapped fields. Each union ac-

cess simply interprets the storage at the target filed’s type where

safety is not guaranteed. Thus, access to unions must be placed in

unsafe blocks. In our study, we observe 26 unsafe blocks used to

perform union access.

▶ Unsafe Code is Necessary: Using unsafe blocks is the only

way to access unions. Thus, it is necessary.

5 APPLICATION OF STUDY RESULTS
Our study brings helpful results toward reducing unnecessary

unsafe blocks. However, they still need to be comprehended and

consumed by developers. To make our results directly usable in the

development cycle, we generalize the safe alternatives for popular

categories of unsafe Rust and integrate them as auto-suggestion

rules into a VS Code plugin.

5.1 Safe Alternatives
Through further examination of each unnecessary unsafe instance,

we identified 9 common patterns with generic safe alternatives.

Details of the patterns are summarized in Table 2. These patterns

cover 207 instances of unsafe code involved in the 140 projects we

collected for our study.

5.2 Automated Suggestion
We have integrated the 9 patterns as auto-suggestion rules into

the rust-analyzer extension of VS Code. In total, around 3.5K

lines of Rust code are added. The plugin runs automatically to

identify unsafe blocks when the developers edit their code. When

a single unsafe block involves multiple independent expressions,

we first group the expressions based on their dependency. This is

done via backward slicing from the last expression in the block.

Figure 3: Performance comparison between unsafe and
safe versions of the same functionality. We consider the
unsafe version as the baseline. “Get Reference” and “Get
Mut Ref” are two sub-categories of "Indexed Reference", de-
pending on the requirement of mutability. “Bytes to Mut Str”
and “Bytes to Str” are similar.

All expressions included in the same slice are grouped as a unit. If

more expressions remain, we repeat the slicing operation. We then

conduct static analysis on the Abstract Syntax Tree (AST) to match

each unit with our patterns developed in subsection 5.1. Once a

pattern is identified, we concretize the safe version by replacing

the abstractions with the actual objects and present the result.

5.3 Evaluation
To evaluate the utility of our plugin, we conduct an evaluation

on unsafe code involving bugs from the RustSec Advisory Data-

base [14]. At the time of writing, the database contains 208 projects

and 301 bugs. We utilize the Visual Studio Code IDE with our plugin

installed and import all 208 projects from RustSec Advisory Data-

base [14] that contain memory-related vulnerabilities (69.1% of the

total 301 vulnerabilities). Among all 208 cases, 68 of them are not in-

volved in unsafe code. We then manually examine each instance of

the remaining 140 cases to determine if any of the unsafe function

patterns outlined in subsection 5.1 are detected and if suggestions

for safe alternatives are provided.

As shown in Table 3, we are able to detect and successfully pro-

vide safe suggestions for 40 cases. That is, our safe code suggestion

can mitigate 28.6% of the bugs caused by unsafe code. Of all the

identified unsafe code patterns, “Creating a Vector” is most preva-

lent, constituting 62.5% of the total detected cases. It is followed

by “Resizing a Vector”, “Convert Bytes to String”, and “Getting

Reference”, accounting for 12.5%, 7.5%, and 5.0% of all cases, re-

spectively. The remaining 68 bugs are semantic or logical issues

that our plugin cannot handle, such as incorrect ordering of pa-

rameters for unsafe function Vec::from_raw_parts [5]. This

experiment shows that our IDE plugin can help detect unnecessary

unsafe Rust code, provide corresponding safe alternatives, and

automatically mitigate the safety issues behind them.

Trade-off: The safe versions we suggest may introduce extra opera-

tions. For instance, the safe alternatives for “Resizing a Vector” and
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“Convert Bytes to String” incur additional runtime initialization

or checks, potentially reducing the performance. We further run

experiments to understand the impact of the safe alternatives on

runtime performance. For each instance matching one of our pat-

terns, we create a standalone program wrapping the piece of target

code and stress-test the program with random inputs. We repeat

this after replacing the unsafe version with our safe alternatives.

All our experiments are conducted on the same machine with Intel

i7-8700@3.20GHz, 6 cores, 64GB RAM, and Ubuntu 18.04 LTS.

The evaluation results are shown in Figure 3. For 5 categories

(or 7 sub-categories), the safe alternatives have negligible impact

on the runtime performance. In the cases of ‘Copy Within Vector”

and “Getting CString Length”, we even observe slight performance

improvement. On “Creating a CString”, “Convert U32 to Char”,

“Convert Bytes to String”, and “Convert Bytes to Mutable String”,

the safe alternatives introduce significant overhead, ranging from

2.02x to 4.27x. However, these do not represent the generic situa-
tion, as we test the target code in an isolated way. Putting the target

code—typically sparse—into an entire application, their impact on

the runtime performance will be extremely diluted and invisible.

6 CONCLUSION
This paper presents an empirical study of how developers use

unsafe Rust blocks in practice. It unveils, while the unsafe blocks

are unavoidable due to reasons like an immature ecosystem, they

are not necessary in many cases. Following the study, we further

present an IDE tool that detects common patterns of unnecessary

unsafe blocks and suggests safe alternatives. Through empirical

evaluations, we show that our tool can help eliminate a significant

amount of unnecessary unsafe blocks and the bugs they introduce.
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